aboutsummaryrefslogtreecommitdiff
path: root/tests/core_tests/multisig.cpp
blob: a397d388d28e636ceb2270f558d002dda8e30e7a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
// Copyright (c) 2017-2020, The Monero Project
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
// 
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
// 
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
// 
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// 
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers

#include "chaingen.h"
#include "multisig.h"

#include "common/apply_permutation.h"
#include "crypto/crypto.h"
#include "cryptonote_basic/cryptonote_basic.h"
#include "device/device.hpp"
#include "multisig/multisig.h"
#include "multisig/multisig_account.h"
#include "multisig/multisig_kex_msg.h"
#include "ringct/rctOps.h"
#include "ringct/rctSigs.h"

using namespace epee;
using namespace crypto;
using namespace cryptonote;
using namespace multisig;

//#define NO_MULTISIG

static bool make_multisig_accounts(std::vector<cryptonote::account_base> &accounts, const uint32_t threshold)
{
  CHECK_AND_ASSERT_MES(accounts.size() > 0, false, "Invalid multisig scheme");

  std::vector<multisig_account> multisig_accounts;
  std::vector<crypto::public_key> signers;
  std::vector<multisig_kex_msg> round_msgs;
  multisig_accounts.reserve(accounts.size());
  signers.reserve(accounts.size());
  round_msgs.reserve(accounts.size());

  // create multisig accounts
  for (std::size_t account_index{0}; account_index < accounts.size(); ++account_index)
  {
    // create account and collect signer
    multisig_accounts.emplace_back(
        multisig_account{
          get_multisig_blinded_secret_key(accounts[account_index].get_keys().m_spend_secret_key),
          get_multisig_blinded_secret_key(accounts[account_index].get_keys().m_view_secret_key)
        }
      );

    signers.emplace_back(multisig_accounts.back().get_base_pubkey());

    // collect account's first kex msg
    round_msgs.emplace_back(multisig_accounts.back().get_next_kex_round_msg());
  }

  // initialize accounts and collect kex messages for the next round
  std::vector<multisig_kex_msg> temp_round_msgs(multisig_accounts.size());
  for (std::size_t account_index{0}; account_index < accounts.size(); ++account_index)
  {
    multisig_accounts[account_index].initialize_kex(threshold, signers, round_msgs);
    temp_round_msgs[account_index] = multisig_accounts[account_index].get_next_kex_round_msg();
  }

  // perform key exchange rounds
  while (!multisig_accounts[0].multisig_is_ready())
  {
    round_msgs = temp_round_msgs;

    for (std::size_t account_index{0}; account_index < multisig_accounts.size(); ++account_index)
    {
      multisig_accounts[account_index].kex_update(round_msgs);
      temp_round_msgs[account_index] = multisig_accounts[account_index].get_next_kex_round_msg();
    }
  }

  // update accounts post key exchange
  for (std::size_t account_index{0}; account_index < accounts.size(); ++account_index)
  {
    accounts[account_index].make_multisig(multisig_accounts[account_index].get_common_privkey(),
      multisig_accounts[account_index].get_base_privkey(),
      multisig_accounts[account_index].get_multisig_pubkey(),
      multisig_accounts[account_index].get_multisig_privkeys());
  }

  return true;
}

//----------------------------------------------------------------------------------------------------------------------
// Tests

bool gen_multisig_tx_validation_base::generate_with(std::vector<test_event_entry>& events,
    size_t inputs, size_t mixin, uint64_t amount_paid, bool valid,
    size_t threshold, size_t total, size_t creator, std::vector<size_t> signers,
    const std::function<void(std::vector<tx_source_entry> &sources, std::vector<tx_destination_entry> &destinations)> &pre_tx,
    const std::function<void(transaction &tx)> &post_tx) const
{
  uint64_t ts_start = 1338224400;
  bool r;

  CHECK_AND_ASSERT_MES(total >= 2, false, "Bad scheme");
  CHECK_AND_ASSERT_MES(threshold <= total, false, "Bad scheme");
#ifdef NO_MULTISIG
  CHECK_AND_ASSERT_MES(total <= 5, false, "Unsupported scheme");
#endif
  CHECK_AND_ASSERT_MES(inputs >= 1 && inputs <= 8, false, "Inputs should between 1 and 8");

  // given as 1 based for clarity
  --creator;
  for (size_t &signer: signers)
    --signer;

  CHECK_AND_ASSERT_MES(creator < total, false, "invalid creator");
  for (size_t signer: signers)
    CHECK_AND_ASSERT_MES(signer < total, false, "invalid signer");

#ifdef NO_MULTISIG
  GENERATE_ACCOUNT(acc0);
  GENERATE_ACCOUNT(acc1);
  GENERATE_ACCOUNT(acc2);
  GENERATE_ACCOUNT(acc3);
  GENERATE_ACCOUNT(acc4);
  account_base miner_account[5] = {acc0, acc1, acc2, acc3, acc4};
#else
  GENERATE_MULTISIG_ACCOUNT(miner_account, threshold, total);
#endif

  MAKE_GENESIS_BLOCK(events, blk_0, miner_account[creator], ts_start);

  // create 16 miner accounts, and have them mine the next 16 blocks
  // they will have a coinbase with a single out that's pseudo rct
  constexpr size_t n_coinbases = 16;
  cryptonote::account_base miner_accounts[n_coinbases];
  const cryptonote::block *prev_block = &blk_0;
  cryptonote::block blocks[n_coinbases];
  for (size_t n = 0; n < n_coinbases; ++n) {
    // the first block goes to the multisig account
    miner_accounts[n].generate();
    account_base &account = n < inputs ? miner_account[creator] : miner_accounts[n];
    CHECK_AND_ASSERT_MES(generator.construct_block_manually(blocks[n], *prev_block, account,
        test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_hf_version | test_generator::bf_max_outs,
        10, 10, prev_block->timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long
          crypto::hash(), 0, transaction(), std::vector<crypto::hash>(), 0, 1, 4),
        false, "Failed to generate block");
    events.push_back(blocks[n]);
    prev_block = blocks + n;
  }

  // rewind
  cryptonote::block blk_r, blk_last;
  {
    blk_last = blocks[n_coinbases - 1];
    for (size_t i = 0; i < CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW; ++i)
    {
      cryptonote::block blk;
      CHECK_AND_ASSERT_MES(generator.construct_block_manually(blk, blk_last, miner_accounts[0],
          test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_hf_version | test_generator::bf_max_outs,
          10, 10, blk_last.timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long
          crypto::hash(), 0, transaction(), std::vector<crypto::hash>(), 0, 1, 4),
          false, "Failed to generate block");
      events.push_back(blk);
      blk_last = blk;
    }
    blk_r = blk_last;
  }

  cryptonote::keypair in_ephemeral;
  crypto::public_key tx_pub_key[n_coinbases];
  crypto::public_key output_pub_key[n_coinbases];
  for (size_t n = 0; n < n_coinbases; ++n)
  {
    tx_pub_key[n] = get_tx_pub_key_from_extra(blocks[n].miner_tx);
    MDEBUG("tx_pub_key: " << tx_pub_key);
    output_pub_key[n] = boost::get<txout_to_key>(blocks[n].miner_tx.vout[0].target).key;
    MDEBUG("output_pub_key: " << output_pub_key);
  }

  std::unordered_map<crypto::public_key, cryptonote::subaddress_index> subaddresses;
  subaddresses[miner_account[0].get_keys().m_account_address.m_spend_public_key] = {0,0};

#ifndef NO_MULTISIG
  // create k/L/R/ki for that output we're going to spend
  std::vector<std::vector<std::vector<crypto::secret_key>>> account_k(total);
  std::vector<std::vector<std::vector<crypto::public_key>>> account_L(total);
  std::vector<std::vector<std::vector<crypto::public_key>>> account_R(total);
  std::vector<std::vector<std::vector<crypto::key_image>>> account_ki(total);
  std::vector<crypto::public_key> additional_tx_keys;
  for (size_t msidx = 0; msidx < total; ++msidx)
  {
    CHECK_AND_ASSERT_MES(miner_account[msidx].get_keys().m_account_address.m_spend_public_key == miner_account[0].get_keys().m_account_address.m_spend_public_key,
        false, "Mismatched spend public keys");

    size_t nlr = threshold < total ? threshold - 1 : 1;
    account_k[msidx].resize(inputs);
    account_L[msidx].resize(inputs);
    account_R[msidx].resize(inputs);
    account_ki[msidx].resize(inputs);
    for (size_t tdidx = 0; tdidx < inputs; ++tdidx)
    {
      account_L[msidx][tdidx].resize(nlr);
      account_R[msidx][tdidx].resize(nlr);
      for (size_t n = 0; n < nlr; ++n)
      {
        account_k[msidx][tdidx].push_back(rct::rct2sk(rct::skGen()));
        multisig::generate_multisig_LR(output_pub_key[tdidx], account_k[msidx][tdidx][n], account_L[msidx][tdidx][n], account_R[msidx][tdidx][n]);
      }
      size_t numki = miner_account[msidx].get_multisig_keys().size();
      account_ki[msidx][tdidx].resize(numki);
      for (size_t kiidx = 0; kiidx < numki; ++kiidx)
      {
        r = multisig::generate_multisig_key_image(miner_account[msidx].get_keys(), kiidx, output_pub_key[tdidx], account_ki[msidx][tdidx][kiidx]);
        CHECK_AND_ASSERT_MES(r, false, "Failed to generate multisig export key image");
      }
      MDEBUG("Party " << msidx << ":");
      MDEBUG("spend: sec " << miner_account[msidx].get_keys().m_spend_secret_key << ", pub " << miner_account[msidx].get_keys().m_account_address.m_spend_public_key);
      MDEBUG("view: sec " << miner_account[msidx].get_keys().m_view_secret_key << ", pub " << miner_account[msidx].get_keys().m_account_address.m_view_public_key);
      for (const auto &k: miner_account[msidx].get_multisig_keys())
        MDEBUG("msk: " << k);
      for (size_t n = 0; n < account_k[msidx][tdidx].size(); ++n)
      {
        MDEBUG("k: " << account_k[msidx][tdidx][n]);
        MDEBUG("L: " << account_L[msidx][tdidx][n]);
        MDEBUG("R: " << account_R[msidx][tdidx][n]);
      }
      for (const auto &ki: account_ki[msidx][tdidx])
        MDEBUG("ki: " << ki);
    }
  }
#endif

  // create kLRki
  std::vector<rct::multisig_kLRki> kLRkis;
  std::unordered_set<crypto::public_key> used_L;
  for (size_t tdidx = 0; tdidx < inputs; ++tdidx)
  {
    kLRkis.push_back(rct::multisig_kLRki());
    rct::multisig_kLRki &kLRki = kLRkis.back();
#ifdef NO_MULTISIG
    kLRki = {rct::zero(), rct::zero(), rct::zero(), rct::zero()};
#else
    kLRki.k = rct::sk2rct(account_k[creator][tdidx][0]);
    kLRki.L = rct::pk2rct(account_L[creator][tdidx][0]);
    kLRki.R = rct::pk2rct(account_R[creator][tdidx][0]);
    MDEBUG("Starting with k " << kLRki.k);
    MDEBUG("Starting with L " << kLRki.L);
    MDEBUG("Starting with R " << kLRki.R);
    for (size_t msidx = 0; msidx < total; ++msidx)
    {
      if (msidx == creator)
        continue;
      if (std::find(signers.begin(), signers.end(), msidx) == signers.end())
        continue;
      for (size_t lr = 0; lr < account_L[msidx][tdidx].size(); ++lr)
      {
        if (used_L.find(account_L[msidx][tdidx][lr]) == used_L.end())
        {
          used_L.insert(account_L[msidx][tdidx][lr]);
          MDEBUG("Adding L " << account_L[msidx][tdidx][lr] << " (for k " << account_k[msidx][tdidx][lr] << ")");
          MDEBUG("Adding R " << account_R[msidx][tdidx][lr]);
          rct::addKeys((rct::key&)kLRki.L, kLRki.L, rct::pk2rct(account_L[msidx][tdidx][lr]));
          rct::addKeys((rct::key&)kLRki.R, kLRki.R, rct::pk2rct(account_R[msidx][tdidx][lr]));
          break;
        }
      }
    }
    std::vector<crypto::key_image> pkis;
    for (size_t msidx = 0; msidx < total; ++msidx)
      for (size_t n = 0; n < account_ki[msidx][tdidx].size(); ++n)
        pkis.push_back(account_ki[msidx][tdidx][n]);
    r = multisig::generate_multisig_composite_key_image(miner_account[0].get_keys(), subaddresses, output_pub_key[tdidx], tx_pub_key[tdidx], additional_tx_keys, 0, pkis, (crypto::key_image&)kLRki.ki);
    CHECK_AND_ASSERT_MES(r, false, "Failed to generate composite key image");
    MDEBUG("composite ki: " << kLRki.ki);
    MDEBUG("L: " << kLRki.L);
    MDEBUG("R: " << kLRki.R);
    for (size_t n = 1; n < total; ++n)
    {
      rct::key ki;
      r = multisig::generate_multisig_composite_key_image(miner_account[n].get_keys(), subaddresses, output_pub_key[tdidx], tx_pub_key[tdidx], additional_tx_keys, 0, pkis, (crypto::key_image&)ki);
      CHECK_AND_ASSERT_MES(r, false, "Failed to generate composite key image");
      CHECK_AND_ASSERT_MES(kLRki.ki == ki, false, "Composite key images do not match");
    }
  }
#endif

  // create a tx: we have 8 outputs, all from coinbase, so "fake" rct - use 2
  std::vector<tx_source_entry> sources;
  for (size_t n = 0; n < inputs; ++n)
  {
    sources.resize(sources.size() + 1);
    tx_source_entry& src = sources.back();

    src.real_output = n;
    src.amount = blocks[n].miner_tx.vout[0].amount;
    src.real_out_tx_key = tx_pub_key[n];
    src.real_output_in_tx_index = 0;
    src.mask = rct::identity();
    src.rct = true;
    src.multisig_kLRki = kLRkis[n];

    for (size_t m = 0; m <= mixin; ++m)
    {
      rct::ctkey ctkey;
      ctkey.dest = rct::pk2rct(boost::get<txout_to_key>(blocks[m].miner_tx.vout[0].target).key);
      MDEBUG("using " << (m == n ? "real" : "fake") << " input " << ctkey.dest);
      ctkey.mask = rct::commit(blocks[m].miner_tx.vout[0].amount, rct::identity()); // since those are coinbases, the masks are known
      src.outputs.push_back(std::make_pair(m, ctkey));
    }
  }

  //fill outputs entry
  tx_destination_entry td;
  td.addr = miner_account[creator].get_keys().m_account_address;
  td.amount = amount_paid;
  std::vector<tx_destination_entry> destinations;
  destinations.push_back(td);

  if (pre_tx)
    pre_tx(sources, destinations);

  transaction tx;
  crypto::secret_key tx_key;
#ifdef NO_MULTISIG
  rct::multisig_out *msoutp = NULL;
#else
  rct::multisig_out msout;
  rct::multisig_out *msoutp = &msout;
#endif
  std::vector<crypto::secret_key> additional_tx_secret_keys;
  auto sources_copy = sources;
  r = construct_tx_and_get_tx_key(miner_account[creator].get_keys(), subaddresses, sources, destinations, boost::none, std::vector<uint8_t>(), tx, 0, tx_key, additional_tx_secret_keys, true, { rct::RangeProofPaddedBulletproof, 2 }, msoutp);
  CHECK_AND_ASSERT_MES(r, false, "failed to construct transaction");

#ifndef NO_MULTISIG
  // work out the permutation done on sources
  std::vector<size_t> ins_order;
  for (size_t n = 0; n < sources.size(); ++n)
  {
    for (size_t idx = 0; idx < sources_copy.size(); ++idx)
    {
      CHECK_AND_ASSERT_MES((size_t)sources_copy[idx].real_output < sources_copy[idx].outputs.size(),
          false, "Invalid real_output");
      if (sources_copy[idx].outputs[sources_copy[idx].real_output].second.dest == sources[n].outputs[sources[n].real_output].second.dest)
        ins_order.push_back(idx);
    }
  }
  CHECK_AND_ASSERT_MES(ins_order.size() == sources.size(), false, "Failed to work out sources permutation");
#endif

#ifndef NO_MULTISIG
  // sign
  std::unordered_set<crypto::secret_key> used_keys;
  const std::vector<crypto::secret_key> &msk0 = miner_account[creator].get_multisig_keys();
  for (const auto &sk: msk0)
    used_keys.insert(sk);
  for (size_t signer: signers)
  {
    rct::key skey = rct::zero();
    const std::vector<crypto::secret_key> &msk1 = miner_account[signer].get_multisig_keys();
    for (size_t n = 0; n < msk1.size(); ++n)
    {
      const crypto::secret_key &sk1 = msk1[n];
      if (used_keys.find(sk1) == used_keys.end())
      {
        used_keys.insert(sk1);
        sc_add(skey.bytes, skey.bytes, rct::sk2rct(sk1).bytes);
      }
    }
    CHECK_AND_ASSERT_MES(!(skey == rct::zero()), false, "failed to find secret multisig key to sign transaction");
    std::vector<unsigned int> indices;
    for (const auto &src: sources_copy)
      indices.push_back(src.real_output);
    rct::keyV k;
    for (size_t tdidx = 0; tdidx < inputs; ++tdidx)
    {
      k.push_back(rct::zero());
      for (size_t n = 0; n < account_k[signer][tdidx].size(); ++n)
      {
        crypto::public_key L;
        rct::scalarmultBase((rct::key&)L, rct::sk2rct(account_k[signer][tdidx][n]));
        if (used_L.find(L) != used_L.end())
        {
          sc_add(k.back().bytes, k.back().bytes, rct::sk2rct(account_k[signer][tdidx][n]).bytes);
        }
      }
      CHECK_AND_ASSERT_MES(!(k.back() == rct::zero()), false, "failed to find k to sign transaction");
    }
    tools::apply_permutation(ins_order, indices);
    tools::apply_permutation(ins_order, k);

    MDEBUG("signing with k size " << k.size());
    MDEBUG("signing with k " << k.back());
    MDEBUG("signing with sk " << skey);
    for (const auto &sk: used_keys)
      MDEBUG("  created with sk " << sk);
    MDEBUG("signing with c size " << msout.c.size());
    MDEBUG("signing with c " << msout.c.back());
    r = rct::signMultisig(tx.rct_signatures, indices, k, msout, skey);
    CHECK_AND_ASSERT_MES(r, false, "failed to sign transaction");
  }
#endif

  // verify this tx is really to the expected address
  const crypto::public_key tx_pub_key2 = get_tx_pub_key_from_extra(tx, 0);
  crypto::key_derivation derivation;
  r = crypto::generate_key_derivation(tx_pub_key2, miner_account[creator].get_keys().m_view_secret_key, derivation);
  CHECK_AND_ASSERT_MES(r, false, "Failed to generate derivation");
  uint64_t n_outs = 0, amount = 0;
  std::vector<crypto::key_derivation> additional_derivations;
  for (size_t n = 0; n < tx.vout.size(); ++n)
  {
    CHECK_AND_ASSERT_MES(typeid(txout_to_key) == tx.vout[n].target.type(), false, "Unexpected tx out type");
    if (is_out_to_acc_precomp(subaddresses, boost::get<txout_to_key>(tx.vout[n].target).key, derivation, additional_derivations, n, hw::get_device(("default"))))
    {
      ++n_outs;
      CHECK_AND_ASSERT_MES(tx.vout[n].amount == 0, false, "Destination amount is not zero");
      rct::key Ctmp;
      crypto::secret_key scalar1;
      crypto::derivation_to_scalar(derivation, n, scalar1);
      rct::ecdhTuple ecdh_info = tx.rct_signatures.ecdhInfo[n];
      rct::ecdhDecode(ecdh_info, rct::sk2rct(scalar1), tx.rct_signatures.type == rct::RCTTypeBulletproof2 || tx.rct_signatures.type == rct::RCTTypeCLSAG);
      rct::key C = tx.rct_signatures.outPk[n].mask;
      rct::addKeys2(Ctmp, ecdh_info.mask, ecdh_info.amount, rct::H);
      CHECK_AND_ASSERT_MES(rct::equalKeys(C, Ctmp), false, "Failed to decode amount");
      amount += rct::h2d(ecdh_info.amount);
    }
  }
  CHECK_AND_ASSERT_MES(n_outs == 1, false, "Not exactly 1 output was received");
  CHECK_AND_ASSERT_MES(amount == amount_paid, false, "Amount paid was not the expected amount");

  if (post_tx)
    post_tx(tx);

  if (!valid)
    DO_CALLBACK(events, "mark_invalid_tx");
  events.push_back(tx);
  LOG_PRINT_L0("Test tx: " << obj_to_json_str(tx));

  return true;
}

bool gen_multisig_tx_valid_22_1_2::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, true, 2, 2, 1, {2}, NULL, NULL);
}

bool gen_multisig_tx_valid_22_1_2_many_inputs::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 4, mixin, amount_paid, true, 2, 2, 1, {2}, NULL, NULL);
}

bool gen_multisig_tx_valid_22_2_1::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, true, 2, 2, 2, {1}, NULL, NULL);
}

bool gen_multisig_tx_valid_33_1_23::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, true, 3, 3, 1, {2, 3}, NULL, NULL);
}

bool gen_multisig_tx_valid_33_3_21::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, true, 3, 3, 3, {2, 1}, NULL, NULL);
}

bool gen_multisig_tx_valid_23_1_2::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 1, {2}, NULL, NULL);
}

bool gen_multisig_tx_valid_23_1_3::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 1, {3}, NULL, NULL);
}

bool gen_multisig_tx_valid_23_2_1::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 2, {1}, NULL, NULL);
}

bool gen_multisig_tx_valid_23_2_3::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 2, {3}, NULL, NULL);
}

bool gen_multisig_tx_valid_45_1_234::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, true, 4, 5, 1, {2, 3, 4}, NULL, NULL);
}

bool gen_multisig_tx_valid_45_4_135_many_inputs::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 4, mixin, amount_paid, true, 4, 5, 4, {1, 3, 5}, NULL, NULL);
}

bool gen_multisig_tx_valid_89_3_1245789::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, true, 8, 9, 3, {1, 2, 4, 5, 7, 8, 9}, NULL, NULL);
}

bool gen_multisig_tx_valid_24_1_2::generate(std::vector<test_event_entry>& events) const
{
    const size_t mixin = 10;
    const uint64_t amount_paid = 10000;
    return generate_with(events, 2, mixin, amount_paid, true, 2, 4, 1, {2}, NULL, NULL);
}

bool gen_multisig_tx_valid_24_1_2_many_inputs::generate(std::vector<test_event_entry>& events) const
{
    const size_t mixin = 10;
    const uint64_t amount_paid = 10000;
    return generate_with(events, 4, mixin, amount_paid, true, 2, 4, 1, {2}, NULL, NULL);
}

bool gen_multisig_tx_valid_25_1_2::generate(std::vector<test_event_entry>& events) const
{
    const size_t mixin = 10;
    const uint64_t amount_paid = 10000;
    return generate_with(events, 2, mixin, amount_paid, true, 2, 5, 1, {2}, NULL, NULL);
}

bool gen_multisig_tx_valid_25_1_2_many_inputs::generate(std::vector<test_event_entry>& events) const
{
    const size_t mixin = 10;
    const uint64_t amount_paid = 10000;
    return generate_with(events, 4, mixin, amount_paid, true, 2, 5, 1, {2}, NULL, NULL);
}

bool gen_multisig_tx_valid_48_1_234::generate(std::vector<test_event_entry>& events) const
{
    const size_t mixin = 10;
    const uint64_t amount_paid = 10000;
    return generate_with(events, 2, mixin, amount_paid, true, 4, 8, 1, {2, 3, 4}, NULL, NULL);
}

bool gen_multisig_tx_valid_48_1_234_many_inputs::generate(std::vector<test_event_entry>& events) const
{
    const size_t mixin = 10;
    const uint64_t amount_paid = 10000;
    return generate_with(events, 4, mixin, amount_paid, true, 4, 8, 1, {2, 3, 4}, NULL, NULL);
}

bool gen_multisig_tx_invalid_22_1__no_threshold::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, false, 2, 2, 1, {}, NULL, NULL);
}

bool gen_multisig_tx_invalid_33_1__no_threshold::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, false, 3, 3, 1, {}, NULL, NULL);
}

bool gen_multisig_tx_invalid_33_1_2_no_threshold::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, false, 3, 3, 1, {2}, NULL, NULL);
}

bool gen_multisig_tx_invalid_33_1_3_no_threshold::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, false, 3, 3, 1, {3}, NULL, NULL);
}

bool gen_multisig_tx_invalid_23_1__no_threshold::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, false, 2, 3, 1, {}, NULL, NULL);
}

bool gen_multisig_tx_invalid_45_5_23_no_threshold::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, false, 4, 5, 5, {2, 3}, NULL, NULL);
}

bool gen_multisig_tx_invalid_24_1_no_signers::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, false, 2, 4, 1, {}, NULL, NULL);
}

bool gen_multisig_tx_invalid_25_1_no_signers::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, false, 2, 5, 1, {}, NULL, NULL);
}

bool gen_multisig_tx_invalid_48_1_no_signers::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, false, 4, 8, 1, {}, NULL, NULL);
}

bool gen_multisig_tx_invalid_48_1_23_no_threshold::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amount_paid = 10000;
  return generate_with(events, 2, mixin, amount_paid, false, 4, 8, 1, {2, 3}, NULL, NULL);
}