aboutsummaryrefslogtreecommitdiff
path: root/src/ringct/rctOps.cpp
blob: 68cc43128032f62b90a5fff800e7d0a6aba1332e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
// Copyright (c) 2016, Monero Research Labs
//
// Author: Shen Noether <shen.noether@gmx.com>
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <boost/lexical_cast.hpp>
#include "misc_log_ex.h"
#include "rctOps.h"
using namespace crypto;
using namespace std;

#undef MONERO_DEFAULT_LOG_CATEGORY
#define MONERO_DEFAULT_LOG_CATEGORY "ringct"

#define CHECK_AND_ASSERT_THROW_MES_L1(expr, message) {if(!(expr)) {MWARNING(message); throw std::runtime_error(message);}}

namespace rct {

    //Various key initialization functions

    //initializes a key matrix;
    //first parameter is rows,
    //second is columns
    keyM keyMInit(size_t rows, size_t cols) {
        keyM rv(cols);
        size_t i = 0;
        for (i = 0 ; i < cols ; i++) {
            rv[i] = keyV(rows);
        }
        return rv;
    }




    //Various key generation functions

    //generates a random scalar which can be used as a secret key or mask
    void skGen(key &sk) {
        sk = crypto::rand<key>();
        sc_reduce32(sk.bytes);
    }

    //generates a random scalar which can be used as a secret key or mask
    key skGen() {
        key sk = crypto::rand<key>();
        sc_reduce32(sk.bytes);
        return sk;
    }

    //Generates a vector of secret key
    //Mainly used in testing
    keyV skvGen(size_t rows ) {
        CHECK_AND_ASSERT_THROW_MES(rows > 0, "0 keys requested");
        keyV rv(rows);
        size_t i = 0;
        crypto::rand(rows * sizeof(key), (uint8_t*)&rv[0]);
        for (i = 0 ; i < rows ; i++) {
            sc_reduce32(rv[i].bytes);
        }
        return rv;
    }

    //generates a random curve point (for testing)
    key  pkGen() {
        key sk = skGen();
        key pk = scalarmultBase(sk);
        return pk;
    }

    //generates a random secret and corresponding public key
    void skpkGen(key &sk, key &pk) {
        skGen(sk);
        scalarmultBase(pk, sk);
    }

    //generates a random secret and corresponding public key
    tuple<key, key>  skpkGen() {
        key sk = skGen();
        key pk = scalarmultBase(sk);
        return make_tuple(sk, pk);
    }

    //generates C =aG + bH from b, a is given..
    void genC(key & C, const key & a, xmr_amount amount) {
        key bH = scalarmultH(d2h(amount));
        addKeys1(C, a, bH);
    }

    //generates a <secret , public> / Pedersen commitment to the amount
    tuple<ctkey, ctkey> ctskpkGen(xmr_amount amount) {
        ctkey sk, pk;
        skpkGen(sk.dest, pk.dest);
        skpkGen(sk.mask, pk.mask);
        key am = d2h(amount);
        key bH = scalarmultH(am);
        addKeys(pk.mask, pk.mask, bH);
        return make_tuple(sk, pk);
    }
    
    
    //generates a <secret , public> / Pedersen commitment but takes bH as input 
    tuple<ctkey, ctkey> ctskpkGen(const key &bH) {
        ctkey sk, pk;
        skpkGen(sk.dest, pk.dest);
        skpkGen(sk.mask, pk.mask);
        addKeys(pk.mask, pk.mask, bH);
        return make_tuple(sk, pk);
    }
    
    key zeroCommit(xmr_amount amount) {
        key am = d2h(amount);
        key bH = scalarmultH(am);
        return addKeys(G, bH);
    }

    key commit(xmr_amount amount, const key &mask) {
        key c = scalarmultBase(mask);
        key am = d2h(amount);
        key bH = scalarmultH(am);
        addKeys(c, c, bH);
        return c;
    }

    //generates a random uint long long (for testing)
    xmr_amount randXmrAmount(xmr_amount upperlimit) {
        return h2d(skGen()) % (upperlimit);
    }

    //Scalar multiplications of curve points

    //does a * G where a is a scalar and G is the curve basepoint
    void scalarmultBase(key &aG,const key &a) {
        ge_p3 point;
        sc_reduce32copy(aG.bytes, a.bytes); //do this beforehand!
        ge_scalarmult_base(&point, aG.bytes);
        ge_p3_tobytes(aG.bytes, &point);
    }

    //does a * G where a is a scalar and G is the curve basepoint
    key scalarmultBase(const key & a) {
        ge_p3 point;
        key aG;
        sc_reduce32copy(aG.bytes, a.bytes); //do this beforehand
        ge_scalarmult_base(&point, aG.bytes);
        ge_p3_tobytes(aG.bytes, &point);
        return aG;
    }

    //does a * P where a is a scalar and P is an arbitrary point
    void scalarmultKey(key & aP, const key &P, const key &a) {
        ge_p3 A;
        ge_p2 R;
        CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&A, P.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
        ge_scalarmult(&R, a.bytes, &A);
        ge_tobytes(aP.bytes, &R);
    }

    //does a * P where a is a scalar and P is an arbitrary point
    key scalarmultKey(const key & P, const key & a) {
        ge_p3 A;
        ge_p2 R;
        CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&A, P.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
        ge_scalarmult(&R, a.bytes, &A);
        key aP;
        ge_tobytes(aP.bytes, &R);
        return aP;
    }


    //Computes aH where H= toPoint(cn_fast_hash(G)), G the basepoint
    key scalarmultH(const key & a) {
        ge_p3 A;
        ge_p2 R;
        CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&A, H.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
        ge_scalarmult(&R, a.bytes, &A);
        key aP;
        ge_tobytes(aP.bytes, &R);
        return aP;
    }

    //Curve addition / subtractions

    //for curve points: AB = A + B
    void addKeys(key &AB, const key &A, const key &B) {
        ge_p3 B2, A2;
        CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&B2, B.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
        CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&A2, A.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
        ge_cached tmp2;
        ge_p3_to_cached(&tmp2, &B2);
        ge_p1p1 tmp3;
        ge_add(&tmp3, &A2, &tmp2);
        ge_p1p1_to_p3(&A2, &tmp3);
        ge_p3_tobytes(AB.bytes, &A2);
    }

    rct::key addKeys(const key &A, const key &B) {
      key k;
      addKeys(k, A, B);
      return k;
    }

    //addKeys1
    //aGB = aG + B where a is a scalar, G is the basepoint, and B is a point
    void addKeys1(key &aGB, const key &a, const key & B) {
        key aG = scalarmultBase(a);
        addKeys(aGB, aG, B);
    }

    //addKeys2
    //aGbB = aG + bB where a, b are scalars, G is the basepoint and B is a point
    void addKeys2(key &aGbB, const key &a, const key &b, const key & B) {
        ge_p2 rv;
        ge_p3 B2;
        CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&B2, B.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
        ge_double_scalarmult_base_vartime(&rv, b.bytes, &B2, a.bytes);
        ge_tobytes(aGbB.bytes, &rv);
    }

    //Does some precomputation to make addKeys3 more efficient
    // input B a curve point and output a ge_dsmp which has precomputation applied
    void precomp(ge_dsmp rv, const key & B) {
        ge_p3 B2;
        CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&B2, B.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
        ge_dsm_precomp(rv, &B2);
    }

    //addKeys3
    //aAbB = a*A + b*B where a, b are scalars, A, B are curve points
    //B must be input after applying "precomp"
    void addKeys3(key &aAbB, const key &a, const key &A, const key &b, const ge_dsmp B) {
        ge_p2 rv;
        ge_p3 A2;
        CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&A2, A.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
        ge_double_scalarmult_precomp_vartime(&rv, a.bytes, &A2, b.bytes, B);
        ge_tobytes(aAbB.bytes, &rv);
    }

    //addKeys3
    //aAbB = a*A + b*B where a, b are scalars, A, B are curve points
    //A and B must be input after applying "precomp"
    void addKeys3(key &aAbB, const key &a, const ge_dsmp A, const key &b, const ge_dsmp B) {
        ge_p2 rv;
        ge_double_scalarmult_precomp_vartime2(&rv, a.bytes, A, b.bytes, B);
        ge_tobytes(aAbB.bytes, &rv);
    }


    //subtract Keys (subtracts curve points)
    //AB = A - B where A, B are curve points
    void subKeys(key & AB, const key &A, const key &B) {
        ge_p3 B2, A2;
        CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&B2, B.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
        CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&A2, A.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
        ge_cached tmp2;
        ge_p3_to_cached(&tmp2, &B2);
        ge_p1p1 tmp3;
        ge_sub(&tmp3, &A2, &tmp2);
        ge_p1p1_to_p3(&A2, &tmp3);
        ge_p3_tobytes(AB.bytes, &A2);
    }

    //checks if A, B are equal in terms of bytes (may say no if one is a non-reduced scalar)
    //without doing curve operations
    bool equalKeys(const key & a, const key & b) {
        bool rv = true;
        for (int i = 0; i < 32; ++i) {
          if (a.bytes[i] != b.bytes[i]) {
            rv = false;
          }
        }
        return rv;
    }

    //Hashing - cn_fast_hash
    //be careful these are also in crypto namespace
    //cn_fast_hash for arbitrary multiples of 32 bytes
    void cn_fast_hash(key &hash, const void * data, const std::size_t l) {
        keccak((const uint8_t *)data, l, hash.bytes, 32);
    }
    
    void hash_to_scalar(key &hash, const void * data, const std::size_t l) {
        cn_fast_hash(hash, data, l);
        sc_reduce32(hash.bytes);
    }

    //cn_fast_hash for a 32 byte key
    void cn_fast_hash(key & hash, const key & in) {
        keccak((const uint8_t *)in.bytes, 32, hash.bytes, 32);
    }
    
    void hash_to_scalar(key & hash, const key & in) {
        cn_fast_hash(hash, in);
        sc_reduce32(hash.bytes);
    }

    //cn_fast_hash for a 32 byte key
    key cn_fast_hash(const key & in) {
        key hash;
        keccak((const uint8_t *)in.bytes, 32, hash.bytes, 32);
        return hash;
    }
    
     key hash_to_scalar(const key & in) {
        key hash = cn_fast_hash(in);
        sc_reduce32(hash.bytes);
        return hash;
     }
    
    //cn_fast_hash for a 128 byte unsigned char
    key cn_fast_hash128(const void * in) {
        key hash;
        keccak((const uint8_t *)in, 128, hash.bytes, 32);
        return hash;
    }
    
    key hash_to_scalar128(const void * in) {
        key hash = cn_fast_hash128(in);
        sc_reduce32(hash.bytes);
        return hash;
    }
    
    //cn_fast_hash for multisig purpose
    //This takes the outputs and commitments
    //and hashes them into a 32 byte sized key
    key cn_fast_hash(const ctkeyV &PC) {
        if (PC.empty()) return rct::hash2rct(crypto::cn_fast_hash("", 0));
        key rv;
        cn_fast_hash(rv, &PC[0], 64*PC.size());
        return rv;
    }
    
    key hash_to_scalar(const ctkeyV &PC) {
        key rv = cn_fast_hash(PC);
        sc_reduce32(rv.bytes);
        return rv;
    }
    
   //cn_fast_hash for a key-vector of arbitrary length
   //this is useful since you take a number of keys
   //put them in the key vector and it concatenates them
   //and then hashes them
   key cn_fast_hash(const keyV &keys) {
       if (keys.empty()) return rct::hash2rct(crypto::cn_fast_hash("", 0));
       key rv;
       cn_fast_hash(rv, &keys[0], keys.size() * sizeof(keys[0]));
       //dp(rv);
       return rv;
   }
   
   key hash_to_scalar(const keyV &keys) {
       key rv = cn_fast_hash(keys);
       sc_reduce32(rv.bytes);
       return rv;
   }

   key cn_fast_hash(const key64 keys) {
      key rv;
      cn_fast_hash(rv, &keys[0], 64 * sizeof(keys[0]));
      //dp(rv);
      return rv;
   }

   key hash_to_scalar(const key64 keys) {
       key rv = cn_fast_hash(keys);
       sc_reduce32(rv.bytes);
       return rv;
   }

    key hashToPointSimple(const key & hh) {
        key pointk;
        ge_p1p1 point2;
        ge_p2 point;
        ge_p3 res;
        key h = cn_fast_hash(hh); 
        CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&res, h.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
        ge_p3_to_p2(&point, &res);
        ge_mul8(&point2, &point);
        ge_p1p1_to_p3(&res, &point2);
        ge_p3_tobytes(pointk.bytes, &res);
        return pointk;
    }    
    
    key hashToPoint(const key & hh) {
        key pointk;
        ge_p2 point;
        ge_p1p1 point2;
        ge_p3 res;
        key h = cn_fast_hash(hh); 
        ge_fromfe_frombytes_vartime(&point, h.bytes);
        ge_mul8(&point2, &point);
        ge_p1p1_to_p3(&res, &point2);        
        ge_p3_tobytes(pointk.bytes, &res);
        return pointk;
    }

    void hashToPoint(key & pointk, const key & hh) {
        ge_p2 point;
        ge_p1p1 point2;
        ge_p3 res;
        key h = cn_fast_hash(hh); 
        ge_fromfe_frombytes_vartime(&point, h.bytes);
        ge_mul8(&point2, &point);
        ge_p1p1_to_p3(&res, &point2);        
        ge_p3_tobytes(pointk.bytes, &res);
    }    

    //sums a vector of curve points (for scalars use sc_add)
    void sumKeys(key & Csum, const keyV &  Cis) {
        identity(Csum);
        size_t i = 0;
        for (i = 0; i < Cis.size(); i++) {
            addKeys(Csum, Csum, Cis[i]);
        }
    }

    //Elliptic Curve Diffie Helman: encodes and decodes the amount b and mask a
    // where C= aG + bH
    void ecdhEncode(ecdhTuple & unmasked, const key & sharedSec) {
        key sharedSec1 = hash_to_scalar(sharedSec);
        key sharedSec2 = hash_to_scalar(sharedSec1);
        //encode
        sc_add(unmasked.mask.bytes, unmasked.mask.bytes, sharedSec1.bytes);
        sc_add(unmasked.amount.bytes, unmasked.amount.bytes, sharedSec2.bytes);
    }
    void ecdhDecode(ecdhTuple & masked, const key & sharedSec) {
        key sharedSec1 = hash_to_scalar(sharedSec);
        key sharedSec2 = hash_to_scalar(sharedSec1);
        //decode
        sc_sub(masked.mask.bytes, masked.mask.bytes, sharedSec1.bytes);
        sc_sub(masked.amount.bytes, masked.amount.bytes, sharedSec2.bytes);
    }
}