aboutsummaryrefslogtreecommitdiff
path: root/src/ringct/multiexp.cc
blob: 99bef25f32e59de27b6330a1e749990b8d9b28fd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
// Copyright (c) 2017, The Monero Project
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
// 
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
// 
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
// 
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Adapted from Python code by Sarang Noether

#include "misc_log_ex.h"
#include "common/perf_timer.h"
extern "C"
{
#include "crypto/crypto-ops.h"
}
#include "common/aligned.h"
#include "rctOps.h"
#include "multiexp.h"

#undef MONERO_DEFAULT_LOG_CATEGORY
#define MONERO_DEFAULT_LOG_CATEGORY "multiexp"

//#define MULTIEXP_PERF(x) x
#define MULTIEXP_PERF(x)

#define RAW_MEMORY_BLOCK
//#define ALTERNATE_LAYOUT
//#define TRACK_STRAUS_ZERO_IDENTITY

//   per points us for N/B points (B point bands)
//   raw   alt   128/192  4096/192  4096/4096
//   0     0     52.6     71        71.2
//   0     1     53.2     72.2      72.4
//   1     0     52.7     67        67.1
//   1     1     52.8     70.4      70.2

namespace rct
{

static inline bool operator<(const rct::key &k0, const rct::key&k1)
{
  for (int n = 31; n >= 0; --n)
  {
    if (k0.bytes[n] < k1.bytes[n])
      return true;
    if (k0.bytes[n] > k1.bytes[n])
      return false;
  }
  return false;
}

static inline rct::key div2(const rct::key &k)
{
  rct::key res;
  int carry = 0;
  for (int n = 31; n >= 0; --n)
  {
    int new_carry = (k.bytes[n] & 1) << 7;
    res.bytes[n] = k.bytes[n] / 2 + carry;
    carry = new_carry;
  }
  return res;
}

static inline rct::key pow2(size_t n)
{
  CHECK_AND_ASSERT_THROW_MES(n < 256, "Invalid pow2 argument");
  rct::key res = rct::zero();
  res[n >> 3] |= 1<<(n&7);
  return res;
}

rct::key bos_coster_heap_conv(std::vector<MultiexpData> data)
{
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(bos_coster, 1000000));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(setup, 1000000));
  size_t points = data.size();
  CHECK_AND_ASSERT_THROW_MES(points > 1, "Not enough points");
  std::vector<size_t> heap(points);
  for (size_t n = 0; n < points; ++n)
    heap[n] = n;

  auto Comp = [&](size_t e0, size_t e1) { return data[e0].scalar < data[e1].scalar; };
  std::make_heap(heap.begin(), heap.end(), Comp);
  MULTIEXP_PERF(PERF_TIMER_STOP(setup));

  MULTIEXP_PERF(PERF_TIMER_START_UNIT(loop, 1000000));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(pop, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(pop));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(add, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(add));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(sub, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(sub));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(push, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(push));
  while (heap.size() > 1)
  {
    MULTIEXP_PERF(PERF_TIMER_RESUME(pop));
    std::pop_heap(heap.begin(), heap.end(), Comp);
    size_t index1 = heap.back();
    heap.pop_back();
    std::pop_heap(heap.begin(), heap.end(), Comp);
    size_t index2 = heap.back();
    heap.pop_back();
    MULTIEXP_PERF(PERF_TIMER_PAUSE(pop));

    MULTIEXP_PERF(PERF_TIMER_RESUME(add));
    ge_cached cached;
    ge_p3_to_cached(&cached, &data[index1].point);
    ge_p1p1 p1;
    ge_add(&p1, &data[index2].point, &cached);
    ge_p1p1_to_p3(&data[index2].point, &p1);
    MULTIEXP_PERF(PERF_TIMER_PAUSE(add));

    MULTIEXP_PERF(PERF_TIMER_RESUME(sub));
    sc_sub(data[index1].scalar.bytes, data[index1].scalar.bytes, data[index2].scalar.bytes);
    MULTIEXP_PERF(PERF_TIMER_PAUSE(sub));

    MULTIEXP_PERF(PERF_TIMER_RESUME(push));
    if (!(data[index1].scalar == rct::zero()))
    {
      heap.push_back(index1);
      std::push_heap(heap.begin(), heap.end(), Comp);
    }

    heap.push_back(index2);
    std::push_heap(heap.begin(), heap.end(), Comp);
    MULTIEXP_PERF(PERF_TIMER_PAUSE(push));
  }
  MULTIEXP_PERF(PERF_TIMER_STOP(push));
  MULTIEXP_PERF(PERF_TIMER_STOP(sub));
  MULTIEXP_PERF(PERF_TIMER_STOP(add));
  MULTIEXP_PERF(PERF_TIMER_STOP(pop));
  MULTIEXP_PERF(PERF_TIMER_STOP(loop));

  MULTIEXP_PERF(PERF_TIMER_START_UNIT(end, 1000000));
  //return rct::scalarmultKey(data[index1].point, data[index1].scalar);
  std::pop_heap(heap.begin(), heap.end(), Comp);
  size_t index1 = heap.back();
  heap.pop_back();
  ge_p2 p2;
  ge_scalarmult(&p2, data[index1].scalar.bytes, &data[index1].point);
  rct::key res;
  ge_tobytes(res.bytes, &p2);
  return res;
}

rct::key bos_coster_heap_conv_robust(std::vector<MultiexpData> data)
{
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(bos_coster, 1000000));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(setup, 1000000));
  size_t points = data.size();
  CHECK_AND_ASSERT_THROW_MES(points > 0, "Not enough points");
  std::vector<size_t> heap;
  heap.reserve(points);
  for (size_t n = 0; n < points; ++n)
  {
    if (!(data[n].scalar == rct::zero()) && memcmp(&data[n].point, &ge_p3_identity, sizeof(ge_p3)))
      heap.push_back(n);
  }
  points = heap.size();
  if (points == 0)
    return rct::identity();
  if (points < 2)
  {
    ge_p2 p2;
    ge_scalarmult(&p2, data[0].scalar.bytes, &data[0].point);
    rct::key res;
    ge_tobytes(res.bytes, &p2);
    return res;
  }

  auto Comp = [&](size_t e0, size_t e1) { return data[e0].scalar < data[e1].scalar; };
  std::make_heap(heap.begin(), heap.end(), Comp);
  MULTIEXP_PERF(PERF_TIMER_STOP(setup));

  MULTIEXP_PERF(PERF_TIMER_START_UNIT(loop, 1000000));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(pop, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(pop));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(div, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(div));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(add, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(add));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(sub, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(sub));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(push, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(push));
  while (heap.size() > 1)
  {
    MULTIEXP_PERF(PERF_TIMER_RESUME(pop));
    std::pop_heap(heap.begin(), heap.end(), Comp);
    size_t index1 = heap.back();
    heap.pop_back();
    std::pop_heap(heap.begin(), heap.end(), Comp);
    size_t index2 = heap.back();
    heap.pop_back();
    MULTIEXP_PERF(PERF_TIMER_PAUSE(pop));

    ge_cached cached;
    ge_p1p1 p1;
    ge_p2 p2;

    MULTIEXP_PERF(PERF_TIMER_RESUME(div));
    while (1)
    {
      rct::key s1_2 = div2(data[index1].scalar);
      if (!(data[index2].scalar < s1_2))
       break;
      if (data[index1].scalar.bytes[0] & 1)
      {
        data.resize(data.size()+1);
        data.back().scalar = rct::identity();
        data.back().point = data[index1].point;
        heap.push_back(data.size() - 1);
        std::push_heap(heap.begin(), heap.end(), Comp);
      }
      data[index1].scalar = div2(data[index1].scalar);
      ge_p3_to_p2(&p2, &data[index1].point);
      ge_p2_dbl(&p1, &p2);
      ge_p1p1_to_p3(&data[index1].point, &p1);
    }
    MULTIEXP_PERF(PERF_TIMER_PAUSE(div));

    MULTIEXP_PERF(PERF_TIMER_RESUME(add));
    ge_p3_to_cached(&cached, &data[index1].point);
    ge_add(&p1, &data[index2].point, &cached);
    ge_p1p1_to_p3(&data[index2].point, &p1);
    MULTIEXP_PERF(PERF_TIMER_PAUSE(add));

    MULTIEXP_PERF(PERF_TIMER_RESUME(sub));
    sc_sub(data[index1].scalar.bytes, data[index1].scalar.bytes, data[index2].scalar.bytes);
    MULTIEXP_PERF(PERF_TIMER_PAUSE(sub));

    MULTIEXP_PERF(PERF_TIMER_RESUME(push));
    if (!(data[index1].scalar == rct::zero()))
    {
      heap.push_back(index1);
      std::push_heap(heap.begin(), heap.end(), Comp);
    }

    heap.push_back(index2);
    std::push_heap(heap.begin(), heap.end(), Comp);
    MULTIEXP_PERF(PERF_TIMER_PAUSE(push));
  }
  MULTIEXP_PERF(PERF_TIMER_STOP(push));
  MULTIEXP_PERF(PERF_TIMER_STOP(sub));
  MULTIEXP_PERF(PERF_TIMER_STOP(add));
  MULTIEXP_PERF(PERF_TIMER_STOP(pop));
  MULTIEXP_PERF(PERF_TIMER_STOP(loop));

  MULTIEXP_PERF(PERF_TIMER_START_UNIT(end, 1000000));
  //return rct::scalarmultKey(data[index1].point, data[index1].scalar);
  std::pop_heap(heap.begin(), heap.end(), Comp);
  size_t index1 = heap.back();
  heap.pop_back();
  ge_p2 p2;
  ge_scalarmult(&p2, data[index1].scalar.bytes, &data[index1].point);
  rct::key res;
  ge_tobytes(res.bytes, &p2);
  return res;
}

static constexpr unsigned int STRAUS_C = 4;

struct straus_cached_data
{
#ifdef RAW_MEMORY_BLOCK
  size_t size;
  ge_cached *multiples;
  straus_cached_data(): size(0), multiples(NULL) {}
  ~straus_cached_data() { aligned_free(multiples); }
#else
  std::vector<std::vector<ge_cached>> multiples;
#endif
};
#ifdef RAW_MEMORY_BLOCK
#ifdef ALTERNATE_LAYOUT
#define CACHE_OFFSET(cache,point,digit) cache->multiples[(point)*((1<<STRAUS_C)-1)+((digit)-1)]
#else
#define CACHE_OFFSET(cache,point,digit) cache->multiples[(point)+cache->size*((digit)-1)]
#endif
#else
#ifdef ALTERNATE_LAYOUT
#define CACHE_OFFSET(cache,point,digit) local_cache->multiples[j][digit-1]
#else
#define CACHE_OFFSET(cache,point,digit) local_cache->multiples[digit][j]
#endif
#endif

std::shared_ptr<straus_cached_data> straus_init_cache(const std::vector<MultiexpData> &data)
{
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(multiples, 1000000));
  ge_cached cached;
  ge_p1p1 p1;
  ge_p3 p3;
  std::shared_ptr<straus_cached_data> cache(new straus_cached_data());

#ifdef RAW_MEMORY_BLOCK
  const size_t offset = cache->size;
  cache->multiples = (ge_cached*)aligned_realloc(cache->multiples, sizeof(ge_cached) * ((1<<STRAUS_C)-1) * std::max(offset, data.size()), 4096);
  cache->size = data.size();
  for (size_t j=offset;j<data.size();++j)
  {
    ge_p3_to_cached(&CACHE_OFFSET(cache, j, 1), &data[j].point);
    for (size_t i=2;i<1<<STRAUS_C;++i)
    {
      ge_add(&p1, &data[j].point, &CACHE_OFFSET(cache, j, i-1));
      ge_p1p1_to_p3(&p3, &p1);
      ge_p3_to_cached(&CACHE_OFFSET(cache, j, i), &p3);
    }
  }
#else
#ifdef ALTERNATE_LAYOUT
  const size_t offset = cache->multiples.size();
  cache->multiples.resize(std::max(offset, data.size()));
  for (size_t i = offset; i < data.size(); ++i)
  {
    cache->multiples[i].resize((1<<STRAUS_C)-1);
    ge_p3_to_cached(&cache->multiples[i][0], &data[i].point);
    for (size_t j=2;j<1<<STRAUS_C;++j)
    {
      ge_add(&p1, &data[i].point, &cache->multiples[i][j-2]);
      ge_p1p1_to_p3(&p3, &p1);
      ge_p3_to_cached(&cache->multiples[i][j-1], &p3);
    }
  }
#else
  cache->multiples.resize(1<<STRAUS_C);
  size_t offset = cache->multiples[1].size();
  cache->multiples[1].resize(std::max(offset, data.size()));
  for (size_t i = offset; i < data.size(); ++i)
    ge_p3_to_cached(&cache->multiples[1][i], &data[i].point);
  for (size_t i=2;i<1<<STRAUS_C;++i)
    cache->multiples[i].resize(std::max(offset, data.size()));
  for (size_t j=offset;j<data.size();++j)
  {
    for (size_t i=2;i<1<<STRAUS_C;++i)
    {
      ge_add(&p1, &data[j].point, &cache->multiples[i-1][j]);
      ge_p1p1_to_p3(&p3, &p1);
      ge_p3_to_cached(&cache->multiples[i][j], &p3);
    }
  }
#endif
#endif
  MULTIEXP_PERF(PERF_TIMER_STOP(multiples));

  return cache;
}

size_t straus_get_cache_size(const std::shared_ptr<straus_cached_data> &cache)
{
  size_t sz = 0;
#ifdef RAW_MEMORY_BLOCK
  sz += cache->size * sizeof(ge_cached) * ((1<<STRAUS_C)-1);
#else
  for (const auto &e0: cache->multiples)
    sz += e0.size() * sizeof(ge_cached);
#endif
  return sz;
}

rct::key straus(const std::vector<MultiexpData> &data, const std::shared_ptr<straus_cached_data> &cache, size_t STEP)
{
  MULTIEXP_PERF(PERF_TIMER_UNIT(straus, 1000000));
  bool HiGi = cache != NULL;
  STEP = STEP ? STEP : 192;

  MULTIEXP_PERF(PERF_TIMER_START_UNIT(setup, 1000000));
  static constexpr unsigned int mask = (1<<STRAUS_C)-1;
  std::shared_ptr<straus_cached_data> local_cache = cache == NULL ? straus_init_cache(data) : cache;
  ge_cached cached;
  ge_p1p1 p1;
  ge_p3 p3;

#ifdef TRACK_STRAUS_ZERO_IDENTITY
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(skip, 1000000));
  std::vector<uint8_t> skip(data.size());
  for (size_t i = 0; i < data.size(); ++i)
    skip[i] = data[i].scalar == rct::zero() || !memcmp(&data[i].point, &ge_p3_identity, sizeof(ge_p3));
  MULTIEXP_PERF(PERF_TIMER_STOP(skip));
#endif

  MULTIEXP_PERF(PERF_TIMER_START_UNIT(digits, 1000000));
  std::vector<std::vector<uint8_t>> digits;
  digits.resize(data.size());
  for (size_t j = 0; j < data.size(); ++j)
  {
    digits[j].resize(256);
    unsigned char bytes33[33];
    memcpy(bytes33,  data[j].scalar.bytes, 32);
    bytes33[32] = 0;
#if 1
    static_assert(STRAUS_C == 4, "optimized version needs STRAUS_C == 4");
    const unsigned char *bytes = bytes33;
    unsigned int i;
    for (i = 0; i < 256; i += 8, bytes++)
    {
      digits[j][i] = bytes[0] & 0xf;
      digits[j][i+1] = (bytes[0] >> 1) & 0xf;
      digits[j][i+2] = (bytes[0] >> 2) & 0xf;
      digits[j][i+3] = (bytes[0] >> 3) & 0xf;
      digits[j][i+4] = ((bytes[0] >> 4) | (bytes[1]<<4)) & 0xf;
      digits[j][i+5] = ((bytes[0] >> 5) | (bytes[1]<<3)) & 0xf;
      digits[j][i+6] = ((bytes[0] >> 6) | (bytes[1]<<2)) & 0xf;
      digits[j][i+7] = ((bytes[0] >> 7) | (bytes[1]<<1)) & 0xf;
    }
#elif 1
    for (size_t i = 0; i < 256; ++i)
      digits[j][i] = ((bytes[i>>3] | (bytes[(i>>3)+1]<<8)) >> (i&7)) & mask;
#else
    rct::key shifted = data[j].scalar;
    for (size_t i = 0; i < 256; ++i)
    {
      digits[j][i] = shifted.bytes[0] & 0xf;
      shifted = div2(shifted, (256-i)>>3);
    }
#endif
  }
  MULTIEXP_PERF(PERF_TIMER_STOP(digits));

  rct::key maxscalar = rct::zero();
  for (size_t i = 0; i < data.size(); ++i)
    if (maxscalar < data[i].scalar)
      maxscalar = data[i].scalar;
  size_t start_i = 0;
  while (start_i < 256 && !(maxscalar < pow2(start_i)))
    start_i += STRAUS_C;
  MULTIEXP_PERF(PERF_TIMER_STOP(setup));

  ge_p3 res_p3 = ge_p3_identity;

  for (size_t start_offset = 0; start_offset < data.size(); start_offset += STEP)
  {
    const size_t num_points = std::min(data.size() - start_offset, STEP);

    ge_p3 band_p3 = ge_p3_identity;
    size_t i = start_i;
    if (!(i < STRAUS_C))
      goto skipfirst;
    while (!(i < STRAUS_C))
    {
      ge_p2 p2;
      ge_p3_to_p2(&p2, &band_p3);
      for (size_t j = 0; j < STRAUS_C; ++j)
      {
        ge_p2_dbl(&p1, &p2);
        if (j == STRAUS_C - 1)
          ge_p1p1_to_p3(&band_p3, &p1);
        else
          ge_p1p1_to_p2(&p2, &p1);
      }
skipfirst:
      i -= STRAUS_C;
      for (size_t j = start_offset; j < start_offset + num_points; ++j)
      {
#ifdef TRACK_STRAUS_ZERO_IDENTITY
        if (skip[j])
          continue;
#endif
        const uint8_t digit = digits[j][i];
        if (digit)
        {
          ge_add(&p1, &band_p3, &CACHE_OFFSET(local_cache, j, digit));
          ge_p1p1_to_p3(&band_p3, &p1);
        }
      }
    }

    ge_p3_to_cached(&cached, &band_p3);
    ge_add(&p1, &res_p3, &cached);
    ge_p1p1_to_p3(&res_p3, &p1);
  }

  rct::key res;
  ge_p3_tobytes(res.bytes, &res_p3);
  return res;
}

}