aboutsummaryrefslogtreecommitdiff
path: root/src/ringct/multiexp.cc
blob: 178f922676e139e3db387fab60998c826d6ee194 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
// Copyright (c) 2017, The Monero Project
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
// 
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
// 
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
// 
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Adapted from Python code by Sarang Noether

#include "misc_log_ex.h"
#include "common/perf_timer.h"
extern "C"
{
#include "crypto/crypto-ops.h"
}
#include "common/aligned.h"
#include "rctOps.h"
#include "multiexp.h"

#undef MONERO_DEFAULT_LOG_CATEGORY
#define MONERO_DEFAULT_LOG_CATEGORY "multiexp"

//#define MULTIEXP_PERF(x) x
#define MULTIEXP_PERF(x)

#define RAW_MEMORY_BLOCK
//#define ALTERNATE_LAYOUT
//#define TRACK_STRAUS_ZERO_IDENTITY

//   per points us for N/B points (B point bands)
//   raw   alt   128/192  4096/192  4096/4096
//   0     0     52.6     71        71.2
//   0     1     53.2     72.2      72.4
//   1     0     52.7     67        67.1
//   1     1     52.8     70.4      70.2

// Pippenger:
// 	1	2	3	4	5	6	7	8	9	bestN
// 2	555	598	621	804	1038	1733	2486	5020	8304	1
// 4	783	747	800	1006	1428	2132	3285	5185	9806	2
// 8	1174	1071	1095	1286	1640	2398	3869	6378	12080	2
// 16	2279	1874	1745	1739	2144	2831	4209	6964	12007	4
// 32	3910	3706	2588	2477	2782	3467	4856	7489	12618	4
// 64	7184	5429	4710	4368	4010	4672	6027	8559	13684	5
// 128	14097	10574	8452	7297	6841	6718	8615	10580	15641	6
// 256	27715	20800	16000	13550	11875	11400	11505	14090	18460	6
// 512	55100	41250	31740	26570	22030	19830	20760	21380	25215	6
// 1024	111520	79000	61080	49720	43080	38320	37600	35040	36750	8
// 2048	219480	162680	122120	102080	83760	70360	66600	63920	66160	8
// 4096	453320	323080	247240	210200	180040	150240	132440	114920	110560	9

// 			2	4	8	16	32	64	128	256	512	1024	2048	4096
// Bos Coster		858	994	1316	1949	3183	5512	9865	17830	33485	63160	124280	246320
// Straus		226	341	548	980	1870	3538	7039	14490	29020	57200	118640	233640
// Straus/cached	226	315	485	785	1514	2858	5753	11065	22970	45120	98880	194840
// Pippenger		555	747	1071	1739	2477	4010	6718	11400	19830	35040	63920	110560

// Best/cached		Straus	Straus	Straus	Straus	Straus	Straus	Straus	Straus	Pip	Pip	Pip	Pip
// Best/uncached	Straus	Straus	Straus	Straus	Straus	Straus	Pip	Pip	Pip	Pip	Pip	Pip

namespace rct
{

static inline bool operator<(const rct::key &k0, const rct::key&k1)
{
  for (int n = 31; n >= 0; --n)
  {
    if (k0.bytes[n] < k1.bytes[n])
      return true;
    if (k0.bytes[n] > k1.bytes[n])
      return false;
  }
  return false;
}

static inline rct::key div2(const rct::key &k)
{
  rct::key res;
  int carry = 0;
  for (int n = 31; n >= 0; --n)
  {
    int new_carry = (k.bytes[n] & 1) << 7;
    res.bytes[n] = k.bytes[n] / 2 + carry;
    carry = new_carry;
  }
  return res;
}

static inline rct::key pow2(size_t n)
{
  CHECK_AND_ASSERT_THROW_MES(n < 256, "Invalid pow2 argument");
  rct::key res = rct::zero();
  res[n >> 3] |= 1<<(n&7);
  return res;
}

static inline int test(const rct::key &k, size_t n)
{
  if (n >= 256) return 0;
  return k[n >> 3] & (1 << (n & 7));
}

static inline void add(ge_p3 &p3, const ge_cached &other)
{
  ge_p1p1 p1;
  ge_add(&p1, &p3, &other);
  ge_p1p1_to_p3(&p3, &p1);
}

static inline void add(ge_p3 &p3, const ge_p3 &other)
{
  ge_cached cached;
  ge_p3_to_cached(&cached, &other);
  add(p3, cached);
}

rct::key bos_coster_heap_conv(std::vector<MultiexpData> data)
{
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(bos_coster, 1000000));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(setup, 1000000));
  size_t points = data.size();
  CHECK_AND_ASSERT_THROW_MES(points > 1, "Not enough points");
  std::vector<size_t> heap(points);
  for (size_t n = 0; n < points; ++n)
    heap[n] = n;

  auto Comp = [&](size_t e0, size_t e1) { return data[e0].scalar < data[e1].scalar; };
  std::make_heap(heap.begin(), heap.end(), Comp);
  MULTIEXP_PERF(PERF_TIMER_STOP(setup));

  MULTIEXP_PERF(PERF_TIMER_START_UNIT(loop, 1000000));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(pop, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(pop));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(add, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(add));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(sub, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(sub));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(push, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(push));
  while (heap.size() > 1)
  {
    MULTIEXP_PERF(PERF_TIMER_RESUME(pop));
    std::pop_heap(heap.begin(), heap.end(), Comp);
    size_t index1 = heap.back();
    heap.pop_back();
    std::pop_heap(heap.begin(), heap.end(), Comp);
    size_t index2 = heap.back();
    heap.pop_back();
    MULTIEXP_PERF(PERF_TIMER_PAUSE(pop));

    MULTIEXP_PERF(PERF_TIMER_RESUME(add));
    ge_cached cached;
    ge_p3_to_cached(&cached, &data[index1].point);
    ge_p1p1 p1;
    ge_add(&p1, &data[index2].point, &cached);
    ge_p1p1_to_p3(&data[index2].point, &p1);
    MULTIEXP_PERF(PERF_TIMER_PAUSE(add));

    MULTIEXP_PERF(PERF_TIMER_RESUME(sub));
    sc_sub(data[index1].scalar.bytes, data[index1].scalar.bytes, data[index2].scalar.bytes);
    MULTIEXP_PERF(PERF_TIMER_PAUSE(sub));

    MULTIEXP_PERF(PERF_TIMER_RESUME(push));
    if (!(data[index1].scalar == rct::zero()))
    {
      heap.push_back(index1);
      std::push_heap(heap.begin(), heap.end(), Comp);
    }

    heap.push_back(index2);
    std::push_heap(heap.begin(), heap.end(), Comp);
    MULTIEXP_PERF(PERF_TIMER_PAUSE(push));
  }
  MULTIEXP_PERF(PERF_TIMER_STOP(push));
  MULTIEXP_PERF(PERF_TIMER_STOP(sub));
  MULTIEXP_PERF(PERF_TIMER_STOP(add));
  MULTIEXP_PERF(PERF_TIMER_STOP(pop));
  MULTIEXP_PERF(PERF_TIMER_STOP(loop));

  MULTIEXP_PERF(PERF_TIMER_START_UNIT(end, 1000000));
  //return rct::scalarmultKey(data[index1].point, data[index1].scalar);
  std::pop_heap(heap.begin(), heap.end(), Comp);
  size_t index1 = heap.back();
  heap.pop_back();
  ge_p2 p2;
  ge_scalarmult(&p2, data[index1].scalar.bytes, &data[index1].point);
  rct::key res;
  ge_tobytes(res.bytes, &p2);
  return res;
}

rct::key bos_coster_heap_conv_robust(std::vector<MultiexpData> data)
{
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(bos_coster, 1000000));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(setup, 1000000));
  size_t points = data.size();
  CHECK_AND_ASSERT_THROW_MES(points > 0, "Not enough points");
  std::vector<size_t> heap;
  heap.reserve(points);
  for (size_t n = 0; n < points; ++n)
  {
    if (!(data[n].scalar == rct::zero()) && !ge_p3_is_point_at_infinity(&data[n].point))
      heap.push_back(n);
  }
  points = heap.size();
  if (points == 0)
    return rct::identity();

  auto Comp = [&](size_t e0, size_t e1) { return data[e0].scalar < data[e1].scalar; };
  std::make_heap(heap.begin(), heap.end(), Comp);

  if (points < 2)
  {
    std::pop_heap(heap.begin(), heap.end(), Comp);
    size_t index1 = heap.back();
    ge_p2 p2;
    ge_scalarmult(&p2, data[index1].scalar.bytes, &data[index1].point);
    rct::key res;
    ge_tobytes(res.bytes, &p2);
    return res;
  }

  MULTIEXP_PERF(PERF_TIMER_STOP(setup));

  MULTIEXP_PERF(PERF_TIMER_START_UNIT(loop, 1000000));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(pop, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(pop));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(div, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(div));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(add, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(add));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(sub, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(sub));
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(push, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(push));
  while (heap.size() > 1)
  {
    MULTIEXP_PERF(PERF_TIMER_RESUME(pop));
    std::pop_heap(heap.begin(), heap.end(), Comp);
    size_t index1 = heap.back();
    heap.pop_back();
    std::pop_heap(heap.begin(), heap.end(), Comp);
    size_t index2 = heap.back();
    heap.pop_back();
    MULTIEXP_PERF(PERF_TIMER_PAUSE(pop));

    ge_cached cached;
    ge_p1p1 p1;
    ge_p2 p2;

    MULTIEXP_PERF(PERF_TIMER_RESUME(div));
    while (1)
    {
      rct::key s1_2 = div2(data[index1].scalar);
      if (!(data[index2].scalar < s1_2))
       break;
      if (data[index1].scalar.bytes[0] & 1)
      {
        data.resize(data.size()+1);
        data.back().scalar = rct::identity();
        data.back().point = data[index1].point;
        heap.push_back(data.size() - 1);
        std::push_heap(heap.begin(), heap.end(), Comp);
      }
      data[index1].scalar = div2(data[index1].scalar);
      ge_p3_to_p2(&p2, &data[index1].point);
      ge_p2_dbl(&p1, &p2);
      ge_p1p1_to_p3(&data[index1].point, &p1);
    }
    MULTIEXP_PERF(PERF_TIMER_PAUSE(div));

    MULTIEXP_PERF(PERF_TIMER_RESUME(add));
    ge_p3_to_cached(&cached, &data[index1].point);
    ge_add(&p1, &data[index2].point, &cached);
    ge_p1p1_to_p3(&data[index2].point, &p1);
    MULTIEXP_PERF(PERF_TIMER_PAUSE(add));

    MULTIEXP_PERF(PERF_TIMER_RESUME(sub));
    sc_sub(data[index1].scalar.bytes, data[index1].scalar.bytes, data[index2].scalar.bytes);
    MULTIEXP_PERF(PERF_TIMER_PAUSE(sub));

    MULTIEXP_PERF(PERF_TIMER_RESUME(push));
    if (!(data[index1].scalar == rct::zero()))
    {
      heap.push_back(index1);
      std::push_heap(heap.begin(), heap.end(), Comp);
    }

    heap.push_back(index2);
    std::push_heap(heap.begin(), heap.end(), Comp);
    MULTIEXP_PERF(PERF_TIMER_PAUSE(push));
  }
  MULTIEXP_PERF(PERF_TIMER_STOP(push));
  MULTIEXP_PERF(PERF_TIMER_STOP(sub));
  MULTIEXP_PERF(PERF_TIMER_STOP(add));
  MULTIEXP_PERF(PERF_TIMER_STOP(pop));
  MULTIEXP_PERF(PERF_TIMER_STOP(loop));

  MULTIEXP_PERF(PERF_TIMER_START_UNIT(end, 1000000));
  //return rct::scalarmultKey(data[index1].point, data[index1].scalar);
  std::pop_heap(heap.begin(), heap.end(), Comp);
  size_t index1 = heap.back();
  heap.pop_back();
  ge_p2 p2;
  ge_scalarmult(&p2, data[index1].scalar.bytes, &data[index1].point);
  rct::key res;
  ge_tobytes(res.bytes, &p2);
  return res;
}

#define STRAUS_C 4

struct straus_cached_data
{
#ifdef RAW_MEMORY_BLOCK
  size_t size;
  ge_cached *multiples;
  straus_cached_data(): size(0), multiples(NULL) {}
  ~straus_cached_data() { aligned_free(multiples); }
#else
  std::vector<std::vector<ge_cached>> multiples;
#endif
};
#ifdef RAW_MEMORY_BLOCK
#ifdef ALTERNATE_LAYOUT
#define CACHE_OFFSET(cache,point,digit) cache->multiples[(point)*((1<<STRAUS_C)-1)+((digit)-1)]
#else
#define CACHE_OFFSET(cache,point,digit) cache->multiples[(point)+cache->size*((digit)-1)]
#endif
#else
#ifdef ALTERNATE_LAYOUT
#define CACHE_OFFSET(cache,point,digit) local_cache->multiples[j][digit-1]
#else
#define CACHE_OFFSET(cache,point,digit) local_cache->multiples[digit][j]
#endif
#endif

std::shared_ptr<straus_cached_data> straus_init_cache(const std::vector<MultiexpData> &data, size_t N)
{
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(multiples, 1000000));
  if (N == 0)
    N = data.size();
  CHECK_AND_ASSERT_THROW_MES(N <= data.size(), "Bad cache base data");
  ge_cached cached;
  ge_p1p1 p1;
  ge_p3 p3;
  std::shared_ptr<straus_cached_data> cache(new straus_cached_data());

#ifdef RAW_MEMORY_BLOCK
  const size_t offset = cache->size;
  cache->multiples = (ge_cached*)aligned_realloc(cache->multiples, sizeof(ge_cached) * ((1<<STRAUS_C)-1) * std::max(offset, N), 4096);
  CHECK_AND_ASSERT_THROW_MES(cache->multiples, "Out of memory");
  cache->size = N;
  for (size_t j=offset;j<N;++j)
  {
    ge_p3_to_cached(&CACHE_OFFSET(cache, j, 1), &data[j].point);
    for (size_t i=2;i<1<<STRAUS_C;++i)
    {
      ge_add(&p1, &data[j].point, &CACHE_OFFSET(cache, j, i-1));
      ge_p1p1_to_p3(&p3, &p1);
      ge_p3_to_cached(&CACHE_OFFSET(cache, j, i), &p3);
    }
  }
#else
#ifdef ALTERNATE_LAYOUT
  const size_t offset = cache->multiples.size();
  cache->multiples.resize(std::max(offset, N));
  for (size_t i = offset; i < N; ++i)
  {
    cache->multiples[i].resize((1<<STRAUS_C)-1);
    ge_p3_to_cached(&cache->multiples[i][0], &data[i].point);
    for (size_t j=2;j<1<<STRAUS_C;++j)
    {
      ge_add(&p1, &data[i].point, &cache->multiples[i][j-2]);
      ge_p1p1_to_p3(&p3, &p1);
      ge_p3_to_cached(&cache->multiples[i][j-1], &p3);
    }
  }
#else
  cache->multiples.resize(1<<STRAUS_C);
  size_t offset = cache->multiples[1].size();
  cache->multiples[1].resize(std::max(offset, N));
  for (size_t i = offset; i < N; ++i)
    ge_p3_to_cached(&cache->multiples[1][i], &data[i].point);
  for (size_t i=2;i<1<<STRAUS_C;++i)
    cache->multiples[i].resize(std::max(offset, N));
  for (size_t j=offset;j<N;++j)
  {
    for (size_t i=2;i<1<<STRAUS_C;++i)
    {
      ge_add(&p1, &data[j].point, &cache->multiples[i-1][j]);
      ge_p1p1_to_p3(&p3, &p1);
      ge_p3_to_cached(&cache->multiples[i][j], &p3);
    }
  }
#endif
#endif
  MULTIEXP_PERF(PERF_TIMER_STOP(multiples));

  return cache;
}

size_t straus_get_cache_size(const std::shared_ptr<straus_cached_data> &cache)
{
  size_t sz = 0;
#ifdef RAW_MEMORY_BLOCK
  sz += cache->size * sizeof(ge_cached) * ((1<<STRAUS_C)-1);
#else
  for (const auto &e0: cache->multiples)
    sz += e0.size() * sizeof(ge_cached);
#endif
  return sz;
}

rct::key straus(const std::vector<MultiexpData> &data, const std::shared_ptr<straus_cached_data> &cache, size_t STEP)
{
  CHECK_AND_ASSERT_THROW_MES(cache == NULL || cache->size >= data.size(), "Cache is too small");
  MULTIEXP_PERF(PERF_TIMER_UNIT(straus, 1000000));
  bool HiGi = cache != NULL;
  STEP = STEP ? STEP : 192;

  MULTIEXP_PERF(PERF_TIMER_START_UNIT(setup, 1000000));
  static constexpr unsigned int mask = (1<<STRAUS_C)-1;
  std::shared_ptr<straus_cached_data> local_cache = cache == NULL ? straus_init_cache(data) : cache;
  ge_cached cached;
  ge_p1p1 p1;
  ge_p3 p3;

#ifdef TRACK_STRAUS_ZERO_IDENTITY
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(skip, 1000000));
  std::vector<uint8_t> skip(data.size());
  for (size_t i = 0; i < data.size(); ++i)
    skip[i] = data[i].scalar == rct::zero() || ge_p3_is_point_at_infinity(&data[i].point);
  MULTIEXP_PERF(PERF_TIMER_STOP(skip));
#endif

  MULTIEXP_PERF(PERF_TIMER_START_UNIT(digits, 1000000));
#if STRAUS_C==4
  std::unique_ptr<uint8_t[]> digits{new uint8_t[64 * data.size()]};
#else
  std::unique_ptr<uint8_t[]> digits{new uint8_t[256 * data.size()]};
#endif
  for (size_t j = 0; j < data.size(); ++j)
  {
    unsigned char bytes33[33];
    memcpy(bytes33,  data[j].scalar.bytes, 32);
    bytes33[32] = 0;
    const unsigned char *bytes = bytes33;
#if STRAUS_C==4
    unsigned int i;
    for (i = 0; i < 64; i += 2, bytes++)
    {
      digits[j*64+i] = bytes[0] & 0xf;
      digits[j*64+i+1] = bytes[0] >> 4;
    }
#elif 1
    for (size_t i = 0; i < 256; ++i)
      digits[j*256+i] = ((bytes[i>>3] | (bytes[(i>>3)+1]<<8)) >> (i&7)) & mask;
#else
    rct::key shifted = data[j].scalar;
    for (size_t i = 0; i < 256; ++i)
    {
      digits[j*256+i] = shifted.bytes[0] & 0xf;
      shifted = div2(shifted, (256-i)>>3);
    }
#endif
  }
  MULTIEXP_PERF(PERF_TIMER_STOP(digits));

  rct::key maxscalar = rct::zero();
  for (size_t i = 0; i < data.size(); ++i)
    if (maxscalar < data[i].scalar)
      maxscalar = data[i].scalar;
  size_t start_i = 0;
  while (start_i < 256 && !(maxscalar < pow2(start_i)))
    start_i += STRAUS_C;
  MULTIEXP_PERF(PERF_TIMER_STOP(setup));

  ge_p3 res_p3 = ge_p3_identity;

  for (size_t start_offset = 0; start_offset < data.size(); start_offset += STEP)
  {
    const size_t num_points = std::min(data.size() - start_offset, STEP);

    ge_p3 band_p3 = ge_p3_identity;
    size_t i = start_i;
    if (!(i < STRAUS_C))
      goto skipfirst;
    while (!(i < STRAUS_C))
    {
      ge_p2 p2;
      ge_p3_to_p2(&p2, &band_p3);
      for (size_t j = 0; j < STRAUS_C; ++j)
      {
        ge_p2_dbl(&p1, &p2);
        if (j == STRAUS_C - 1)
          ge_p1p1_to_p3(&band_p3, &p1);
        else
          ge_p1p1_to_p2(&p2, &p1);
      }
skipfirst:
      i -= STRAUS_C;
      for (size_t j = start_offset; j < start_offset + num_points; ++j)
      {
#ifdef TRACK_STRAUS_ZERO_IDENTITY
        if (skip[j])
          continue;
#endif
#if STRAUS_C==4
        const uint8_t digit = digits[j*64+i/4];
#else
        const uint8_t digit = digits[j*256+i];
#endif
        if (digit)
        {
          ge_add(&p1, &band_p3, &CACHE_OFFSET(local_cache, j, digit));
          ge_p1p1_to_p3(&band_p3, &p1);
        }
      }
    }

    ge_p3_to_cached(&cached, &band_p3);
    ge_add(&p1, &res_p3, &cached);
    ge_p1p1_to_p3(&res_p3, &p1);
  }

  rct::key res;
  ge_p3_tobytes(res.bytes, &res_p3);
  return res;
}

size_t get_pippenger_c(size_t N)
{
// uncached: 2:1, 4:2, 8:2, 16:3, 32:4, 64:4, 128:5, 256:6, 512:7, 1024:7, 2048:8, 4096:9
//   cached: 2:1, 4:2, 8:2, 16:3, 32:4, 64:4, 128:5, 256:6, 512:7, 1024:7, 2048:8, 4096:9
  if (N <= 2) return 1;
  if (N <= 8) return 2;
  if (N <= 16) return 3;
  if (N <= 64) return 4;
  if (N <= 128) return 5;
  if (N <= 256) return 6;
  if (N <= 1024) return 7;
  if (N <= 2048) return 8;
  return 9;
}

struct pippenger_cached_data
{
  size_t size;
  ge_cached *cached;
  pippenger_cached_data(): size(0), cached(NULL) {}
  ~pippenger_cached_data() { aligned_free(cached); }
};

std::shared_ptr<pippenger_cached_data> pippenger_init_cache(const std::vector<MultiexpData> &data, size_t start_offset, size_t N)
{
  MULTIEXP_PERF(PERF_TIMER_START_UNIT(pippenger_init_cache, 1000000));
  CHECK_AND_ASSERT_THROW_MES(start_offset <= data.size(), "Bad cache base data");
  if (N == 0)
    N = data.size() - start_offset;
  CHECK_AND_ASSERT_THROW_MES(N <= data.size() - start_offset, "Bad cache base data");
  ge_cached cached;
  std::shared_ptr<pippenger_cached_data> cache(new pippenger_cached_data());

  cache->size = N;
  cache->cached = (ge_cached*)aligned_realloc(cache->cached, N * sizeof(ge_cached), 4096);
  CHECK_AND_ASSERT_THROW_MES(cache->cached, "Out of memory");
  for (size_t i = 0; i < N; ++i)
    ge_p3_to_cached(&cache->cached[i], &data[i+start_offset].point);

  MULTIEXP_PERF(PERF_TIMER_STOP(pippenger_init_cache));
  return cache;
}

size_t pippenger_get_cache_size(const std::shared_ptr<pippenger_cached_data> &cache)
{
  return cache->size * sizeof(*cache->cached);
}

rct::key pippenger(const std::vector<MultiexpData> &data, const std::shared_ptr<pippenger_cached_data> &cache, size_t cache_size, size_t c)
{
  if (cache != NULL && cache_size == 0)
    cache_size = cache->size;
  CHECK_AND_ASSERT_THROW_MES(cache == NULL || cache_size <= cache->size, "Cache is too small");
  if (c == 0)
    c = get_pippenger_c(data.size());
  CHECK_AND_ASSERT_THROW_MES(c <= 9, "c is too large");

  ge_p3 result = ge_p3_identity;
  std::unique_ptr<ge_p3[]> buckets{new ge_p3[1<<c]};
  std::shared_ptr<pippenger_cached_data> local_cache = cache == NULL ? pippenger_init_cache(data) : cache;
  std::shared_ptr<pippenger_cached_data> local_cache_2 = data.size() > cache_size ? pippenger_init_cache(data, cache_size) : NULL;

  rct::key maxscalar = rct::zero();
  for (size_t i = 0; i < data.size(); ++i)
  {
    if (maxscalar < data[i].scalar)
      maxscalar = data[i].scalar;
  }
  size_t groups = 0;
  while (groups < 256 && !(maxscalar < pow2(groups)))
    ++groups;
  groups = (groups + c - 1) / c;

  for (size_t k = groups; k-- > 0; )
  {
    if (!ge_p3_is_point_at_infinity(&result))
    {
      ge_p2 p2;
      ge_p3_to_p2(&p2, &result);
      for (size_t i = 0; i < c; ++i)
      {
        ge_p1p1 p1;
        ge_p2_dbl(&p1, &p2);
        if (i == c - 1)
          ge_p1p1_to_p3(&result, &p1);
        else
          ge_p1p1_to_p2(&p2, &p1);
      }
    }
    for (size_t i = 0; i < (1u<<c); ++i)
      buckets[i] = ge_p3_identity;

    // partition scalars into buckets
    for (size_t i = 0; i < data.size(); ++i)
    {
      unsigned int bucket = 0;
      for (size_t j = 0; j < c; ++j)
        if (test(data[i].scalar, k*c+j))
          bucket |= 1<<j;
      if (bucket == 0)
        continue;
      CHECK_AND_ASSERT_THROW_MES(bucket < (1u<<c), "bucket overflow");
      if (!ge_p3_is_point_at_infinity(&buckets[bucket]))
      {
        if (i < cache_size)
          add(buckets[bucket], local_cache->cached[i]);
        else
          add(buckets[bucket], local_cache_2->cached[i - cache_size]);
      }
      else
        buckets[bucket] = data[i].point;
    }

    // sum the buckets
    ge_p3 pail = ge_p3_identity;
    for (size_t i = (1<<c)-1; i > 0; --i)
    {
      if (!ge_p3_is_point_at_infinity(&buckets[i]))
        add(pail, buckets[i]);
      if (!ge_p3_is_point_at_infinity(&pail))
        add(result, pail);
    }
  }

  rct::key res;
  ge_p3_tobytes(res.bytes, &result);
  return res;
}

}