aboutsummaryrefslogtreecommitdiff
path: root/src/ringct/bulletproofs_plus.cc
blob: 743598b5ada254606ad25797c86301fc6b95c3f0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
// Copyright (c) 2017-2020, The Monero Project
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
// 
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
// 
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
// 
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Implements the Bulletproofs+ prover and verifier algorithms
//
// Preprint: https://eprint.iacr.org/2020/735, version 17 Jun 2020
//
// NOTE ON NOTATION:
//  In the signature constructions used in Monero, commitments to zero are treated as
//      public keys against the curve group generator `G`. This means that amount
//      commitments must use another generator `H` for values in order to show balance.
//  The result is that the roles of `g` and `h` in the preprint are effectively swapped
//      in this code, taking on the roles of `H` and `G`, respectively. Read carefully!

#include <stdlib.h>
#include <boost/thread/mutex.hpp>
#include <boost/thread/lock_guard.hpp>
#include "misc_log_ex.h"
#include "span.h"
#include "cryptonote_config.h"
extern "C"
{
#include "crypto/crypto-ops.h"
}
#include "rctOps.h"
#include "multiexp.h"
#include "bulletproofs_plus.h"

#undef MONERO_DEFAULT_LOG_CATEGORY
#define MONERO_DEFAULT_LOG_CATEGORY "bulletproof_plus"

#define STRAUS_SIZE_LIMIT 232
#define PIPPENGER_SIZE_LIMIT 0

namespace rct
{
    // Vector functions
    static rct::key vector_exponent(const rct::keyV &a, const rct::keyV &b);
    static rct::keyV vector_of_scalar_powers(const rct::key &x, size_t n);

    // Proof bounds
    static constexpr size_t maxN = 64; // maximum number of bits in range
    static constexpr size_t maxM = BULLETPROOF_MAX_OUTPUTS; // maximum number of outputs to aggregate into a single proof

    // Cached public generators
    static rct::key Hi[maxN*maxM], Gi[maxN*maxM];
    static ge_p3 Hi_p3[maxN*maxM], Gi_p3[maxN*maxM];
    static std::shared_ptr<straus_cached_data> straus_HiGi_cache;
    static std::shared_ptr<pippenger_cached_data> pippenger_HiGi_cache;

    // Useful scalar constants
    static const rct::key ZERO = { {0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00  } }; // 0
    static const rct::key ONE = { {0x01, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00  } }; // 1
    static const rct::key TWO = { {0x02, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00  } }; // 2
    static const rct::key MINUS_ONE = { { 0xec, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10 } }; // -1
    static const rct::key MINUS_INV_EIGHT = { { 0x74, 0xa4, 0x19, 0x7a, 0xf0, 0x7d, 0x0b, 0xf7, 0x05, 0xc2, 0xda, 0x25, 0x2b, 0x5c, 0x0b, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a } }; // -(8**(-1))
    static rct::key TWO_SIXTY_FOUR_MINUS_ONE; // 2**64 - 1

    // Initial transcript hash
    static rct::key initial_transcript;

    static boost::mutex init_mutex;

    // Use the generator caches to compute a multiscalar multiplication
    static inline rct::key multiexp(const std::vector<MultiexpData> &data, size_t HiGi_size)
    {
        if (HiGi_size > 0)
        {
            static_assert(232 <= STRAUS_SIZE_LIMIT, "Straus in precalc mode can only be calculated till STRAUS_SIZE_LIMIT");
            return HiGi_size <= 232 && data.size() == HiGi_size ? straus(data, straus_HiGi_cache, 0) : pippenger(data, pippenger_HiGi_cache, HiGi_size, get_pippenger_c(data.size()));
        }
        else
        {
            return data.size() <= 95 ? straus(data, NULL, 0) : pippenger(data, NULL, 0, get_pippenger_c(data.size()));
        }
    }

    // Confirm that a scalar is properly reduced
    static inline bool is_reduced(const rct::key &scalar)
    {
        return sc_check(scalar.bytes) == 0;
    }

    // Use hashed values to produce indexed public generators
    static rct::key get_exponent(const rct::key &base, size_t idx)
    {
        static const std::string domain_separator(config::HASH_KEY_BULLETPROOF_PLUS_EXPONENT);
        std::string hashed = std::string((const char*)base.bytes, sizeof(base)) + domain_separator + tools::get_varint_data(idx);
        rct::key generator;
        ge_p3 generator_p3;
        rct::hash_to_p3(generator_p3, rct::hash2rct(crypto::cn_fast_hash(hashed.data(), hashed.size())));
        ge_p3_tobytes(generator.bytes, &generator_p3);
        CHECK_AND_ASSERT_THROW_MES(!(generator == rct::identity()), "Exponent is point at infinity");
        return generator;
    }

    // Construct public generators
    static void init_exponents()
    {
        boost::lock_guard<boost::mutex> lock(init_mutex);

        // Only needs to be done once
        static bool init_done = false;
        if (init_done)
            return;

        std::vector<MultiexpData> data;
        data.reserve(maxN*maxM*2);
        for (size_t i = 0; i < maxN*maxM; ++i)
        {
            Hi[i] = get_exponent(rct::H, i * 2);
            CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&Hi_p3[i], Hi[i].bytes) == 0, "ge_frombytes_vartime failed");
            Gi[i] = get_exponent(rct::H, i * 2 + 1);
            CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&Gi_p3[i], Gi[i].bytes) == 0, "ge_frombytes_vartime failed");

            data.push_back({rct::zero(), Gi_p3[i]});
            data.push_back({rct::zero(), Hi_p3[i]});
        }

        straus_HiGi_cache = straus_init_cache(data, STRAUS_SIZE_LIMIT);
        pippenger_HiGi_cache = pippenger_init_cache(data, 0, PIPPENGER_SIZE_LIMIT);

        // Compute 2**64 - 1 for later use in simplifying verification
        TWO_SIXTY_FOUR_MINUS_ONE = TWO;
        for (size_t i = 0; i < 6; i++)
        {
            sc_mul(TWO_SIXTY_FOUR_MINUS_ONE.bytes, TWO_SIXTY_FOUR_MINUS_ONE.bytes, TWO_SIXTY_FOUR_MINUS_ONE.bytes);
        }
        sc_sub(TWO_SIXTY_FOUR_MINUS_ONE.bytes, TWO_SIXTY_FOUR_MINUS_ONE.bytes, ONE.bytes);

        // Generate the initial Fiat-Shamir transcript hash, which is constant across all proofs
        static const std::string domain_separator(config::HASH_KEY_BULLETPROOF_PLUS_TRANSCRIPT);
        ge_p3 initial_transcript_p3;
        rct::hash_to_p3(initial_transcript_p3, rct::hash2rct(crypto::cn_fast_hash(domain_separator.data(), domain_separator.size())));
        ge_p3_tobytes(initial_transcript.bytes, &initial_transcript_p3);

        init_done = true;
    }

    // Given two scalar arrays, construct a vector pre-commitment:
    //
    // a = (a_0, ..., a_{n-1})
    // b = (b_0, ..., b_{n-1})
    //
    // Outputs a_0*Gi_0 + ... + a_{n-1}*Gi_{n-1} +
    //         b_0*Hi_0 + ... + b_{n-1}*Hi_{n-1}
    static rct::key vector_exponent(const rct::keyV &a, const rct::keyV &b)
    {
        CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
        CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN*maxM, "Incompatible sizes of a and maxN");

        std::vector<MultiexpData> multiexp_data;
        multiexp_data.reserve(a.size()*2);
        for (size_t i = 0; i < a.size(); ++i)
        {
            multiexp_data.emplace_back(a[i], Gi_p3[i]);
            multiexp_data.emplace_back(b[i], Hi_p3[i]);
        }
        return multiexp(multiexp_data, 2 * a.size());
    }

    // Helper function used to compute the L and R terms used in the inner-product round function
    static rct::key compute_LR(size_t size, const rct::key &y, const std::vector<ge_p3> &G, size_t G0, const std::vector<ge_p3> &H, size_t H0, const rct::keyV &a, size_t a0, const rct::keyV &b, size_t b0, const rct::key &c, const rct::key &d)
    {
        CHECK_AND_ASSERT_THROW_MES(size + G0 <= G.size(), "Incompatible size for G");
        CHECK_AND_ASSERT_THROW_MES(size + H0 <= H.size(), "Incompatible size for H");
        CHECK_AND_ASSERT_THROW_MES(size + a0 <= a.size(), "Incompatible size for a");
        CHECK_AND_ASSERT_THROW_MES(size + b0 <= b.size(), "Incompatible size for b");
        CHECK_AND_ASSERT_THROW_MES(size <= maxN*maxM, "size is too large");

        std::vector<MultiexpData> multiexp_data;
        multiexp_data.resize(size*2 + 2);
        rct::key temp;
        for (size_t i = 0; i < size; ++i)
        {
            sc_mul(temp.bytes, a[a0+i].bytes, y.bytes);
            sc_mul(multiexp_data[i*2].scalar.bytes, temp.bytes, INV_EIGHT.bytes);
            multiexp_data[i*2].point = G[G0+i];

            sc_mul(multiexp_data[i*2+1].scalar.bytes, b[b0+i].bytes, INV_EIGHT.bytes);
            multiexp_data[i*2+1].point = H[H0+i];
        }

        sc_mul(multiexp_data[2*size].scalar.bytes, c.bytes, INV_EIGHT.bytes);
        ge_p3 H_p3;
        ge_frombytes_vartime(&H_p3, rct::H.bytes);
        multiexp_data[2*size].point = H_p3;

        sc_mul(multiexp_data[2*size+1].scalar.bytes, d.bytes, INV_EIGHT.bytes);
        ge_p3 G_p3;
        ge_frombytes_vartime(&G_p3, rct::G.bytes);
        multiexp_data[2*size+1].point = G_p3;

        return multiexp(multiexp_data, 0);
    }

    // Given a scalar, construct a vector of its powers:
    //
    // Output (1,x,x**2,...,x**{n-1})
    static rct::keyV vector_of_scalar_powers(const rct::key &x, size_t n)
    {
        rct::keyV res(n);
        if (n == 0)
            return res;
        res[0] = rct::identity();
        if (n == 1)
            return res;
        res[1] = x;
        for (size_t i = 2; i < n; ++i)
        {
            sc_mul(res[i].bytes, res[i-1].bytes, x.bytes);
        }
        return res;
    }

    // Given a scalar, construct the sum of its powers from 2 to n (where n is a power of 2):
    //
    // Output x**2 + x**4 + x**6 + ... + x**n
    static rct::key sum_of_even_powers(const rct::key &x, size_t n)
    {
        CHECK_AND_ASSERT_THROW_MES((n & (n - 1)) == 0, "Need n to be a power of 2");

        rct::key x1 = copy(x);
        sc_mul(x1.bytes, x1.bytes, x1.bytes);

        rct::key res = copy(x1);
        while (n > 2)
        {
            sc_muladd(res.bytes, x1.bytes, res.bytes, res.bytes);
            sc_mul(x1.bytes, x1.bytes, x1.bytes);
            n /= 2;
        }

        return res;
    }

    // Given a scalar, return the sum of its powers from 1 to n
    //
    // Output x**1 + x**2 + x**3 + ... + x**n
    static rct::key sum_of_scalar_powers(const rct::key &x, size_t n)
    {
        rct::key res = ONE;
        if (n == 1)
            return res;

        n += 1;
        rct::key x1 = copy(x);

        const bool is_power_of_2 = (n & (n - 1)) == 0;
        if (is_power_of_2)
        {
            sc_add(res.bytes, res.bytes, x1.bytes);
            while (n > 2)
            {
                sc_mul(x1.bytes, x1.bytes, x1.bytes);
                sc_muladd(res.bytes, x1.bytes, res.bytes, res.bytes);
                n /= 2;
            }
        }
        else
        {
            rct::key prev = x1;
            for (size_t i = 1; i < n; ++i)
            {
                if (i > 1)
                    sc_mul(prev.bytes, prev.bytes, x1.bytes);
                sc_add(res.bytes, res.bytes, prev.bytes);
            }
        }
        sc_sub(res.bytes, res.bytes, ONE.bytes);

        return res;
    }

    // Given two scalar arrays, construct the weighted inner product against another scalar
    //
    // Output a_0*b_0*y**1 + a_1*b_1*y**2 + ... + a_{n-1}*b_{n-1}*y**n
    static rct::key weighted_inner_product(const epee::span<const rct::key> &a, const epee::span<const rct::key> &b, const rct::key &y)
    {
        CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
        rct::key res = rct::zero();
        rct::key y_power = ONE;
        rct::key temp;
        for (size_t i = 0; i < a.size(); ++i)
        {
            sc_mul(temp.bytes, a[i].bytes, b[i].bytes);
            sc_mul(y_power.bytes, y_power.bytes, y.bytes);
            sc_muladd(res.bytes, temp.bytes, y_power.bytes, res.bytes);
        }
        return res;
    }

    static rct::key weighted_inner_product(const rct::keyV &a, const epee::span<const rct::key> &b, const rct::key &y)
    {
        CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
        rct::key res = rct::zero();
        rct::key y_power = ONE;
        rct::key temp;
        for (size_t i = 0; i < a.size(); ++i)
        {
            sc_mul(temp.bytes, a[i].bytes, b[i].bytes);
            sc_mul(y_power.bytes, y_power.bytes, y.bytes);
            sc_muladd(res.bytes, temp.bytes, y_power.bytes, res.bytes);
        }
        return res;
    }

    // Fold inner-product point vectors
    static void hadamard_fold(std::vector<ge_p3> &v, const rct::key &a, const rct::key &b)
    {
        CHECK_AND_ASSERT_THROW_MES((v.size() & 1) == 0, "Vector size should be even");
        const size_t sz = v.size() / 2;
        for (size_t n = 0; n < sz; ++n)
        {
            ge_dsmp c[2];
            ge_dsm_precomp(c[0], &v[n]);
            ge_dsm_precomp(c[1], &v[sz + n]);
            ge_double_scalarmult_precomp_vartime2_p3(&v[n], a.bytes, c[0], b.bytes, c[1]);
        }
        v.resize(sz);
    }

    // Add vectors componentwise
    static rct::keyV vector_add(const rct::keyV &a, const rct::keyV &b)
    {
        CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
        rct::keyV res(a.size());
        for (size_t i = 0; i < a.size(); ++i)
        {
            sc_add(res[i].bytes, a[i].bytes, b[i].bytes);
        }
        return res;
    }

    // Add a scalar to all elements of a vector
    static rct::keyV vector_add(const rct::keyV &a, const rct::key &b)
    {
        rct::keyV res(a.size());
        for (size_t i = 0; i < a.size(); ++i)
        {
            sc_add(res[i].bytes, a[i].bytes, b.bytes);
        }
        return res;
    }

    // Subtract a scalar from all elements of a vector
    static rct::keyV vector_subtract(const rct::keyV &a, const rct::key &b)
    {
        rct::keyV res(a.size());
        for (size_t i = 0; i < a.size(); ++i)
        {
            sc_sub(res[i].bytes, a[i].bytes, b.bytes);
        }
        return res;
    }

    // Multiply a scalar by all elements of a vector
    static rct::keyV vector_scalar(const epee::span<const rct::key> &a, const rct::key &x)
    {
        rct::keyV res(a.size());
        for (size_t i = 0; i < a.size(); ++i)
        {
            sc_mul(res[i].bytes, a[i].bytes, x.bytes);
        }
        return res;
    }

    // Inversion helper function
    static rct::key sm(rct::key y, int n, const rct::key &x)
    {
        while (n--)
            sc_mul(y.bytes, y.bytes, y.bytes);
        sc_mul(y.bytes, y.bytes, x.bytes);
        return y;
    }

    // Compute the inverse of a nonzero
    static rct::key invert(const rct::key &x)
    {
        CHECK_AND_ASSERT_THROW_MES(!(x == ZERO), "Cannot invert zero!");
        rct::key _1, _10, _100, _11, _101, _111, _1001, _1011, _1111;

        _1 = x;
        sc_mul(_10.bytes, _1.bytes, _1.bytes);
        sc_mul(_100.bytes, _10.bytes, _10.bytes);
        sc_mul(_11.bytes, _10.bytes, _1.bytes);
        sc_mul(_101.bytes, _10.bytes, _11.bytes);
        sc_mul(_111.bytes, _10.bytes, _101.bytes);
        sc_mul(_1001.bytes, _10.bytes, _111.bytes);
        sc_mul(_1011.bytes, _10.bytes, _1001.bytes);
        sc_mul(_1111.bytes, _100.bytes, _1011.bytes);

        rct::key inv;
        sc_mul(inv.bytes, _1111.bytes, _1.bytes);

        inv = sm(inv, 123 + 3, _101);
        inv = sm(inv, 2 + 2, _11);
        inv = sm(inv, 1 + 4, _1111);
        inv = sm(inv, 1 + 4, _1111);
        inv = sm(inv, 4, _1001);
        inv = sm(inv, 2, _11);
        inv = sm(inv, 1 + 4, _1111);
        inv = sm(inv, 1 + 3, _101);
        inv = sm(inv, 3 + 3, _101);
        inv = sm(inv, 3, _111);
        inv = sm(inv, 1 + 4, _1111);
        inv = sm(inv, 2 + 3, _111);
        inv = sm(inv, 2 + 2, _11);
        inv = sm(inv, 1 + 4, _1011);
        inv = sm(inv, 2 + 4, _1011);
        inv = sm(inv, 6 + 4, _1001);
        inv = sm(inv, 2 + 2, _11);
        inv = sm(inv, 3 + 2, _11);
        inv = sm(inv, 3 + 2, _11);
        inv = sm(inv, 1 + 4, _1001);
        inv = sm(inv, 1 + 3, _111);
        inv = sm(inv, 2 + 4, _1111);
        inv = sm(inv, 1 + 4, _1011);
        inv = sm(inv, 3, _101);
        inv = sm(inv, 2 + 4, _1111);
        inv = sm(inv, 3, _101);
        inv = sm(inv, 1 + 2, _11);

        return inv;
    }

    // Invert a batch of scalars, all of which _must_ be nonzero
    static rct::keyV invert(rct::keyV x)
    {
        rct::keyV scratch;
        scratch.reserve(x.size());

        rct::key acc = rct::identity();
        for (size_t n = 0; n < x.size(); ++n)
        {
            CHECK_AND_ASSERT_THROW_MES(!(x[n] == ZERO), "Cannot invert zero!");
            scratch.push_back(acc);
            if (n == 0)
                acc = x[0];
            else
                sc_mul(acc.bytes, acc.bytes, x[n].bytes);
        }

        acc = invert(acc);

        rct::key tmp;
        for (int i = x.size(); i-- > 0; )
        {
            sc_mul(tmp.bytes, acc.bytes, x[i].bytes);
            sc_mul(x[i].bytes, acc.bytes, scratch[i].bytes);
            acc = tmp;
        }

        return x;
    }

    // Compute the slice of a vector
    static epee::span<const rct::key> slice(const rct::keyV &a, size_t start, size_t stop)
    {
        CHECK_AND_ASSERT_THROW_MES(start < a.size(), "Invalid start index");
        CHECK_AND_ASSERT_THROW_MES(stop <= a.size(), "Invalid stop index");
        CHECK_AND_ASSERT_THROW_MES(start < stop, "Invalid start/stop indices");
        return epee::span<const rct::key>(&a[start], stop - start);
    }

    // Update the transcript
    static rct::key transcript_update(rct::key &transcript, const rct::key &update_0)
    {
        rct::key data[2];
        data[0] = transcript;
        data[1] = update_0;
        rct::hash_to_scalar(transcript, data, sizeof(data));
        return transcript;
    }

    static rct::key transcript_update(rct::key &transcript, const rct::key &update_0, const rct::key &update_1)
    {
        rct::key data[3];
        data[0] = transcript;
        data[1] = update_0;
        data[2] = update_1;
        rct::hash_to_scalar(transcript, data, sizeof(data));
        return transcript;
    }

    // Given a value v [0..2**N) and a mask gamma, construct a range proof
    BulletproofPlus bulletproof_plus_PROVE(const rct::key &sv, const rct::key &gamma)
    {
        return bulletproof_plus_PROVE(rct::keyV(1, sv), rct::keyV(1, gamma));
    }

    BulletproofPlus bulletproof_plus_PROVE(uint64_t v, const rct::key &gamma)
    {
        return bulletproof_plus_PROVE(std::vector<uint64_t>(1, v), rct::keyV(1, gamma));
    }

    // Given a set of values v [0..2**N) and masks gamma, construct a range proof
    BulletproofPlus bulletproof_plus_PROVE(const rct::keyV &sv, const rct::keyV &gamma)
    {
        // Sanity check on inputs
        CHECK_AND_ASSERT_THROW_MES(sv.size() == gamma.size(), "Incompatible sizes of sv and gamma");
        CHECK_AND_ASSERT_THROW_MES(!sv.empty(), "sv is empty");
        for (const rct::key &sve: sv)
            CHECK_AND_ASSERT_THROW_MES(is_reduced(sve), "Invalid sv input");
        for (const rct::key &g: gamma)
            CHECK_AND_ASSERT_THROW_MES(is_reduced(g), "Invalid gamma input");

        init_exponents();

        // Useful proof bounds
        //
        // N: number of bits in each range (here, 64)
        // logN: base-2 logarithm
        // M: first power of 2 greater than or equal to the number of range proofs to aggregate
        // logM: base-2 logarithm
        constexpr size_t logN = 6; // log2(64)
        constexpr size_t N = 1<<logN;
        size_t M, logM;
        for (logM = 0; (M = 1<<logM) <= maxM && M < sv.size(); ++logM);
        CHECK_AND_ASSERT_THROW_MES(M <= maxM, "sv/gamma are too large");
        const size_t logMN = logM + logN;
        const size_t MN = M * N;

        rct::keyV V(sv.size());
        rct::keyV aL(MN), aR(MN);
        rct::keyV aL8(MN), aR8(MN);
        rct::key temp;
        rct::key temp2;

        // Prepare output commitments and offset by a factor of 8**(-1)
        //
        // This offset is applied to other group elements as well;
        //  it allows us to apply a multiply-by-8 operation in the verifier efficiently
        //  to ensure that the resulting group elements are in the prime-order point subgroup
        //  and avoid much more constly multiply-by-group-order operations.
        for (size_t i = 0; i < sv.size(); ++i)
        {
            rct::key gamma8, sv8;
            sc_mul(gamma8.bytes, gamma[i].bytes, INV_EIGHT.bytes);
            sc_mul(sv8.bytes, sv[i].bytes, INV_EIGHT.bytes);
            rct::addKeys2(V[i], gamma8, sv8, rct::H);
        }

        // Decompose values
        //
        // Note that this effectively pads the set to a power of 2, which is required for the inner-product argument later.
        for (size_t j = 0; j < M; ++j)
        {
            for (size_t i = N; i-- > 0; )
            {
                if (j < sv.size() && (sv[j][i/8] & (((uint64_t)1)<<(i%8))))
                {
                    aL[j*N+i] = rct::identity();
                    aL8[j*N+i] = INV_EIGHT;
                    aR[j*N+i] = aR8[j*N+i] = rct::zero();
                }
                else
                {
                    aL[j*N+i] = aL8[j*N+i] = rct::zero();
                    aR[j*N+i] = MINUS_ONE;
                    aR8[j*N+i] = MINUS_INV_EIGHT;
                }
            }
        }

try_again:
        // This is a Fiat-Shamir transcript
        rct::key transcript = copy(initial_transcript);
        transcript = transcript_update(transcript, rct::hash_to_scalar(V));

        // A
        rct::key alpha = rct::skGen();
        rct::key pre_A = vector_exponent(aL8, aR8);
        rct::key A;
        sc_mul(temp.bytes, alpha.bytes, INV_EIGHT.bytes);
        rct::addKeys(A, pre_A, rct::scalarmultBase(temp));

        // Challenges
        rct::key y = transcript_update(transcript, A);
        if (y == rct::zero())
        {
            MINFO("y is 0, trying again");
            goto try_again;
        }
        rct::key z = transcript = rct::hash_to_scalar(y);
        if (z == rct::zero())
        {
            MINFO("z is 0, trying again");
            goto try_again;
        }
        rct::key z_squared;
        sc_mul(z_squared.bytes, z.bytes, z.bytes);

        // Windowed vector
        // d[j*N+i] = z**(2*(j+1)) * 2**i
        //
        // We compute this iteratively in order to reduce scalar operations.
        rct::keyV d(MN, rct::zero());
        d[0] = z_squared;
        for (size_t i = 1; i < N; i++)
        {
            sc_mul(d[i].bytes, d[i-1].bytes, TWO.bytes);
        }

        for (size_t j = 1; j < M; j++)
        {
            for (size_t i = 0; i < N; i++)
            {
                sc_mul(d[j*N+i].bytes, d[(j-1)*N+i].bytes, z_squared.bytes);
            }
        }

        rct::keyV y_powers = vector_of_scalar_powers(y, MN+2);

        // Prepare inner product terms
        rct::keyV aL1 = vector_subtract(aL, z);

        rct::keyV aR1 = vector_add(aR, z);
        rct::keyV d_y(MN);
        for (size_t i = 0; i < MN; i++)
        {
            sc_mul(d_y[i].bytes, d[i].bytes, y_powers[MN-i].bytes);
        }
        aR1 = vector_add(aR1, d_y);

        rct::key alpha1 = alpha;
        temp = ONE;
        for (size_t j = 0; j < sv.size(); j++)
        {
            sc_mul(temp.bytes, temp.bytes, z_squared.bytes);
            sc_mul(temp2.bytes, y_powers[MN+1].bytes, temp.bytes);
            sc_mul(temp2.bytes, temp2.bytes, gamma[j].bytes);
            sc_add(alpha1.bytes, alpha1.bytes, temp2.bytes);
        }

        // These are used in the inner product rounds
        size_t nprime = MN;
        std::vector<ge_p3> Gprime(MN);
        std::vector<ge_p3> Hprime(MN);
        rct::keyV aprime(MN);
        rct::keyV bprime(MN);

        const rct::key yinv = invert(y);
        rct::keyV yinvpow(MN);
        yinvpow[0] = ONE;
        for (size_t i = 0; i < MN; ++i)
        {
            Gprime[i] = Gi_p3[i];
            Hprime[i] = Hi_p3[i];
            if (i > 0)
            {
                sc_mul(yinvpow[i].bytes, yinvpow[i-1].bytes, yinv.bytes);
            }
            aprime[i] = aL1[i];
            bprime[i] = aR1[i];
        }
        rct::keyV L(logMN);
        rct::keyV R(logMN);
        int round = 0;

        // Inner-product rounds
        while (nprime > 1)
        {
            nprime /= 2;

            rct::key cL = weighted_inner_product(slice(aprime, 0, nprime), slice(bprime, nprime, bprime.size()), y);
            rct::key cR = weighted_inner_product(vector_scalar(slice(aprime, nprime, aprime.size()), y_powers[nprime]), slice(bprime, 0, nprime), y);

            rct::key dL = rct::skGen();
            rct::key dR = rct::skGen();

            L[round] = compute_LR(nprime, yinvpow[nprime], Gprime, nprime, Hprime, 0, aprime, 0, bprime, nprime, cL, dL);
            R[round] = compute_LR(nprime, y_powers[nprime], Gprime, 0, Hprime, nprime, aprime, nprime, bprime, 0, cR, dR);

            const rct::key challenge = transcript_update(transcript, L[round], R[round]);
            if (challenge == rct::zero())
            {
                MINFO("challenge is 0, trying again");
                goto try_again;
            }

            const rct::key challenge_inv = invert(challenge);

            sc_mul(temp.bytes, yinvpow[nprime].bytes, challenge.bytes);
            hadamard_fold(Gprime, challenge_inv, temp);
            hadamard_fold(Hprime, challenge, challenge_inv);

            sc_mul(temp.bytes, challenge_inv.bytes, y_powers[nprime].bytes);
            aprime = vector_add(vector_scalar(slice(aprime, 0, nprime), challenge), vector_scalar(slice(aprime, nprime, aprime.size()), temp));
            bprime = vector_add(vector_scalar(slice(bprime, 0, nprime), challenge_inv), vector_scalar(slice(bprime, nprime, bprime.size()), challenge));

            rct::key challenge_squared;
            sc_mul(challenge_squared.bytes, challenge.bytes, challenge.bytes);
            rct::key challenge_squared_inv = invert(challenge_squared);
            sc_muladd(alpha1.bytes, dL.bytes, challenge_squared.bytes, alpha1.bytes);
            sc_muladd(alpha1.bytes, dR.bytes, challenge_squared_inv.bytes, alpha1.bytes);

            ++round;
        }

        // Final round computations
        rct::key r = rct::skGen();
        rct::key s = rct::skGen();
        rct::key d_ = rct::skGen();
        rct::key eta = rct::skGen();

        std::vector<MultiexpData> A1_data;
        A1_data.reserve(4);
        A1_data.resize(4);

        sc_mul(A1_data[0].scalar.bytes, r.bytes, INV_EIGHT.bytes);
        A1_data[0].point = Gprime[0];

        sc_mul(A1_data[1].scalar.bytes, s.bytes, INV_EIGHT.bytes);
        A1_data[1].point = Hprime[0];

        sc_mul(A1_data[2].scalar.bytes, d_.bytes, INV_EIGHT.bytes);
        ge_p3 G_p3;
        ge_frombytes_vartime(&G_p3, rct::G.bytes);
        A1_data[2].point = G_p3;

        sc_mul(temp.bytes, r.bytes, y.bytes);
        sc_mul(temp.bytes, temp.bytes, bprime[0].bytes);
        sc_mul(temp2.bytes, s.bytes, y.bytes);
        sc_mul(temp2.bytes, temp2.bytes, aprime[0].bytes);
        sc_add(temp.bytes, temp.bytes, temp2.bytes);
        sc_mul(A1_data[3].scalar.bytes, temp.bytes, INV_EIGHT.bytes);
        ge_p3 H_p3;
        ge_frombytes_vartime(&H_p3, rct::H.bytes);
        A1_data[3].point = H_p3;

        rct::key A1 = multiexp(A1_data, 0);

        sc_mul(temp.bytes, r.bytes, y.bytes);
        sc_mul(temp.bytes, temp.bytes, s.bytes);
        sc_mul(temp.bytes, temp.bytes, INV_EIGHT.bytes);
        sc_mul(temp2.bytes, eta.bytes, INV_EIGHT.bytes);
        rct::key B;
        rct::addKeys2(B, temp2, temp, rct::H);

        rct::key e = transcript_update(transcript, A1, B);
        rct::key e_squared;
        sc_mul(e_squared.bytes, e.bytes, e.bytes);

        rct::key r1;
        sc_muladd(r1.bytes, aprime[0].bytes, e.bytes, r.bytes);

        rct::key s1;
        sc_muladd(s1.bytes, bprime[0].bytes, e.bytes, s.bytes);

        rct::key d1;
        sc_muladd(d1.bytes, d_.bytes, e.bytes, eta.bytes);
        sc_muladd(d1.bytes, alpha1.bytes, e_squared.bytes, d1.bytes);

        return BulletproofPlus(std::move(V), A, A1, B, r1, s1, d1, std::move(L), std::move(R));
    }

    BulletproofPlus bulletproof_plus_PROVE(const std::vector<uint64_t> &v, const rct::keyV &gamma)
    {
        CHECK_AND_ASSERT_THROW_MES(v.size() == gamma.size(), "Incompatible sizes of v and gamma");

        // vG + gammaH
        rct::keyV sv(v.size());
        for (size_t i = 0; i < v.size(); ++i)
        {
            sv[i] = rct::zero();
            sv[i].bytes[0] = v[i] & 255;
            sv[i].bytes[1] = (v[i] >> 8) & 255;
            sv[i].bytes[2] = (v[i] >> 16) & 255;
            sv[i].bytes[3] = (v[i] >> 24) & 255;
            sv[i].bytes[4] = (v[i] >> 32) & 255;
            sv[i].bytes[5] = (v[i] >> 40) & 255;
            sv[i].bytes[6] = (v[i] >> 48) & 255;
            sv[i].bytes[7] = (v[i] >> 56) & 255;
        }
        return bulletproof_plus_PROVE(sv, gamma);
    }

    struct bp_plus_proof_data_t
    {
        rct::key y, z, e;
        std::vector<rct::key> challenges;
        size_t logM, inv_offset;
    };

    // Given a batch of range proofs, determine if they are all valid
    bool bulletproof_plus_VERIFY(const std::vector<const BulletproofPlus*> &proofs)
    {
        init_exponents();

        const size_t logN = 6;
        const size_t N = 1 << logN;

        // Set up
        size_t max_length = 0; // size of each of the longest proof's inner-product vectors
        size_t nV = 0; // number of output commitments across all proofs
        size_t inv_offset = 0;
        size_t max_logM = 0; 

        std::vector<bp_plus_proof_data_t> proof_data;
        proof_data.reserve(proofs.size());

        // We'll perform only a single batch inversion across all proofs in the batch,
        //  since batch inversion requires only one scalar inversion operation.
        std::vector<rct::key> to_invert;
        to_invert.reserve(11 * sizeof(proofs)); // maximal size, given the aggregation limit

        for (const BulletproofPlus *p: proofs)
        {
            const BulletproofPlus &proof = *p;

            // Sanity checks
            CHECK_AND_ASSERT_MES(is_reduced(proof.r1), false, "Input scalar not in range");
            CHECK_AND_ASSERT_MES(is_reduced(proof.s1), false, "Input scalar not in range");
            CHECK_AND_ASSERT_MES(is_reduced(proof.d1), false, "Input scalar not in range");

            CHECK_AND_ASSERT_MES(proof.V.size() >= 1, false, "V does not have at least one element");
            CHECK_AND_ASSERT_MES(proof.L.size() == proof.R.size(), false, "Mismatched L and R sizes");
            CHECK_AND_ASSERT_MES(proof.L.size() > 0, false, "Empty proof");

            max_length = std::max(max_length, proof.L.size());
            nV += proof.V.size();

            bp_plus_proof_data_t pd;

            // Reconstruct the challenges
            rct::key transcript = copy(initial_transcript);
            transcript = transcript_update(transcript, rct::hash_to_scalar(proof.V));
            pd.y = transcript_update(transcript, proof.A);
            CHECK_AND_ASSERT_MES(!(pd.y == rct::zero()), false, "y == 0");
            pd.z = transcript = rct::hash_to_scalar(pd.y);
            CHECK_AND_ASSERT_MES(!(pd.z == rct::zero()), false, "z == 0");

            // Determine the number of inner-product rounds based on proof size
            size_t M;
            for (pd.logM = 0; (M = 1<<pd.logM) <= maxM && M < proof.V.size(); ++pd.logM);
            CHECK_AND_ASSERT_MES(proof.L.size() == 6+pd.logM, false, "Proof is not the expected size");
            max_logM = std::max(pd.logM, max_logM);

            const size_t rounds = pd.logM+logN;
            CHECK_AND_ASSERT_MES(rounds > 0, false, "Zero rounds");

            // The inner-product challenges are computed per round
            pd.challenges.resize(rounds);
            for (size_t j = 0; j < rounds; ++j)
            {
                pd.challenges[j] = transcript_update(transcript, proof.L[j], proof.R[j]);
                CHECK_AND_ASSERT_MES(!(pd.challenges[j] == rct::zero()), false, "challenges[j] == 0");
            }

            // Final challenge
            pd.e = transcript_update(transcript,proof.A1,proof.B);
            CHECK_AND_ASSERT_MES(!(pd.e == rct::zero()), false, "e == 0");

            // Batch scalar inversions
            pd.inv_offset = inv_offset;
            for (size_t j = 0; j < rounds; ++j)
                to_invert.push_back(pd.challenges[j]);
            to_invert.push_back(pd.y);
            inv_offset += rounds + 1;
            proof_data.push_back(pd);
        }
        CHECK_AND_ASSERT_MES(max_length < 32, false, "At least one proof is too large");
        size_t maxMN = 1u << max_length;

        rct::key temp;
        rct::key temp2;

        // Final batch proof data
        std::vector<MultiexpData> multiexp_data;
        multiexp_data.reserve(nV + (2 * (max_logM + logN) + 3) * proofs.size() + 2 * maxMN);
        multiexp_data.resize(2 * maxMN);

        const std::vector<rct::key> inverses = invert(to_invert);

        // Weights and aggregates
        //
        // The idea is to take the single multiscalar multiplication used in the verification
        //  of each proof in the batch and weight it using a random weighting factor, resulting
        //  in just one multiscalar multiplication check to zero for the entire batch.
        // We can further simplify the verifier complexity by including common group elements
        //  only once in this single multiscalar multiplication.
        // Common group elements' weighted scalar sums are tracked across proofs for this reason.
        //
        // To build a multiscalar multiplication for each proof, we use the method described in
        //  Section 6.1 of the preprint. Note that the result given there does not account for
        //  the construction of the inner-product inputs that are produced in the range proof
        //  verifier algorithm; we have done so here.
        rct::key G_scalar = rct::zero();
        rct::key H_scalar = rct::zero();
        rct::keyV Gi_scalars(maxMN, rct::zero());
        rct::keyV Hi_scalars(maxMN, rct::zero());

        int proof_data_index = 0;
        rct::keyV challenges_cache;
        std::vector<ge_p3> proof8_V, proof8_L, proof8_R;

        // Process each proof and add to the weighted batch
        for (const BulletproofPlus *p: proofs)
        {
            const BulletproofPlus &proof = *p;
            const bp_plus_proof_data_t &pd = proof_data[proof_data_index++];

            CHECK_AND_ASSERT_MES(proof.L.size() == 6+pd.logM, false, "Proof is not the expected size");
            const size_t M = 1 << pd.logM;
            const size_t MN = M*N;

            // Random weighting factor must be nonzero, which is exceptionally unlikely!
            rct::key weight = ZERO;
            while (weight == ZERO)
            {
                weight = rct::skGen();
            }

            // Rescale previously offset proof elements
            //
            // This ensures that all such group elements are in the prime-order subgroup.
            proof8_V.resize(proof.V.size()); for (size_t i = 0; i < proof.V.size(); ++i) rct::scalarmult8(proof8_V[i], proof.V[i]);
            proof8_L.resize(proof.L.size()); for (size_t i = 0; i < proof.L.size(); ++i) rct::scalarmult8(proof8_L[i], proof.L[i]);
            proof8_R.resize(proof.R.size()); for (size_t i = 0; i < proof.R.size(); ++i) rct::scalarmult8(proof8_R[i], proof.R[i]);
            ge_p3 proof8_A1;
            ge_p3 proof8_B;
            ge_p3 proof8_A;
            rct::scalarmult8(proof8_A1, proof.A1);
            rct::scalarmult8(proof8_B, proof.B);
            rct::scalarmult8(proof8_A, proof.A);

            // Compute necessary powers of the y-challenge
            rct::key y_MN = copy(pd.y);
            rct::key y_MN_1;
            size_t temp_MN = MN;
            while (temp_MN > 1)
            {
                sc_mul(y_MN.bytes, y_MN.bytes, y_MN.bytes);
                temp_MN /= 2;
            }
            sc_mul(y_MN_1.bytes, y_MN.bytes, pd.y.bytes);

            // V_j: -e**2 * z**(2*j+1) * y**(MN+1) * weight
            rct::key e_squared;
            sc_mul(e_squared.bytes, pd.e.bytes, pd.e.bytes);

            rct::key z_squared;
            sc_mul(z_squared.bytes, pd.z.bytes, pd.z.bytes);

            sc_sub(temp.bytes, ZERO.bytes, e_squared.bytes);
            sc_mul(temp.bytes, temp.bytes, y_MN_1.bytes);
            sc_mul(temp.bytes, temp.bytes, weight.bytes);
            for (size_t j = 0; j < proof8_V.size(); j++)
            {
                sc_mul(temp.bytes, temp.bytes, z_squared.bytes);
                multiexp_data.emplace_back(temp, proof8_V[j]);
            }

            // B: -weight
            sc_mul(temp.bytes, MINUS_ONE.bytes, weight.bytes);
            multiexp_data.emplace_back(temp, proof8_B);

            // A1: -weight*e
            sc_mul(temp.bytes, temp.bytes, pd.e.bytes);
            multiexp_data.emplace_back(temp, proof8_A1);

            // A: -weight*e*e
            rct::key minus_weight_e_squared;
            sc_mul(minus_weight_e_squared.bytes, temp.bytes, pd.e.bytes);
            multiexp_data.emplace_back(minus_weight_e_squared, proof8_A);

            // G: weight*d1
            sc_muladd(G_scalar.bytes, weight.bytes, proof.d1.bytes, G_scalar.bytes);

            // Windowed vector
            // d[j*N+i] = z**(2*(j+1)) * 2**i
            rct::keyV d(MN, rct::zero());
            d[0] = z_squared;
            for (size_t i = 1; i < N; i++)
            {
                sc_add(d[i].bytes, d[i-1].bytes, d[i-1].bytes);
            }

            for (size_t j = 1; j < M; j++)
            {
                for (size_t i = 0; i < N; i++)
                {
                    sc_mul(d[j*N+i].bytes, d[(j-1)*N+i].bytes, z_squared.bytes);
                }
            }

            // More efficient computation of sum(d)
            rct::key sum_d;
            sc_mul(sum_d.bytes, TWO_SIXTY_FOUR_MINUS_ONE.bytes, sum_of_even_powers(pd.z, 2*M).bytes);

            // H: weight*( r1*y*s1 + e**2*( y**(MN+1)*z*sum(d) + (z**2-z)*sum(y) ) )
            rct::key sum_y = sum_of_scalar_powers(pd.y, MN);
            sc_sub(temp.bytes, z_squared.bytes, pd.z.bytes);
            sc_mul(temp.bytes, temp.bytes, sum_y.bytes);

            sc_mul(temp2.bytes, y_MN_1.bytes, pd.z.bytes);
            sc_mul(temp2.bytes, temp2.bytes, sum_d.bytes);
            sc_add(temp.bytes, temp.bytes, temp2.bytes);
            sc_mul(temp.bytes, temp.bytes, e_squared.bytes);
            sc_mul(temp2.bytes, proof.r1.bytes, pd.y.bytes);
            sc_mul(temp2.bytes, temp2.bytes, proof.s1.bytes);
            sc_add(temp.bytes, temp.bytes, temp2.bytes);
            sc_muladd(H_scalar.bytes, temp.bytes, weight.bytes, H_scalar.bytes);

            // Compute the number of rounds for the inner-product argument
            const size_t rounds = pd.logM+logN;
            CHECK_AND_ASSERT_MES(rounds > 0, false, "Zero rounds");

            const rct::key *challenges_inv = &inverses[pd.inv_offset];
            const rct::key yinv = inverses[pd.inv_offset + rounds];

            // Compute challenge products
            challenges_cache.resize(1<<rounds);
            challenges_cache[0] = challenges_inv[0];
            challenges_cache[1] = pd.challenges[0];
            for (size_t j = 1; j < rounds; ++j)
            {
                const size_t slots = 1<<(j+1);
                for (size_t s = slots; s-- > 0; --s)
                {
                    sc_mul(challenges_cache[s].bytes, challenges_cache[s/2].bytes, pd.challenges[j].bytes);
                    sc_mul(challenges_cache[s-1].bytes, challenges_cache[s/2].bytes, challenges_inv[j].bytes);
                }
            }

            // Gi and Hi
            rct::key e_r1_w_y;
            sc_mul(e_r1_w_y.bytes, pd.e.bytes, proof.r1.bytes);
            sc_mul(e_r1_w_y.bytes, e_r1_w_y.bytes, weight.bytes);
            rct::key e_s1_w;
            sc_mul(e_s1_w.bytes, pd.e.bytes, proof.s1.bytes);
            sc_mul(e_s1_w.bytes, e_s1_w.bytes, weight.bytes);
            rct::key e_squared_z_w;
            sc_mul(e_squared_z_w.bytes, e_squared.bytes, pd.z.bytes);
            sc_mul(e_squared_z_w.bytes, e_squared_z_w.bytes, weight.bytes);
            rct::key minus_e_squared_z_w;
            sc_sub(minus_e_squared_z_w.bytes, ZERO.bytes, e_squared_z_w.bytes);
            rct::key minus_e_squared_w_y;
            sc_sub(minus_e_squared_w_y.bytes, ZERO.bytes, e_squared.bytes);
            sc_mul(minus_e_squared_w_y.bytes, minus_e_squared_w_y.bytes, weight.bytes);
            sc_mul(minus_e_squared_w_y.bytes, minus_e_squared_w_y.bytes, y_MN.bytes);
            for (size_t i = 0; i < MN; ++i)
            {
                rct::key g_scalar = copy(e_r1_w_y);
                rct::key h_scalar;

                // Use the binary decomposition of the index
                sc_muladd(g_scalar.bytes, g_scalar.bytes, challenges_cache[i].bytes, e_squared_z_w.bytes);
                sc_muladd(h_scalar.bytes, e_s1_w.bytes, challenges_cache[(~i) & (MN-1)].bytes, minus_e_squared_z_w.bytes);

                // Complete the scalar derivation
                sc_add(Gi_scalars[i].bytes, Gi_scalars[i].bytes, g_scalar.bytes);
                sc_muladd(h_scalar.bytes, minus_e_squared_w_y.bytes, d[i].bytes, h_scalar.bytes);
                sc_add(Hi_scalars[i].bytes, Hi_scalars[i].bytes, h_scalar.bytes);

                // Update iterated values
                sc_mul(e_r1_w_y.bytes, e_r1_w_y.bytes, yinv.bytes);
                sc_mul(minus_e_squared_w_y.bytes, minus_e_squared_w_y.bytes, yinv.bytes);
            }

            // L_j: -weight*e*e*challenges[j]**2
            // R_j: -weight*e*e*challenges[j]**(-2)
            for (size_t j = 0; j < rounds; ++j)
            {
                sc_mul(temp.bytes, pd.challenges[j].bytes, pd.challenges[j].bytes);
                sc_mul(temp.bytes, temp.bytes, minus_weight_e_squared.bytes);
                multiexp_data.emplace_back(temp, proof8_L[j]);

                sc_mul(temp.bytes, challenges_inv[j].bytes, challenges_inv[j].bytes);
                sc_mul(temp.bytes, temp.bytes, minus_weight_e_squared.bytes);
                multiexp_data.emplace_back(temp, proof8_R[j]);
            }
        }

        // Verify all proofs in the weighted batch
        multiexp_data.emplace_back(G_scalar, rct::G);
        multiexp_data.emplace_back(H_scalar, rct::H);
        for (size_t i = 0; i < maxMN; ++i)
        {
            multiexp_data[i * 2] = {Gi_scalars[i], Gi_p3[i]};
            multiexp_data[i * 2 + 1] = {Hi_scalars[i], Hi_p3[i]};
        }
        if (!(multiexp(multiexp_data, 2 * maxMN) == rct::identity()))
        {
            MERROR("Verification failure");
            return false;
        }

        return true;
    }

    bool bulletproof_plus_VERIFY(const std::vector<BulletproofPlus> &proofs)
    {
        std::vector<const BulletproofPlus*> proof_pointers;
        proof_pointers.reserve(proofs.size());
        for (const BulletproofPlus &proof: proofs)
            proof_pointers.push_back(&proof);
        return bulletproof_plus_VERIFY(proof_pointers);
    }

    bool bulletproof_plus_VERIFY(const BulletproofPlus &proof)
    {
        std::vector<const BulletproofPlus*> proofs;
        proofs.push_back(&proof);
        return bulletproof_plus_VERIFY(proofs);
    }
}