aboutsummaryrefslogtreecommitdiff
path: root/src/ringct/rctSigs.cpp
blob: 0d4fbee1abce01a1261c9bd0c087c5836d762f0a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
// Copyright (c) 2016, Monero Research Labs
//
// Author: Shen Noether <shen.noether@gmx.com>
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
// 
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
// 
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
// 
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "misc_log_ex.h"
#include "rctSigs.h"
using namespace crypto;
using namespace std;

namespace rct {
    
    //Schnorr Non-linkable
    //Gen Gives a signature (L1, s1, s2) proving that the sender knows "x" such that xG = one of P1 or P2
    //Ver Verifies that signer knows an "x" such that xG = one of P1 or P2
    //These are called in the below ASNL sig generation    
    
    void GenSchnorrNonLinkable(key & L1, key & s1, key & s2, const key & x, const key & P1, const key & P2, int index) {
        key c1, c2, L2;
        key a = skGen();
        if (index == 0) {
            scalarmultBase(L1, a);
            hash_to_scalar(c2, L1);
            skGen(s2);
            addKeys2(L2, s2, c2, P2);
            hash_to_scalar(c1, L2);
            //s1 = a - x * c1
            sc_mulsub(s1.bytes, x.bytes, c1.bytes, a.bytes);
        }
        else if (index == 1) {
            scalarmultBase(L2, a);
            hash_to_scalar(c1, L2);
            skGen(s1);
            addKeys2(L1, s1, c1, P1);
            hash_to_scalar(c2, L1);
            sc_mulsub(s2.bytes, x.bytes, c2.bytes, a.bytes);
        }
        else {
          throw std::runtime_error("GenSchnorrNonLinkable: invalid index (should be 0 or 1)");
        }
    }

    //Schnorr Non-linkable
    //Gen Gives a signature (L1, s1, s2) proving that the sender knows "x" such that xG = one of P1 or P2
    //Ver Verifies that signer knows an "x" such that xG = one of P1 or P2
    //These are called in the below ASNL sig generation        
    bool VerSchnorrNonLinkable(const key & P1, const key & P2, const key & L1, const key & s1, const key & s2) {
        key c2, L2, c1, L1p;
        hash_to_scalar(c2, L1);
        addKeys2(L2, s2, c2, P2);
        hash_to_scalar(c1, L2);
        addKeys2(L1p, s1, c1, P1);
        
        return equalKeys(L1, L1p);
    }
    
    //Aggregate Schnorr Non-linkable Ring Signature (ASNL)
    // c.f. http://eprint.iacr.org/2015/1098 section 5. 
    // These are used in range proofs (alternatively Borromean could be used)
    // Gen gives a signature which proves the signer knows, for each i, 
    //   an x[i] such that x[i]G = one of P1[i] or P2[i]
    // Ver Verifies the signer knows a key for one of P1[i], P2[i] at each i
    asnlSig GenASNL(key64 x, key64 P1, key64 P2, bits indices) {
        DP("Generating Aggregate Schnorr Non-linkable Ring Signature\n");
        key64 s1;
        int j = 0;
        asnlSig rv;
        rv.s = zero();
        for (j = 0; j < ATOMS; j++) {
            GenSchnorrNonLinkable(rv.L1[j], s1[j], rv.s2[j], x[j], P1[j], P2[j], (int)indices[j]);
            sc_add(rv.s.bytes, rv.s.bytes, s1[j].bytes);
        }
        return rv;
    }

    //Aggregate Schnorr Non-linkable Ring Signature (ASNL)
    // c.f. http://eprint.iacr.org/2015/1098 section 5. 
    // These are used in range proofs (alternatively Borromean could be used)
    // Gen gives a signature which proves the signer knows, for each i, 
    //   an x[i] such that x[i]G = one of P1[i] or P2[i]
    // Ver Verifies the signer knows a key for one of P1[i], P2[i] at each i    
    bool VerASNL(const key64 P1, const key64 P2, const asnlSig &as) {
        DP("Verifying Aggregate Schnorr Non-linkable Ring Signature\n");
        key LHS = identity();
        key RHS = scalarmultBase(as.s);
        key c2, L2, c1;
        int j = 0;
        for (j = 0; j < ATOMS; j++) {
            hash_to_scalar(c2, as.L1[j]);
            addKeys2(L2, as.s2[j], c2, P2[j]);
            addKeys(LHS, LHS, as.L1[j]);
            hash_to_scalar(c1, L2);
            addKeys(RHS, RHS, scalarmultKey(P1[j], c1));
        }
        key cc;
        sc_sub(cc.bytes, LHS.bytes, RHS.bytes);
        return sc_isnonzero(cc.bytes) == 0;
    }
    
    //Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
    //These are aka MG signatutes in earlier drafts of the ring ct paper
    // c.f. http://eprint.iacr.org/2015/1098 section 2. 
    // keyImageV just does I[i] = xx[i] * Hash(xx[i] * G) for each i
    // Gen creates a signature which proves that for some column in the keymatrix "pk"
    //   the signer knows a secret key for each row in that column
    // Ver verifies that the MG sig was created correctly
    keyV keyImageV(const keyV &xx) {
        keyV II(xx.size());
        size_t i = 0;
        for (i = 0; i < xx.size(); i++) {
            II[i] = scalarmultKey(hashToPoint(scalarmultBase(xx[i])), xx[i]);
        }
        return II;
    }
    
    
    //Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
    //This is a just slghtly more efficient version than the ones described below
    //(will be explained in more detail in Ring Multisig paper
    //These are aka MG signatutes in earlier drafts of the ring ct paper
    // c.f. http://eprint.iacr.org/2015/1098 section 2. 
    // keyImageV just does I[i] = xx[i] * Hash(xx[i] * G) for each i
    // Gen creates a signature which proves that for some column in the keymatrix "pk"
    //   the signer knows a secret key for each row in that column
    // Ver verifies that the MG sig was created correctly        
    mgSig MLSAG_Gen(key message, const keyM & pk, const keyV & xx, const unsigned int index) {
        mgSig rv;
        size_t cols = pk.size();
        CHECK_AND_ASSERT_THROW_MES(cols >= 2, "Error! What is c if cols = 1!");
        CHECK_AND_ASSERT_THROW_MES(index < cols, "Index out of range");
        size_t rows = pk[0].size();
        CHECK_AND_ASSERT_THROW_MES(rows >= 1, "Empty pk");
        for (size_t i = 1; i < cols; ++i) {
          CHECK_AND_ASSERT_THROW_MES(pk[i].size() == rows, "pk is not rectangular");
        }
        CHECK_AND_ASSERT_THROW_MES(xx.size() == rows, "Bad xx size");

        size_t i = 0, j = 0;
        key c, c_old, L, R, Hi;
        sc_0(c_old.bytes);
        vector<geDsmp> Ip(rows);
        rv.II = keyV(rows);
        rv.ss = keyM(cols, rv.II);
        keyV alpha(rows);
        keyV aG(rows);
        keyV aHP(rows);
        keyV toHash(1 + 3 * rows);
        toHash[0] = message;
        DP("here1");
        for (i = 0; i < rows; i++) {
            skpkGen(alpha[i], aG[i]); //need to save alphas for later..
            Hi = hashToPoint(pk[index][i]);
            aHP[i] = scalarmultKey(Hi, alpha[i]);
            toHash[3 * i + 1] = pk[index][i];
            toHash[3 * i + 2] = aG[i];
            toHash[3 * i + 3] = aHP[i];
            rv.II[i] = scalarmultKey(Hi, xx[i]);
            precomp(Ip[i].k, rv.II[i]);
        }
        c_old = hash_to_scalar(toHash);

        
        i = (index + 1) % cols;
        if (i == 0) {
            copy(rv.cc, c_old);
        }
        while (i != index) {

            rv.ss[i] = skvGen(rows);            
            sc_0(c.bytes);
            for (j = 0; j < rows; j++) {
                addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
                hashToPoint(Hi, pk[i][j]);
                addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j].k);
                toHash[3 * j + 1] = pk[i][j];
                toHash[3 * j + 2] = L; 
                toHash[3 * j + 3] = R;
            }
            c = hash_to_scalar(toHash);
            copy(c_old, c);
            i = (i + 1) % cols;
            
            if (i == 0) { 
                copy(rv.cc, c_old);
            }   
        }
        for (j = 0; j < rows; j++) {
            sc_mulsub(rv.ss[index][j].bytes, c.bytes, xx[j].bytes, alpha[j].bytes);
        }        
        return rv;
    }
    
    //Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
    //This is a just slghtly more efficient version than the ones described below
    //(will be explained in more detail in Ring Multisig paper
    //These are aka MG signatutes in earlier drafts of the ring ct paper
    // c.f. http://eprint.iacr.org/2015/1098 section 2. 
    // keyImageV just does I[i] = xx[i] * Hash(xx[i] * G) for each i
    // Gen creates a signature which proves that for some column in the keymatrix "pk"
    //   the signer knows a secret key for each row in that column
    // Ver verifies that the MG sig was created correctly            
    bool MLSAG_Ver(key message, const keyM & pk, const mgSig & rv, const keyV &II) {

        size_t cols = pk.size();
        CHECK_AND_ASSERT_MES(cols >= 2, false, "Error! What is c if cols = 1!");
        size_t rows = pk[0].size();
        CHECK_AND_ASSERT_MES(rows >= 1, false, "Empty pk");
        for (size_t i = 1; i < cols; ++i) {
          CHECK_AND_ASSERT_MES(pk[i].size() == rows, false, "pk is not rectangular");
        }
        CHECK_AND_ASSERT_MES(II.size() == rows, false, "Bad II size");
        CHECK_AND_ASSERT_MES(rv.ss.size() == cols, false, "Bad rv.ss size");
        for (size_t i = 0; i < cols; ++i) {
          CHECK_AND_ASSERT_MES(rv.ss[i].size() == rows, false, "rv.ss is not rectangular");
        }

        size_t i = 0, j = 0;
        key c,  L, R, Hi;
        key c_old = copy(rv.cc);
        vector<geDsmp> Ip(rows);
        for (i= 0 ; i< rows ; i++) {
            precomp(Ip[i].k, II[i]);
        }
        keyV toHash(1 + 3 * rows);
        toHash[0] = message;
        i = 0;
        while (i < cols) {
            sc_0(c.bytes);
            for (j = 0; j < rows; j++) {
                addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
                hashToPoint(Hi, pk[i][j]);
                addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j].k);
                toHash[3 * j + 1] = pk[i][j];
                toHash[3 * j + 2] = L; 
                toHash[3 * j + 3] = R;
            }
            c = hash_to_scalar(toHash);
            copy(c_old, c);
            i = (i + 1);
        }
        sc_sub(c.bytes, c_old.bytes, rv.cc.bytes);
        return sc_isnonzero(c.bytes) == 0;  
    }
    


    //proveRange and verRange
    //proveRange gives C, and mask such that \sumCi = C
    //   c.f. http://eprint.iacr.org/2015/1098 section 5.1
    //   and Ci is a commitment to either 0 or 2^i, i=0,...,63
    //   thus this proves that "amount" is in [0, 2^64]
    //   mask is a such that C = aG + bH, and b = amount
    //verRange verifies that \sum Ci = C and that each Ci is a commitment to 0 or 2^i
    rangeSig proveRange(key & C, key & mask, const xmr_amount & amount) {
        sc_0(mask.bytes);
        identity(C);
        bits b;
        d2b(b, amount);
        rangeSig sig;
        key64 ai;
        key64 CiH;
        int i = 0;
        for (i = 0; i < ATOMS; i++) {
            skGen(ai[i]);
            if (b[i] == 0) {
                scalarmultBase(sig.Ci[i], ai[i]);
            }
            if (b[i] == 1) {
                addKeys1(sig.Ci[i], ai[i], H2[i]);
            }
            subKeys(CiH[i], sig.Ci[i], H2[i]);
            sc_add(mask.bytes, mask.bytes, ai[i].bytes);
            addKeys(C, C, sig.Ci[i]);
        }
        sig.asig = GenASNL(ai, sig.Ci, CiH, b);
        return sig;
    }

    //proveRange and verRange
    //proveRange gives C, and mask such that \sumCi = C
    //   c.f. http://eprint.iacr.org/2015/1098 section 5.1
    //   and Ci is a commitment to either 0 or 2^i, i=0,...,63
    //   thus this proves that "amount" is in [0, 2^64]
    //   mask is a such that C = aG + bH, and b = amount
    //verRange verifies that \sum Ci = C and that each Ci is a commitment to 0 or 2^i
    bool verRange(const key & C, const rangeSig & as) {
        key64 CiH;
        int i = 0;
        key Ctmp = identity();
        for (i = 0; i < 64; i++) {
            subKeys(CiH[i], as.Ci[i], H2[i]);
            addKeys(Ctmp, Ctmp, as.Ci[i]);
        }
        bool reb = equalKeys(C, Ctmp);
        bool rab = VerASNL(as.Ci, CiH, as.asig);
        return (reb && rab);
    }

    //Ring-ct MG sigs
    //Prove: 
    //   c.f. http://eprint.iacr.org/2015/1098 section 4. definition 10. 
    //   This does the MG sig on the "dest" part of the given key matrix, and 
    //   the last row is the sum of input commitments from that column - sum output commitments
    //   this shows that sum inputs = sum outputs
    //Ver:    
    //   verifies the above sig is created corretly
    mgSig proveRctMG(const key &message, const ctkeyM & pubs, const ctkeyV & inSk, const ctkeyV &outSk, const ctkeyV & outPk, unsigned int index, key txnFeeKey) {
        mgSig mg;
        //setup vars
        size_t cols = pubs.size();
        CHECK_AND_ASSERT_THROW_MES(cols >= 1, "Empty pubs");
        size_t rows = pubs[0].size();
        CHECK_AND_ASSERT_THROW_MES(rows >= 1, "Empty pubs");
        for (size_t i = 1; i < cols; ++i) {
          CHECK_AND_ASSERT_THROW_MES(pubs[i].size() == rows, "pubs is not rectangular");
        }
        CHECK_AND_ASSERT_THROW_MES(inSk.size() == rows, "Bad inSk size");
        CHECK_AND_ASSERT_THROW_MES(outSk.size() == outPk.size(), "Bad outSk/outPk size");

        keyV sk(rows + 1);
        keyV tmp(rows + 1);
        size_t i = 0, j = 0;
        for (i = 0; i < rows + 1; i++) {
            sc_0(sk[i].bytes);
            identity(tmp[i]);
        }
        keyM M(cols, tmp);
        //create the matrix to mg sig
        for (i = 0; i < cols; i++) {
            M[i][rows] = identity();
            for (j = 0; j < rows; j++) {
                M[i][j] = pubs[i][j].dest;
                addKeys(M[i][rows], M[i][rows], pubs[i][j].mask); //add input commitments in last row
            }
        }
        sc_0(sk[rows].bytes);
        for (j = 0; j < rows; j++) {
            sk[j] = copy(inSk[j].dest);
            sc_add(sk[rows].bytes, sk[rows].bytes, inSk[j].mask.bytes); //add masks in last row
        }
        for (i = 0; i < cols; i++) {
            for (size_t j = 0; j < outPk.size(); j++) {
                subKeys(M[i][rows], M[i][rows], outPk[j].mask); //subtract output Ci's in last row
            }
            //subtract txn fee output in last row
            subKeys(M[i][rows], M[i][rows], txnFeeKey);
        }
        for (size_t j = 0; j < outPk.size(); j++) {
            sc_sub(sk[rows].bytes, sk[rows].bytes, outSk[j].mask.bytes); //subtract output masks in last row..
        }
        ctkeyV signed_data = outPk;
        signed_data.push_back(ctkey({message, identity()}));
        key msg = cn_fast_hash(signed_data);
        return MLSAG_Gen(msg, M, sk, index);
    }


    //Ring-ct MG sigs Simple
    //   Simple version for when we assume only
    //       post rct inputs
    //       here pubs is a vector of (P, C) length mixin
    //   inSk is x, a_in corresponding to signing index
    //       a_out, Cout is for the output commitment
    //       index is the signing index..
    mgSig proveRctMGSimple(const key &message, const ctkeyV & pubs, const ctkey & inSk, const key &a , const key &Cout, unsigned int index) {
        mgSig mg;
        //setup vars
        size_t rows = 1;
        size_t cols = pubs.size();
        CHECK_AND_ASSERT_THROW_MES(cols >= 1, "Empty pubs");
        keyV tmp(rows + 1);
        keyV sk(rows + 1);
        size_t i;
        keyM M(cols, tmp);
        for (i = 0; i < cols; i++) {
            M[i][0] = pubs[i].dest;
            subKeys(M[i][1], pubs[i].mask, Cout);
            sk[0] = copy(inSk.dest);
            sc_sub(sk[1].bytes, inSk.mask.bytes, a.bytes);  
        }
        return MLSAG_Gen(message, M, sk, index);
    }


    //Ring-ct MG sigs
    //Prove: 
    //   c.f. http://eprint.iacr.org/2015/1098 section 4. definition 10. 
    //   This does the MG sig on the "dest" part of the given key matrix, and 
    //   the last row is the sum of input commitments from that column - sum output commitments
    //   this shows that sum inputs = sum outputs
    //Ver:    
    //   verifies the above sig is created corretly
    bool verRctMG(mgSig mg, const keyV &II, const ctkeyM & pubs, const ctkeyV & outPk, key txnFeeKey, const key &message) {
        //setup vars
        size_t cols = pubs.size();
        CHECK_AND_ASSERT_MES(cols >= 1, false, "Empty pubs");
        size_t rows = pubs[0].size();
        CHECK_AND_ASSERT_MES(rows >= 1, false, "Empty pubs");
        for (size_t i = 1; i < cols; ++i) {
          CHECK_AND_ASSERT_MES(pubs[i].size() == rows, false, "pubs is not rectangular");
        }

        keyV tmp(rows + 1);
        size_t i = 0, j = 0;
        for (i = 0; i < rows + 1; i++) {
            identity(tmp[i]);
        }
        keyM M(cols, tmp);

        //create the matrix to mg sig
        for (j = 0; j < rows; j++) {
            for (i = 0; i < cols; i++) {
                M[i][j] = pubs[i][j].dest;
                addKeys(M[i][rows], M[i][rows], pubs[i][j].mask); //add Ci in last row
            }
        }
        for (i = 0; i < cols; i++) {
            for (j = 0; j < outPk.size(); j++) {
                subKeys(M[i][rows], M[i][rows], outPk[j].mask); //subtract output Ci's in last row
            }
            //subtract txn fee output in last row
            subKeys(M[i][rows], M[i][rows], txnFeeKey);
        }
        ctkeyV signed_data = outPk;
        signed_data.push_back(ctkey({message, identity()}));
        key msg = cn_fast_hash(signed_data);
        DP("message:");
        DP(msg);
        return MLSAG_Ver(msg, M, mg, II);
    }

    //Ring-ct Simple MG sigs
    //Ver: 
    //This does a simplified version, assuming only post Rct
    //inputs
    bool verRctMGSimple(const key &message, const mgSig &mg, const keyV &II, const ctkeyV & pubs, const key & C) {
            //setup vars
            size_t rows = 1;
            size_t cols = pubs.size();
            CHECK_AND_ASSERT_MES(cols >= 1, false, "Empty pubs");
            keyV tmp(rows + 1);
            size_t i;
            keyM M(cols, tmp);
            //create the matrix to mg sig
            for (i = 0; i < cols; i++) {
                    M[i][0] = pubs[i].dest;
                    subKeys(M[i][1], pubs[i].mask, C);
            }
            //DP(C);
            return MLSAG_Ver(message, M, mg, II);
    }

    //These functions get keys from blockchain
    //replace these when connecting blockchain
    //getKeyFromBlockchain grabs a key from the blockchain at "reference_index" to mix with
    //populateFromBlockchain creates a keymatrix with "mixin" columns and one of the columns is inPk
    //   the return value are the key matrix, and the index where inPk was put (random).    
    void getKeyFromBlockchain(ctkey & a, size_t reference_index) {
        a.mask = pkGen();
        a.dest = pkGen();
    }

    //These functions get keys from blockchain
    //replace these when connecting blockchain
    //getKeyFromBlockchain grabs a key from the blockchain at "reference_index" to mix with
    //populateFromBlockchain creates a keymatrix with "mixin" + 1 columns and one of the columns is inPk
    //   the return value are the key matrix, and the index where inPk was put (random).     
    tuple<ctkeyM, xmr_amount> populateFromBlockchain(ctkeyV inPk, int mixin) {
        int rows = inPk.size();
        ctkeyM rv(mixin + 1, inPk);
        int index = randXmrAmount(mixin);
        int i = 0, j = 0;
        for (i = 0; i <= mixin; i++) {
            if (i != index) {
                for (j = 0; j < rows; j++) {
                    getKeyFromBlockchain(rv[i][j], (size_t)randXmrAmount);
                }
            }
        }
        return make_tuple(rv, index);
    }

    //These functions get keys from blockchain
    //replace these when connecting blockchain
    //getKeyFromBlockchain grabs a key from the blockchain at "reference_index" to mix with
    //populateFromBlockchain creates a keymatrix with "mixin" columns and one of the columns is inPk
    //   the return value are the key matrix, and the index where inPk was put (random).     
    xmr_amount populateFromBlockchainSimple(ctkeyV & mixRing, const ctkey & inPk, int mixin) {
        int index = randXmrAmount(mixin);
        int i = 0;
        for (i = 0; i <= mixin; i++) {
            if (i != index) {
                getKeyFromBlockchain(mixRing[i], (size_t)randXmrAmount(1000));
            } else {
                mixRing[i] = inPk;
            }
        }
        return index;
    }

    //RingCT protocol
    //genRct: 
    //   creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the
    //   columns that are claimed as inputs, and that the sum of inputs  = sum of outputs.
    //   Also contains masked "amount" and "mask" so the receiver can see how much they received
    //verRct:
    //   verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct
    //decodeRct: (c.f. http://eprint.iacr.org/2015/1098 section 5.1.1)
    //   uses the attached ecdh info to find the amounts represented by each output commitment 
    //   must know the destination private key to find the correct amount, else will return a random number
    //   Note: For txn fees, the last index in the amounts vector should contain that
    //   Thus the amounts vector will be "one" longer than the destinations vectort
    rctSig genRct(const key &message, const ctkeyV & inSk, const keyV & destinations, const vector<xmr_amount> & amounts, const ctkeyM &mixRing, const keyV &amount_keys, unsigned int index, ctkeyV &outSk) {
        CHECK_AND_ASSERT_THROW_MES(amounts.size() == destinations.size() || amounts.size() == destinations.size() + 1, "Different number of amounts/destinations");
        CHECK_AND_ASSERT_THROW_MES(index < mixRing.size(), "Bad index into mixRing");
        for (size_t n = 0; n < mixRing.size(); ++n) {
          CHECK_AND_ASSERT_THROW_MES(mixRing[n].size() == inSk.size(), "Bad mixRing size");
        }

        rctSig rv;
        rv.simple = false;
        rv.outPk.resize(destinations.size());
        rv.rangeSigs.resize(destinations.size());
        rv.ecdhInfo.resize(destinations.size());

        size_t i = 0;
        keyV masks(destinations.size()); //sk mask..
        outSk.resize(destinations.size());
        for (i = 0; i < destinations.size(); i++) {
            //add destination to sig
            rv.outPk[i].dest = copy(destinations[i]);
            //compute range proof
            rv.rangeSigs[i] = proveRange(rv.outPk[i].mask, outSk[i].mask, amounts[i]);
            #ifdef DBG
                CHECK_AND_ASSERT_THROW_MES(verRange(rv.outPk[i].mask, rv.rangeSigs[i]), "verRange failed on newly created proof");
            #endif

            //mask amount and mask
            rv.ecdhInfo[i].mask = copy(outSk[i].mask);
            rv.ecdhInfo[i].amount = d2h(amounts[i]);
            ecdhEncodeFromSharedSecret(rv.ecdhInfo[i], amount_keys[i]);

        }

        //set txn fee
        if (amounts.size() > destinations.size())
        {
          rv.txnFee = amounts[destinations.size()];
        }
        else
        {
          rv.txnFee = 0;
        }
        key txnFeeKey = scalarmultH(d2h(rv.txnFee));

        rv.mixRing = mixRing;
        rv.message = message;
        rv.MG = proveRctMG(message, rv.mixRing, inSk, outSk, rv.outPk, index, txnFeeKey);
        return rv;
    }

    rctSig genRct(const key &message, const ctkeyV & inSk, const ctkeyV  & inPk, const keyV & destinations, const vector<xmr_amount> & amounts, const keyV &amount_keys, const int mixin) {
        unsigned int index;
        ctkeyM mixRing;
        ctkeyV outSk;
        tie(mixRing, index) = populateFromBlockchain(inPk, mixin);
        return genRct(message, inSk, destinations, amounts, mixRing, amount_keys, index, outSk);
    }
    
    //RCT simple    
    //for post-rct only
    rctSig genRctSimple(const key &message, const ctkeyV & inSk, const keyV & destinations, const vector<xmr_amount> &inamounts, const vector<xmr_amount> &outamounts, xmr_amount txnFee, const ctkeyM & mixRing, const keyV &amount_keys, const std::vector<unsigned int> & index, ctkeyV &outSk) {
        CHECK_AND_ASSERT_THROW_MES(inamounts.size() > 0, "Empty inamounts");
        CHECK_AND_ASSERT_THROW_MES(inamounts.size() == inSk.size(), "Different number of inamounts/inSk");
        CHECK_AND_ASSERT_THROW_MES(outamounts.size() == destinations.size(), "Different number of amounts/destinations");
        CHECK_AND_ASSERT_THROW_MES(index.size() == inSk.size(), "Different number of index/inSk");
        CHECK_AND_ASSERT_THROW_MES(mixRing.size() == inSk.size(), "Different number of mixRing/inSk");
        for (size_t n = 0; n < mixRing.size(); ++n) {
          CHECK_AND_ASSERT_THROW_MES(index[n] < mixRing[n].size(), "Bad index into mixRing");
        }

        rctSig rv;
        rv.simple = true;
        rv.message = message;
        rv.outPk.resize(destinations.size());
        rv.rangeSigs.resize(destinations.size());
        rv.ecdhInfo.resize(destinations.size());

        size_t i;
        keyV masks(destinations.size()); //sk mask..
        outSk.resize(destinations.size());
        key sumout = zero();
        for (i = 0; i < destinations.size(); i++) {

            //add destination to sig
            rv.outPk[i].dest = copy(destinations[i]);
            //compute range proof
            rv.rangeSigs[i] = proveRange(rv.outPk[i].mask, outSk[i].mask, outamounts[i]);
         #ifdef DBG
             verRange(rv.outPk[i].mask, rv.rangeSigs[i]);
         #endif
         
            sc_add(sumout.bytes, outSk[i].mask.bytes, sumout.bytes);

            //mask amount and mask
            rv.ecdhInfo[i].mask = copy(outSk[i].mask);
            rv.ecdhInfo[i].amount = d2h(outamounts[i]);
            ecdhEncodeFromSharedSecret(rv.ecdhInfo[i], amount_keys[i]);
        }
            
        //set txn fee
        rv.txnFee = txnFee;
//        TODO: unused ??
//        key txnFeeKey = scalarmultH(d2h(rv.txnFee));
        rv.mixRing = mixRing;
        rv.pseudoOuts.resize(inamounts.size());
        rv.MGs.resize(inamounts.size());
        key sumpouts = zero(); //sum pseudoOut masks
        key a;
        for (i = 0 ; i < inamounts.size() - 1; i++) {
            skGen(a);
            sc_add(sumpouts.bytes, a.bytes, sumpouts.bytes);
            genC(rv.pseudoOuts[i], a, inamounts[i]);
            rv.MGs[i] = proveRctMGSimple(message, rv.mixRing[i], inSk[i], a, rv.pseudoOuts[i], index[i]);
        }
        rv.mixRing = mixRing;
        sc_sub(a.bytes, sumout.bytes, sumpouts.bytes);
        genC(rv.pseudoOuts[i], a, inamounts[i]);
        DP(rv.pseudoOuts[i]);
        rv.MGs[i] = proveRctMGSimple(message, rv.mixRing[i], inSk[i], a, rv.pseudoOuts[i], index[i]);
        return rv;
    }

    rctSig genRctSimple(const key &message, const ctkeyV & inSk, const ctkeyV & inPk, const keyV & destinations, const vector<xmr_amount> &inamounts, const vector<xmr_amount> &outamounts, const keyV &amount_keys, xmr_amount txnFee, unsigned int mixin) {
        std::vector<unsigned int> index;
        index.resize(inPk.size());
        ctkeyM mixRing;
        ctkeyV outSk;
        mixRing.resize(inPk.size());
        for (size_t i = 0; i < inPk.size(); ++i) {
          mixRing[i].resize(mixin+1);
          index[i] = populateFromBlockchainSimple(mixRing[i], inPk[i], mixin);
        }
        return genRctSimple(message, inSk, destinations, inamounts, outamounts, txnFee, mixRing, amount_keys, index, outSk);
    }

    //RingCT protocol
    //genRct: 
    //   creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the
    //   columns that are claimed as inputs, and that the sum of inputs  = sum of outputs.
    //   Also contains masked "amount" and "mask" so the receiver can see how much they received
    //verRct:
    //   verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct
    //decodeRct: (c.f. http://eprint.iacr.org/2015/1098 section 5.1.1)
    //   uses the attached ecdh info to find the amounts represented by each output commitment 
    //   must know the destination private key to find the correct amount, else will return a random number    
    bool verRct(const rctSig & rv, const ctkeyM &mixRing, const keyV &II, const ctkeyV &outPk, const key &message) {
        CHECK_AND_ASSERT_MES(!rv.simple, false, "verRct called on simple rctSig");
        CHECK_AND_ASSERT_MES(outPk.size() == rv.rangeSigs.size(), false, "Mismatched sizes of outPk and rv.rangeSigs");
        CHECK_AND_ASSERT_MES(outPk.size() == rv.ecdhInfo.size(), false, "Mismatched sizes of outPk and rv.ecdhInfo");

        // some rct ops can throw
        try
        {
          size_t i = 0;
          bool rvb = true;
          bool tmp;
          DP("range proofs verified?");
          for (i = 0; i < outPk.size(); i++) {
              tmp = verRange(outPk[i].mask, rv.rangeSigs[i]);
              DP(tmp);
              rvb = (rvb && tmp);
          }
          //compute txn fee
          key txnFeeKey = scalarmultH(d2h(rv.txnFee));
          bool mgVerd = verRctMG(rv.MG, II, mixRing, outPk, txnFeeKey, message);
          DP("mg sig verified?");
          DP(mgVerd);

          return (rvb && mgVerd);
        }
        catch(...)
        {
          return false;
        }
    }
    bool verRct(const rctSig & rv) {
        return verRct(rv, rv.mixRing, rv.MG.II, rv.outPk, rv.message);
    }
    
    //ver RingCT simple
    //assumes only post-rct style inputs (at least for max anonymity)
    bool verRctSimple(const rctSig & rv, const ctkeyM &mixRing, const std::vector<keyV> *II, const ctkeyV &outPk, const key &message) {
        size_t i = 0;
        bool rvb = true;
        
        CHECK_AND_ASSERT_MES(rv.simple, false, "verRctSimple called on non simple rctSig");
        CHECK_AND_ASSERT_MES(outPk.size() == rv.rangeSigs.size(), false, "Mismatched sizes of outPk and rv.rangeSigs");
        CHECK_AND_ASSERT_MES(outPk.size() == rv.ecdhInfo.size(), false, "Mismatched sizes of outPk and rv.ecdhInfo");
        CHECK_AND_ASSERT_MES(rv.pseudoOuts.size() == rv.MGs.size(), false, "Mismatched sizes of rv.pseudoOuts and rv.MGs");
        CHECK_AND_ASSERT_MES(rv.pseudoOuts.size() == mixRing.size(), false, "Mismatched sizes of rv.pseudoOuts and mixRing");
        CHECK_AND_ASSERT_MES(!II || II->size() == mixRing.size(), false, "Mismatched II/mixRing size");
        if (II)
        {
          for (size_t n = 0; n < II->size(); ++n)
          {
            CHECK_AND_ASSERT_MES((*II)[n].size() == 2, false, "Bad II size");
          }
        }

        key sumOutpks = identity();
        for (i = 0; i < outPk.size(); i++) {
            if (!verRange(outPk[i].mask, rv.rangeSigs[i])) {
                return false;
            }
            addKeys(sumOutpks, sumOutpks, outPk[i].mask);
        }
        DP(sumOutpks);
        key txnFeeKey = scalarmultH(d2h(rv.txnFee));
        addKeys(sumOutpks, txnFeeKey, sumOutpks);

        bool tmpb = false;
        key sumPseudoOuts = identity();
        for (i = 0 ; i < mixRing.size() ; i++) {
            tmpb = verRctMGSimple(message, rv.MGs[i], II ? (*II)[i] : rv.MGs[i].II, mixRing[i], rv.pseudoOuts[i]);
            addKeys(sumPseudoOuts, sumPseudoOuts, rv.pseudoOuts[i]);
            DP(tmpb);
            if (!tmpb) {
                return false;
            }
        }
        DP(sumPseudoOuts);
        bool mgVerd = true;
        
        //check pseudoOuts vs Outs..
        if (!equalKeys(sumPseudoOuts, sumOutpks)) {
            return false;
        }
        
        DP("mg sig verified?");
        DP(mgVerd);

        return (rvb && mgVerd);
    }

    bool verRctSimple(const rctSig & rv) {
        return verRctSimple(rv, rv.mixRing, NULL, rv.outPk, rv.message);
    }

    //RingCT protocol
    //genRct: 
    //   creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the
    //   columns that are claimed as inputs, and that the sum of inputs  = sum of outputs.
    //   Also contains masked "amount" and "mask" so the receiver can see how much they received
    //verRct:
    //   verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct
    //decodeRct: (c.f. http://eprint.iacr.org/2015/1098 section 5.1.1)
    //   uses the attached ecdh info to find the amounts represented by each output commitment 
    //   must know the destination private key to find the correct amount, else will return a random number    
    static xmr_amount decodeRctMain(const rctSig & rv, const key & sk, unsigned int i, key & mask, void (*decode)(ecdhTuple&, const key&)) {
        CHECK_AND_ASSERT_MES(!rv.simple, false, "decodeRct called on simple rctSig");
        CHECK_AND_ASSERT_THROW_MES(rv.rangeSigs.size() > 0, "Empty rv.rangeSigs");
        CHECK_AND_ASSERT_THROW_MES(rv.outPk.size() == rv.rangeSigs.size(), "Mismatched sizes of rv.outPk and rv.rangeSigs");
        CHECK_AND_ASSERT_THROW_MES(i < rv.ecdhInfo.size(), "Bad index");

        //mask amount and mask
        ecdhTuple ecdh_info = rv.ecdhInfo[i];
        (*decode)(ecdh_info, sk);
        mask = ecdh_info.mask;
        key amount = ecdh_info.amount;
        key C = rv.outPk[i].mask;
        DP("C");
        DP(C);
        key Ctmp;
        addKeys2(Ctmp, mask, amount, H);
        DP("Ctmp");
        DP(Ctmp);
        if (equalKeys(C, Ctmp) == false) {
            CHECK_AND_ASSERT_THROW_MES(false, "warning, amount decoded incorrectly, will be unable to spend");
        }
        return h2d(amount);
    }

    xmr_amount decodeRct(const rctSig & rv, const key & sk, unsigned int i, key & mask) {
        return decodeRctMain(rv, sk, i, mask, &ecdhDecode);
    }

    xmr_amount decodeRctFromSharedSecret(const rctSig & rv, const key & sk, unsigned int i, key & mask) {
        return decodeRctMain(rv, sk, i, mask, &ecdhDecodeFromSharedSecret);
    }

    xmr_amount decodeRct(const rctSig & rv, const key & sk, unsigned int i) {
      key mask;
      return decodeRct(rv, sk, i, mask);
    }

    static xmr_amount decodeRctSimpleMain(const rctSig & rv, const key & sk, unsigned int i, key &mask, void (*decode)(ecdhTuple &ecdh, const key&)) {
        CHECK_AND_ASSERT_MES(rv.simple, false, "decodeRct called on non simple rctSig");
        CHECK_AND_ASSERT_THROW_MES(rv.rangeSigs.size() > 0, "Empty rv.rangeSigs");
        CHECK_AND_ASSERT_THROW_MES(rv.outPk.size() == rv.rangeSigs.size(), "Mismatched sizes of rv.outPk and rv.rangeSigs");
        CHECK_AND_ASSERT_THROW_MES(i < rv.ecdhInfo.size(), "Bad index");

        //mask amount and mask
        ecdhTuple ecdh_info = rv.ecdhInfo[i];
        (*decode)(ecdh_info, sk);
        mask = ecdh_info.mask;
        key amount = ecdh_info.amount;
        key C = rv.outPk[i].mask;
        DP("C");
        DP(C);
        key Ctmp;
        addKeys2(Ctmp, mask, amount, H);
        DP("Ctmp");
        DP(Ctmp);
        if (equalKeys(C, Ctmp) == false) {
            CHECK_AND_ASSERT_THROW_MES(false, "warning, amount decoded incorrectly, will be unable to spend");
        }
        return h2d(amount);
    }

    xmr_amount decodeRctSimple(const rctSig & rv, const key & sk, unsigned int i, key &mask) {
        return decodeRctSimpleMain(rv, sk, i, mask, &ecdhDecode);
    }

    xmr_amount decodeRctSimpleFromSharedSecret(const rctSig & rv, const key & sk, unsigned int i, key &mask) {
        return decodeRctSimpleMain(rv, sk, i, mask, &ecdhDecodeFromSharedSecret);
    }

    xmr_amount decodeRctSimple(const rctSig & rv, const key & sk, unsigned int i) {
      key mask;
      return decodeRctSimple(rv, sk, i, mask);
    }
}