aboutsummaryrefslogtreecommitdiff
path: root/src/ringct/rctSigs.cpp
blob: 9e2fa8cd699bdc2472678bd2368faa76c05b07d7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
// Copyright (c) 2016, Monero Research Labs
//
// Author: Shen Noether <shen.noether@gmx.com>
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
// 
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
// 
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
// 
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "misc_log_ex.h"
#include "rctSigs.h"
using namespace crypto;
using namespace std;

namespace rct {
    
    //Schnorr Non-linkable
    //Gen Gives a signature (L1, s1, s2) proving that the sender knows "x" such that xG = one of P1 or P2
    //Ver Verifies that signer knows an "x" such that xG = one of P1 or P2
    //These are called in the below ASNL sig generation    
    
    void GenSchnorrNonLinkable(key & L1, key & s1, key & s2, const key & x, const key & P1, const key & P2, int index) {
        key c1, c2, L2;
        key a = skGen();
        if (index == 0) {
            scalarmultBase(L1, a);
            hash_to_scalar(c2, L1);
            skGen(s2);
            addKeys2(L2, s2, c2, P2);
            hash_to_scalar(c1, L2);
            //s1 = a - x * c1
            sc_mulsub(s1.bytes, x.bytes, c1.bytes, a.bytes);
        }
        else if (index == 1) {
            scalarmultBase(L2, a);
            hash_to_scalar(c1, L2);
            skGen(s1);
            addKeys2(L1, s1, c1, P1);
            hash_to_scalar(c2, L1);
            sc_mulsub(s2.bytes, x.bytes, c2.bytes, a.bytes);
        }
        else {
          throw std::runtime_error("GenSchnorrNonLinkable: invalid index (should be 0 or 1)");
        }
    }

    //Schnorr Non-linkable
    //Gen Gives a signature (L1, s1, s2) proving that the sender knows "x" such that xG = one of P1 or P2
    //Ver Verifies that signer knows an "x" such that xG = one of P1 or P2
    //These are called in the below ASNL sig generation        
    bool VerSchnorrNonLinkable(const key & P1, const key & P2, const key & L1, const key & s1, const key & s2) {
        key c2, L2, c1, L1p;
        hash_to_scalar(c2, L1);
        addKeys2(L2, s2, c2, P2);
        hash_to_scalar(c1, L2);
        addKeys2(L1p, s1, c1, P1);
        
        return equalKeys(L1, L1p);
    }
    
    //Aggregate Schnorr Non-linkable Ring Signature (ASNL)
    // c.f. http://eprint.iacr.org/2015/1098 section 5. 
    // These are used in range proofs (alternatively Borromean could be used)
    // Gen gives a signature which proves the signer knows, for each i, 
    //   an x[i] such that x[i]G = one of P1[i] or P2[i]
    // Ver Verifies the signer knows a key for one of P1[i], P2[i] at each i
    asnlSig GenASNL(key64 x, key64 P1, key64 P2, bits indices) {
        DP("Generating Aggregate Schnorr Non-linkable Ring Signature\n");
        key64 s1;
        int j = 0;
        asnlSig rv;
        rv.s = zero();
        for (j = 0; j < ATOMS; j++) {
            GenSchnorrNonLinkable(rv.L1[j], s1[j], rv.s2[j], x[j], P1[j], P2[j], (int)indices[j]);
            sc_add(rv.s.bytes, rv.s.bytes, s1[j].bytes);
        }
        return rv;
    }

    //Aggregate Schnorr Non-linkable Ring Signature (ASNL)
    // c.f. http://eprint.iacr.org/2015/1098 section 5. 
    // These are used in range proofs (alternatively Borromean could be used)
    // Gen gives a signature which proves the signer knows, for each i, 
    //   an x[i] such that x[i]G = one of P1[i] or P2[i]
    // Ver Verifies the signer knows a key for one of P1[i], P2[i] at each i    
    bool VerASNL(const key64 P1, const key64 P2, const asnlSig &as) {
        DP("Verifying Aggregate Schnorr Non-linkable Ring Signature\n");
        key LHS = identity();
        key RHS = scalarmultBase(as.s);
        key c2, L2, c1;
        int j = 0;
        for (j = 0; j < ATOMS; j++) {
            hash_to_scalar(c2, as.L1[j]);
            addKeys2(L2, as.s2[j], c2, P2[j]);
            addKeys(LHS, LHS, as.L1[j]);
            hash_to_scalar(c1, L2);
            addKeys(RHS, RHS, scalarmultKey(P1[j], c1));
        }
        key cc;
        sc_sub(cc.bytes, LHS.bytes, RHS.bytes);
        return sc_isnonzero(cc.bytes) == 0;
    }
    
    //Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
    //These are aka MG signatutes in earlier drafts of the ring ct paper
    // c.f. http://eprint.iacr.org/2015/1098 section 2. 
    // keyImageV just does I[i] = xx[i] * Hash(xx[i] * G) for each i
    // Gen creates a signature which proves that for some column in the keymatrix "pk"
    //   the signer knows a secret key for each row in that column
    // Ver verifies that the MG sig was created correctly
    keyV keyImageV(const keyV &xx) {
        keyV II(xx.size());
        size_t i = 0;
        for (i = 0; i < xx.size(); i++) {
            II[i] = scalarmultKey(hashToPoint(scalarmultBase(xx[i])), xx[i]);
        }
        return II;
    }
    
    
    //Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
    //This is a just slghtly more efficient version than the ones described below
    //(will be explained in more detail in Ring Multisig paper
    //These are aka MG signatutes in earlier drafts of the ring ct paper
    // c.f. http://eprint.iacr.org/2015/1098 section 2. 
    // keyImageV just does I[i] = xx[i] * Hash(xx[i] * G) for each i
    // Gen creates a signature which proves that for some column in the keymatrix "pk"
    //   the signer knows a secret key for each row in that column
    // Ver verifies that the MG sig was created correctly        
    mgSig MLSAG_Gen(key message, const keyM & pk, const keyV & xx, const unsigned int index) {
        mgSig rv;
        size_t cols = pk.size();
        CHECK_AND_ASSERT_THROW_MES(cols >= 2, "Error! What is c if cols = 1!");
        CHECK_AND_ASSERT_THROW_MES(index < cols, "Index out of range");
        size_t rows = pk[0].size();
        CHECK_AND_ASSERT_THROW_MES(rows >= 1, "Empty pk");
        for (size_t i = 1; i < cols; ++i) {
          CHECK_AND_ASSERT_THROW_MES(pk[i].size() == rows, "pk is not rectangular");
        }
        CHECK_AND_ASSERT_THROW_MES(xx.size() == rows, "Bad xx size");

        size_t i = 0, j = 0;
        key c, c_old, L, R, Hi;
        sc_0(c_old.bytes);
        vector<geDsmp> Ip(rows);
        rv.II = keyV(rows);
        rv.ss = keyM(cols, rv.II);
        keyV alpha(rows);
        keyV aG(rows);
        keyV aHP(rows);
        key m2hash;
        unsigned char m2[128]; 
        memcpy(m2, message.bytes, 32);
        DP("here1");
        for (i = 0; i < rows; i++) {
            skpkGen(alpha[i], aG[i]); //need to save alphas for later..
            Hi = hashToPoint(pk[index][i]);
            aHP[i] = scalarmultKey(Hi, alpha[i]);
            memcpy(m2+32, pk[index][i].bytes, 32);
            memcpy(m2 + 64, aG[i].bytes, 32);
            memcpy(m2 + 96, aHP[i].bytes, 32);
            rv.II[i] = scalarmultKey(Hi, xx[i]);
            precomp(Ip[i].k, rv.II[i]);
            m2hash = hash_to_scalar128(m2);
            sc_add(c_old.bytes, c_old.bytes, m2hash.bytes);
        }
        
        i = (index + 1) % cols;
        if (i == 0) {
            copy(rv.cc, c_old);
        }
        while (i != index) {

            rv.ss[i] = skvGen(rows);            
            sc_0(c.bytes);
            for (j = 0; j < rows; j++) {
                addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
                hashToPoint(Hi, pk[i][j]);
                addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j].k);
                memcpy(m2+32, pk[i][j].bytes, 32);
                memcpy(m2 + 64, L.bytes, 32);
                memcpy(m2 + 96, R.bytes, 32);      
                m2hash = hash_to_scalar128(m2);
                sc_add(c.bytes, c.bytes, m2hash.bytes);
            }
            copy(c_old, c);
            i = (i + 1) % cols;
            
            if (i == 0) { 
                copy(rv.cc, c_old);
            }   
        }
        for (j = 0; j < rows; j++) {
            sc_mulsub(rv.ss[index][j].bytes, c.bytes, xx[j].bytes, alpha[j].bytes);
        }        
        return rv;
    }
    
    //Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
    //This is a just slghtly more efficient version than the ones described below
    //(will be explained in more detail in Ring Multisig paper
    //These are aka MG signatutes in earlier drafts of the ring ct paper
    // c.f. http://eprint.iacr.org/2015/1098 section 2. 
    // keyImageV just does I[i] = xx[i] * Hash(xx[i] * G) for each i
    // Gen creates a signature which proves that for some column in the keymatrix "pk"
    //   the signer knows a secret key for each row in that column
    // Ver verifies that the MG sig was created correctly            
    bool MLSAG_Ver(key message, const keyM & pk, const mgSig & rv) {

        size_t cols = pk.size();
        CHECK_AND_ASSERT_THROW_MES(cols >= 2, "Error! What is c if cols = 1!");
        size_t rows = pk[0].size();
        CHECK_AND_ASSERT_THROW_MES(rows >= 1, "Empty pk");
        for (size_t i = 1; i < cols; ++i) {
          CHECK_AND_ASSERT_THROW_MES(pk[i].size() == rows, "pk is not rectangular");
        }
        CHECK_AND_ASSERT_THROW_MES(rv.II.size() == rows, "Bad rv.II size");
        CHECK_AND_ASSERT_THROW_MES(rv.ss.size() == cols, "Bad rv.ss size");
        for (size_t i = 0; i < cols; ++i) {
          CHECK_AND_ASSERT_THROW_MES(rv.ss[i].size() == rows, "rv.ss is not rectangular");
        }

        size_t i = 0, j = 0;
        key c,  L, R, Hi;
        key c_old = copy(rv.cc);
        vector<geDsmp> Ip(rows);
        for (i= 0 ; i< rows ; i++) {
            precomp(Ip[i].k, rv.II[i]);
        }
        unsigned char m2[128]; 
        memcpy(m2, message.bytes, 32);
        
        key m2hash;
        i = 0;
        while (i < cols) {
            sc_0(c.bytes);
            for (j = 0; j < rows; j++) {
                addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
                hashToPoint(Hi, pk[i][j]);
                addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j].k);
                memcpy(m2 + 32, pk[i][j].bytes, 32);
                memcpy(m2 + 64, L.bytes, 32);
                memcpy(m2 + 96, R.bytes, 32);      
                m2hash = hash_to_scalar128(m2);
                sc_add(c.bytes, c.bytes, m2hash.bytes);
            }
            copy(c_old, c);
            i = (i + 1);
        }
        sc_sub(c.bytes, c_old.bytes, rv.cc.bytes);
        return sc_isnonzero(c.bytes) == 0;  
    }
    


    //proveRange and verRange
    //proveRange gives C, and mask such that \sumCi = C
    //   c.f. http://eprint.iacr.org/2015/1098 section 5.1
    //   and Ci is a commitment to either 0 or 2^i, i=0,...,63
    //   thus this proves that "amount" is in [0, 2^64]
    //   mask is a such that C = aG + bH, and b = amount
    //verRange verifies that \sum Ci = C and that each Ci is a commitment to 0 or 2^i
    rangeSig proveRange(key & C, key & mask, const xmr_amount & amount) {
        sc_0(mask.bytes);
        identity(C);
        bits b;
        d2b(b, amount);
        rangeSig sig;
        key64 ai;
        key64 CiH;
        int i = 0;
        for (i = 0; i < ATOMS; i++) {
            skGen(ai[i]);
            if (b[i] == 0) {
                scalarmultBase(sig.Ci[i], ai[i]);
            }
            if (b[i] == 1) {
                addKeys1(sig.Ci[i], ai[i], H2[i]);
            }
            subKeys(CiH[i], sig.Ci[i], H2[i]);
            sc_add(mask.bytes, mask.bytes, ai[i].bytes);
            addKeys(C, C, sig.Ci[i]);
        }
        sig.asig = GenASNL(ai, sig.Ci, CiH, b);
        return sig;
    }

    //proveRange and verRange
    //proveRange gives C, and mask such that \sumCi = C
    //   c.f. http://eprint.iacr.org/2015/1098 section 5.1
    //   and Ci is a commitment to either 0 or 2^i, i=0,...,63
    //   thus this proves that "amount" is in [0, 2^64]
    //   mask is a such that C = aG + bH, and b = amount
    //verRange verifies that \sum Ci = C and that each Ci is a commitment to 0 or 2^i
    bool verRange(const key & C, const rangeSig & as) {
        key64 CiH;
        int i = 0;
        key Ctmp = identity();
        for (i = 0; i < 64; i++) {
            subKeys(CiH[i], as.Ci[i], H2[i]);
            addKeys(Ctmp, Ctmp, as.Ci[i]);
        }
        bool reb = equalKeys(C, Ctmp);
        bool rab = VerASNL(as.Ci, CiH, as.asig);
        return (reb && rab);
    }

    //Ring-ct MG sigs
    //Prove: 
    //   c.f. http://eprint.iacr.org/2015/1098 section 4. definition 10. 
    //   This does the MG sig on the "dest" part of the given key matrix, and 
    //   the last row is the sum of input commitments from that column - sum output commitments
    //   this shows that sum inputs = sum outputs
    //Ver:    
    //   verifies the above sig is created corretly
    mgSig proveRctMG(const ctkeyM & pubs, const ctkeyV & inSk, const ctkeyV &outSk, const ctkeyV & outPk, unsigned int index) {
        mgSig mg;
        //setup vars
        size_t cols = pubs.size();
        CHECK_AND_ASSERT_THROW_MES(cols >= 1, "Empty pubs");
        size_t rows = pubs[0].size();
        CHECK_AND_ASSERT_THROW_MES(rows >= 1, "Empty pubs");
        for (size_t i = 1; i < cols; ++i) {
          CHECK_AND_ASSERT_THROW_MES(pubs[i].size() == rows, "pubs is not rectangular");
        }
        CHECK_AND_ASSERT_THROW_MES(inSk.size() == rows, "Bad inSk size");
        CHECK_AND_ASSERT_THROW_MES(outSk.size() == outPk.size(), "Bad outSk/outPk size");

        keyV sk(rows + 1);
        keyV tmp(rows + 1);
        size_t i = 0, j = 0;
        for (i = 0; i < rows + 1; i++) {
            sc_0(sk[i].bytes);
            identity(tmp[i]);
        }
        keyM M(cols, tmp);
        //create the matrix to mg sig
        for (i = 0; i < cols; i++) {
            M[i][rows] = identity();
            for (j = 0; j < rows; j++) {
                M[i][j] = pubs[i][j].dest;
                addKeys(M[i][rows], M[i][rows], pubs[i][j].mask); //add input commitments in last row
            }
        }
        sc_0(sk[rows].bytes);
        for (j = 0; j < rows; j++) {
            sk[j] = copy(inSk[j].dest);
            sc_add(sk[rows].bytes, sk[rows].bytes, inSk[j].mask.bytes); //add masks in last row
        }
        for (i = 0; i < cols; i++) {
            for (size_t j = 0; j < outPk.size(); j++) {
                subKeys(M[i][rows], M[i][rows], outPk[j].mask); //subtract output Ci's in last row
            }
        }
        for (size_t j = 0; j < outPk.size(); j++) {
            sc_sub(sk[rows].bytes, sk[rows].bytes, outSk[j].mask.bytes); //subtract output masks in last row..
        }
        key message = cn_fast_hash(outPk);
        return MLSAG_Gen(message, M, sk, index);
    }


    //Ring-ct MG sigs
    //Prove: 
    //   c.f. http://eprint.iacr.org/2015/1098 section 4. definition 10. 
    //   This does the MG sig on the "dest" part of the given key matrix, and 
    //   the last row is the sum of input commitments from that column - sum output commitments
    //   this shows that sum inputs = sum outputs
    //Ver:    
    //   verifies the above sig is created corretly
    bool verRctMG(mgSig mg, const ctkeyM & pubs, const ctkeyV & outPk) {
        //setup vars
        size_t cols = pubs.size();
        CHECK_AND_ASSERT_THROW_MES(cols >= 1, "Empty pubs");
        size_t rows = pubs[0].size();
        CHECK_AND_ASSERT_THROW_MES(rows >= 1, "Empty pubs");
        for (size_t i = 1; i < cols; ++i) {
          CHECK_AND_ASSERT_THROW_MES(pubs[i].size() == rows, "pubs is not rectangular");
        }

        keyV tmp(rows + 1);
        size_t i = 0, j = 0;
        for (i = 0; i < rows + 1; i++) {
            identity(tmp[i]);
        }
        keyM M(cols, tmp);

        //create the matrix to mg sig
        for (j = 0; j < rows; j++) {
            for (i = 0; i < cols; i++) {
                M[i][j] = pubs[i][j].dest;
                addKeys(M[i][rows], M[i][rows], pubs[i][j].mask);
            }
        }
        for (size_t j = 0; j < outPk.size(); j++) {
            for (i = 0; i < cols; i++) {
                subKeys(M[i][rows], M[i][rows], outPk[j].mask);
            }

        }
        key message = cn_fast_hash(outPk);
        DP("message:");
        DP(message);
        return MLSAG_Ver(message, M, mg);

    }

    //These functions get keys from blockchain
    //replace these when connecting blockchain
    //getKeyFromBlockchain grabs a key from the blockchain at "reference_index" to mix with
    //populateFromBlockchain creates a keymatrix with "mixin" columns and one of the columns is inPk
    //   the return value are the key matrix, and the index where inPk was put (random).    
    void getKeyFromBlockchain(ctkey & a, size_t reference_index) {
        a.mask = pkGen();
        a.dest = pkGen();
    }

    //These functions get keys from blockchain
    //replace these when connecting blockchain
    //getKeyFromBlockchain grabs a key from the blockchain at "reference_index" to mix with
    //populateFromBlockchain creates a keymatrix with "mixin" + 1 columns and one of the columns is inPk
    //   the return value are the key matrix, and the index where inPk was put (random).     
    tuple<ctkeyM, xmr_amount> populateFromBlockchain(ctkeyV inPk, int mixin) {
        int rows = inPk.size();
        ctkeyM rv(mixin + 1, inPk);
        int index = randXmrAmount(mixin);
        int i = 0, j = 0;
        for (i = 0; i <= mixin; i++) {
            if (i != index) {
                for (j = 0; j < rows; j++) {
                    getKeyFromBlockchain(rv[i][j], (size_t)randXmrAmount);
                }
            }
        }
        return make_tuple(rv, index);
    }

    //RingCT protocol
    //genRct: 
    //   creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the
    //   columns that are claimed as inputs, and that the sum of inputs  = sum of outputs.
    //   Also contains masked "amount" and "mask" so the receiver can see how much they received
    //verRct:
    //   verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct
    //decodeRct: (c.f. http://eprint.iacr.org/2015/1098 section 5.1.1)
    //   uses the attached ecdh info to find the amounts represented by each output commitment 
    //   must know the destination private key to find the correct amount, else will return a random number
    rctSig genRct(const ctkeyV & inSk, const ctkeyV  & inPk, const keyV & destinations, const vector<xmr_amount> amounts, const int mixin) {
        CHECK_AND_ASSERT_THROW_MES(mixin >= 0, "Mixin must be positive");
        CHECK_AND_ASSERT_THROW_MES(amounts.size() > 0, "Amounts must not be empty");
        CHECK_AND_ASSERT_THROW_MES(inSk.size() == inPk.size(), "Different number of public/private keys");
        CHECK_AND_ASSERT_THROW_MES(amounts.size() == destinations.size(), "Different number of amounts/destinations");

        rctSig rv;
        rv.outPk.resize(destinations.size());
        rv.rangeSigs.resize(destinations.size());
        rv.ecdhInfo.resize(destinations.size());

        size_t i = 0;
        keyV masks(destinations.size()); //sk mask..
        ctkeyV outSk(destinations.size());
        for (i = 0; i < destinations.size(); i++) {
            //add destination to sig
            rv.outPk[i].dest = copy(destinations[i]);
            //compute range proof
            rv.rangeSigs[i] = proveRange(rv.outPk[i].mask, outSk[i].mask, amounts[i]);
            #ifdef DBG
                verRange(rv.outPk[i].mask, rv.rangeSigs[i]);
            #endif

            //mask amount and mask
            rv.ecdhInfo[i].mask = copy(outSk[i].mask);
            rv.ecdhInfo[i].amount = d2h(amounts[i]);
            ecdhEncode(rv.ecdhInfo[i], destinations[i]);

        }

        unsigned int index;
        tie(rv.mixRing, index) = populateFromBlockchain(inPk, mixin);
        rv.MG = proveRctMG(rv.mixRing, inSk, outSk, rv.outPk, index);
        return rv;
    }
    
    //RingCT protocol
    //genRct: 
    //   creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the
    //   columns that are claimed as inputs, and that the sum of inputs  = sum of outputs.
    //   Also contains masked "amount" and "mask" so the receiver can see how much they received
    //verRct:
    //   verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct
    //decodeRct: (c.f. http://eprint.iacr.org/2015/1098 section 5.1.1)
    //   uses the attached ecdh info to find the amounts represented by each output commitment 
    //   must know the destination private key to find the correct amount, else will return a random number    
    bool verRct(const rctSig & rv) {
        CHECK_AND_ASSERT_THROW_MES(rv.rangeSigs.size() > 0, "Empty rv.rangeSigs");
        CHECK_AND_ASSERT_THROW_MES(rv.outPk.size() == rv.rangeSigs.size(), "Mismatched sizes of rv.outPk and rv.rangeSigs");

        size_t i = 0;
        bool rvb = true;
        bool tmp;
        DP("range proofs verified?");
        for (i = 0; i < rv.outPk.size(); i++) {
            tmp = verRange(rv.outPk[i].mask, rv.rangeSigs[i]);
            DP(tmp);
            rvb = (rvb && tmp);
        }
        bool mgVerd = verRctMG(rv.MG, rv.mixRing, rv.outPk);
        DP("mg sig verified?");
        DP(mgVerd);

        return (rvb && mgVerd);
    }
    
    //RingCT protocol
    //genRct: 
    //   creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the
    //   columns that are claimed as inputs, and that the sum of inputs  = sum of outputs.
    //   Also contains masked "amount" and "mask" so the receiver can see how much they received
    //verRct:
    //   verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct
    //decodeRct: (c.f. http://eprint.iacr.org/2015/1098 section 5.1.1)
    //   uses the attached ecdh info to find the amounts represented by each output commitment 
    //   must know the destination private key to find the correct amount, else will return a random number    
    xmr_amount decodeRct(rctSig & rv, const key & sk, unsigned int i) {
        CHECK_AND_ASSERT_THROW_MES(rv.rangeSigs.size() > 0, "Empty rv.rangeSigs");
        CHECK_AND_ASSERT_THROW_MES(rv.outPk.size() == rv.rangeSigs.size(), "Mismatched sizes of rv.outPk and rv.rangeSigs");
        CHECK_AND_ASSERT_THROW_MES(i < rv.ecdhInfo.size(), "Bad index");

        //mask amount and mask
        ecdhDecode(rv.ecdhInfo[i], sk);
        key mask = rv.ecdhInfo[i].mask;
        key amount = rv.ecdhInfo[i].amount;
        key C = rv.outPk[i].mask;
        DP("C");
        DP(C);
        key Ctmp;
        addKeys2(Ctmp, mask, amount, H);
        DP("Ctmp");
        DP(Ctmp);
        if (equalKeys(C, Ctmp) == false) {
            printf("warning, amount decoded incorrectly, will be unable to spend");
        }
        return h2d(amount);
    }

}