1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
|
// Copyright (c) 2017-2018, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Adapted from Java code by Sarang Noether
#include <stdlib.h>
#include <openssl/ssl.h>
#include <openssl/bn.h>
#include <boost/thread/mutex.hpp>
#include "misc_log_ex.h"
#include "common/perf_timer.h"
#include "cryptonote_config.h"
extern "C"
{
#include "crypto/crypto-ops.h"
}
#include "rctOps.h"
#include "multiexp.h"
#include "bulletproofs.h"
#undef MONERO_DEFAULT_LOG_CATEGORY
#define MONERO_DEFAULT_LOG_CATEGORY "bulletproofs"
//#define DEBUG_BP
#define PERF_TIMER_START_BP(x) PERF_TIMER_START_UNIT(x, 1000000)
#define STRAUS_SIZE_LIMIT 128
#define PIPPENGER_SIZE_LIMIT 0
namespace rct
{
static rct::key vector_exponent(const rct::keyV &a, const rct::keyV &b);
static rct::keyV vector_powers(const rct::key &x, size_t n);
static rct::keyV vector_dup(const rct::key &x, size_t n);
static rct::key inner_product(const rct::keyV &a, const rct::keyV &b);
static constexpr size_t maxN = 64;
static constexpr size_t maxM = BULLETPROOF_MAX_OUTPUTS;
static rct::key Hi[maxN*maxM], Gi[maxN*maxM];
static ge_p3 Hi_p3[maxN*maxM], Gi_p3[maxN*maxM];
static std::shared_ptr<straus_cached_data> straus_HiGi_cache;
static std::shared_ptr<pippenger_cached_data> pippenger_HiGi_cache;
static const rct::key TWO = { {0x02, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } };
static const rct::key MINUS_ONE = { { 0xec, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10 } };
static const rct::key MINUS_INV_EIGHT = { { 0x74, 0xa4, 0x19, 0x7a, 0xf0, 0x7d, 0x0b, 0xf7, 0x05, 0xc2, 0xda, 0x25, 0x2b, 0x5c, 0x0b, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a } };
static const rct::keyV oneN = vector_dup(rct::identity(), maxN);
static const rct::keyV twoN = vector_powers(TWO, maxN);
static const rct::key ip12 = inner_product(oneN, twoN);
static boost::mutex init_mutex;
static inline rct::key multiexp(const std::vector<MultiexpData> &data, bool HiGi)
{
if (HiGi)
{
static_assert(128 <= STRAUS_SIZE_LIMIT, "Straus in precalc mode can only be calculated till STRAUS_SIZE_LIMIT");
return data.size() <= 128 ? straus(data, straus_HiGi_cache, 0) : pippenger(data, pippenger_HiGi_cache, get_pippenger_c(data.size()));
}
else
return data.size() <= 64 ? straus(data, NULL, 0) : pippenger(data, NULL, get_pippenger_c(data.size()));
}
static bool is_reduced(const rct::key &scalar)
{
rct::key reduced = scalar;
sc_reduce32(reduced.bytes);
return scalar == reduced;
}
static void addKeys_acc_p3(ge_p3 *acc_p3, const rct::key &a, const rct::key &point)
{
ge_p3 p3;
CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&p3, point.bytes) == 0, "ge_frombytes_vartime failed");
ge_scalarmult_p3(&p3, a.bytes, &p3);
ge_cached cached;
ge_p3_to_cached(&cached, acc_p3);
ge_p1p1 p1;
ge_add(&p1, &p3, &cached);
ge_p1p1_to_p3(acc_p3, &p1);
}
static void add_acc_p3(ge_p3 *acc_p3, const rct::key &point)
{
ge_p3 p3;
CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&p3, point.bytes) == 0, "ge_frombytes_vartime failed");
ge_cached cached;
ge_p3_to_cached(&cached, &p3);
ge_p1p1 p1;
ge_add(&p1, acc_p3, &cached);
ge_p1p1_to_p3(acc_p3, &p1);
}
static void sub_acc_p3(ge_p3 *acc_p3, const rct::key &point)
{
ge_p3 p3;
CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&p3, point.bytes) == 0, "ge_frombytes_vartime failed");
ge_cached cached;
ge_p3_to_cached(&cached, &p3);
ge_p1p1 p1;
ge_sub(&p1, acc_p3, &cached);
ge_p1p1_to_p3(acc_p3, &p1);
}
static rct::key get_exponent(const rct::key &base, size_t idx)
{
static const std::string salt("bulletproof");
std::string hashed = std::string((const char*)base.bytes, sizeof(base)) + salt + tools::get_varint_data(idx);
const rct::key e = rct::hashToPoint(rct::hash2rct(crypto::cn_fast_hash(hashed.data(), hashed.size())));
CHECK_AND_ASSERT_THROW_MES(!(e == rct::identity()), "Exponent is point at infinity");
return e;
}
static void init_exponents()
{
boost::lock_guard<boost::mutex> lock(init_mutex);
static bool init_done = false;
if (init_done)
return;
std::vector<MultiexpData> data;
for (size_t i = 0; i < maxN*maxM; ++i)
{
Hi[i] = get_exponent(rct::H, i * 2);
CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&Hi_p3[i], Hi[i].bytes) == 0, "ge_frombytes_vartime failed");
Gi[i] = get_exponent(rct::H, i * 2 + 1);
CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&Gi_p3[i], Gi[i].bytes) == 0, "ge_frombytes_vartime failed");
data.push_back({rct::zero(), Gi[i]});
data.push_back({rct::zero(), Hi[i]});
}
straus_HiGi_cache = straus_init_cache(data, STRAUS_SIZE_LIMIT);
pippenger_HiGi_cache = pippenger_init_cache(data, PIPPENGER_SIZE_LIMIT);
MINFO("Hi/Gi cache size: " << (sizeof(Hi)+sizeof(Gi))/1024 << " kB");
MINFO("Hi_p3/Gi_p3 cache size: " << (sizeof(Hi_p3)+sizeof(Gi_p3))/1024 << " kB");
MINFO("Straus cache size: " << straus_get_cache_size(straus_HiGi_cache)/1024 << " kB");
MINFO("Pippenger cache size: " << pippenger_get_cache_size(pippenger_HiGi_cache)/1024 << " kB");
size_t cache_size = (sizeof(Hi)+sizeof(Hi_p3))*2 + straus_get_cache_size(straus_HiGi_cache) + pippenger_get_cache_size(pippenger_HiGi_cache);
MINFO("Total cache size: " << cache_size/1024 << "kB");
init_done = true;
}
/* Given two scalar arrays, construct a vector commitment */
static rct::key vector_exponent(const rct::keyV &a, const rct::keyV &b)
{
CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN*maxM, "Incompatible sizes of a and maxN");
std::vector<MultiexpData> multiexp_data;
multiexp_data.reserve(a.size()*2);
for (size_t i = 0; i < a.size(); ++i)
{
multiexp_data.emplace_back(a[i], Gi_p3[i]);
multiexp_data.emplace_back(b[i], Hi_p3[i]);
}
return multiexp(multiexp_data, true);
}
/* Compute a custom vector-scalar commitment */
static rct::key cross_vector_exponent8(size_t size, const std::vector<ge_p3> &A, size_t Ao, const std::vector<ge_p3> &B, size_t Bo, const rct::keyV &a, size_t ao, const rct::keyV &b, size_t bo, const ge_p3 *extra_point, const rct::key *extra_scalar)
{
CHECK_AND_ASSERT_THROW_MES(size + Ao <= A.size(), "Incompatible size for A");
CHECK_AND_ASSERT_THROW_MES(size + Bo <= B.size(), "Incompatible size for B");
CHECK_AND_ASSERT_THROW_MES(size + ao <= a.size(), "Incompatible size for a");
CHECK_AND_ASSERT_THROW_MES(size + bo <= b.size(), "Incompatible size for b");
CHECK_AND_ASSERT_THROW_MES(size <= maxN*maxM, "size is too large");
CHECK_AND_ASSERT_THROW_MES(!!extra_point == !!extra_scalar, "only one of extra point/scalar present");
std::vector<MultiexpData> multiexp_data;
multiexp_data.resize(size*2 + (!!extra_point));
for (size_t i = 0; i < size; ++i)
{
sc_mul(multiexp_data[i*2].scalar.bytes, a[ao+i].bytes, INV_EIGHT.bytes);;
multiexp_data[i*2].point = A[Ao+i];
sc_mul(multiexp_data[i*2+1].scalar.bytes, b[bo+i].bytes, INV_EIGHT.bytes);
multiexp_data[i*2+1].point = B[Bo+i];
}
if (extra_point)
{
sc_mul(multiexp_data.back().scalar.bytes, extra_scalar->bytes, INV_EIGHT.bytes);
multiexp_data.back().point = *extra_point;
}
return multiexp(multiexp_data, false);
}
/* Given a scalar, construct a vector of powers */
static rct::keyV vector_powers(const rct::key &x, size_t n)
{
rct::keyV res(n);
if (n == 0)
return res;
res[0] = rct::identity();
if (n == 1)
return res;
res[1] = x;
for (size_t i = 2; i < n; ++i)
{
sc_mul(res[i].bytes, res[i-1].bytes, x.bytes);
}
return res;
}
/* Given a scalar, return the sum of its powers from 0 to n-1 */
static rct::key vector_power_sum(const rct::key &x, size_t n)
{
if (n == 0)
return rct::zero();
rct::key res = rct::identity();
if (n == 1)
return res;
rct::key prev = x;
for (size_t i = 1; i < n; ++i)
{
if (i > 1)
sc_mul(prev.bytes, prev.bytes, x.bytes);
sc_add(res.bytes, res.bytes, prev.bytes);
}
return res;
}
/* Given two scalar arrays, construct the inner product */
static rct::key inner_product(const rct::keyV &a, const rct::keyV &b)
{
CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
rct::key res = rct::zero();
for (size_t i = 0; i < a.size(); ++i)
{
sc_muladd(res.bytes, a[i].bytes, b[i].bytes, res.bytes);
}
return res;
}
/* Given two scalar arrays, construct the Hadamard product */
static rct::keyV hadamard(const rct::keyV &a, const rct::keyV &b)
{
CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
rct::keyV res(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
sc_mul(res[i].bytes, a[i].bytes, b[i].bytes);
}
return res;
}
/* folds a curvepoint array using a two way scaled Hadamard product */
static void hadamard_fold(std::vector<ge_p3> &v, const rct::key &a, const rct::key &b)
{
CHECK_AND_ASSERT_THROW_MES((v.size() & 1) == 0, "Vector size should be even");
const size_t sz = v.size() / 2;
for (size_t n = 0; n < sz; ++n)
{
ge_dsmp c[2];
ge_dsm_precomp(c[0], &v[n]);
ge_dsm_precomp(c[1], &v[sz + n]);
ge_double_scalarmult_precomp_vartime2_p3(&v[n], a.bytes, c[0], b.bytes, c[1]);
}
v.resize(sz);
}
/* Add two vectors */
static rct::keyV vector_add(const rct::keyV &a, const rct::keyV &b)
{
CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
rct::keyV res(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
sc_add(res[i].bytes, a[i].bytes, b[i].bytes);
}
return res;
}
/* Subtract two vectors */
static rct::keyV vector_subtract(const rct::keyV &a, const rct::keyV &b)
{
CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
rct::keyV res(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
sc_sub(res[i].bytes, a[i].bytes, b[i].bytes);
}
return res;
}
/* Multiply a scalar and a vector */
static rct::keyV vector_scalar(const rct::keyV &a, const rct::key &x)
{
rct::keyV res(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
sc_mul(res[i].bytes, a[i].bytes, x.bytes);
}
return res;
}
/* Create a vector from copies of a single value */
static rct::keyV vector_dup(const rct::key &x, size_t N)
{
return rct::keyV(N, x);
}
/* Get the sum of a vector's elements */
static rct::key vector_sum(const rct::keyV &a)
{
rct::key res = rct::zero();
for (size_t i = 0; i < a.size(); ++i)
{
sc_add(res.bytes, res.bytes, a[i].bytes);
}
return res;
}
static rct::key switch_endianness(rct::key k)
{
std::reverse(k.bytes, k.bytes + sizeof(k));
return k;
}
/* Compute the inverse of a scalar, the stupid way */
static rct::key invert(const rct::key &x)
{
rct::key inv;
BN_CTX *ctx = BN_CTX_new();
BIGNUM *X = BN_new();
BIGNUM *L = BN_new();
BIGNUM *I = BN_new();
BN_bin2bn(switch_endianness(x).bytes, sizeof(rct::key), X);
BN_bin2bn(switch_endianness(rct::curveOrder()).bytes, sizeof(rct::key), L);
CHECK_AND_ASSERT_THROW_MES(BN_mod_inverse(I, X, L, ctx), "Failed to invert");
const int len = BN_num_bytes(I);
CHECK_AND_ASSERT_THROW_MES((size_t)len <= sizeof(rct::key), "Invalid number length");
inv = rct::zero();
BN_bn2bin(I, inv.bytes);
std::reverse(inv.bytes, inv.bytes + len);
BN_free(I);
BN_free(L);
BN_free(X);
BN_CTX_free(ctx);
#ifdef DEBUG_BP
rct::key tmp;
sc_mul(tmp.bytes, inv.bytes, x.bytes);
CHECK_AND_ASSERT_THROW_MES(tmp == rct::identity(), "invert failed");
#endif
return inv;
}
/* Compute the slice of a vector */
static rct::keyV slice(const rct::keyV &a, size_t start, size_t stop)
{
CHECK_AND_ASSERT_THROW_MES(start < a.size(), "Invalid start index");
CHECK_AND_ASSERT_THROW_MES(stop <= a.size(), "Invalid stop index");
CHECK_AND_ASSERT_THROW_MES(start < stop, "Invalid start/stop indices");
rct::keyV res(stop - start);
for (size_t i = start; i < stop; ++i)
{
res[i - start] = a[i];
}
return res;
}
static rct::key hash_cache_mash(rct::key &hash_cache, const rct::key &mash0, const rct::key &mash1)
{
rct::keyV data;
data.reserve(3);
data.push_back(hash_cache);
data.push_back(mash0);
data.push_back(mash1);
return hash_cache = rct::hash_to_scalar(data);
}
static rct::key hash_cache_mash(rct::key &hash_cache, const rct::key &mash0, const rct::key &mash1, const rct::key &mash2)
{
rct::keyV data;
data.reserve(4);
data.push_back(hash_cache);
data.push_back(mash0);
data.push_back(mash1);
data.push_back(mash2);
return hash_cache = rct::hash_to_scalar(data);
}
static rct::key hash_cache_mash(rct::key &hash_cache, const rct::key &mash0, const rct::key &mash1, const rct::key &mash2, const rct::key &mash3)
{
rct::keyV data;
data.reserve(5);
data.push_back(hash_cache);
data.push_back(mash0);
data.push_back(mash1);
data.push_back(mash2);
data.push_back(mash3);
return hash_cache = rct::hash_to_scalar(data);
}
/* Given a value v (0..2^N-1) and a mask gamma, construct a range proof */
Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma)
{
init_exponents();
PERF_TIMER_UNIT(PROVE, 1000000);
constexpr size_t logN = 6; // log2(64)
constexpr size_t N = 1<<logN;
rct::key V;
rct::keyV aL(N), aR(N);
PERF_TIMER_START_BP(PROVE_v);
rct::addKeys2(V, gamma, sv, rct::H);
V = rct::scalarmultKey(V, INV_EIGHT);
PERF_TIMER_STOP(PROVE_v);
PERF_TIMER_START_BP(PROVE_aLaR);
for (size_t i = N; i-- > 0; )
{
if (sv[i/8] & (((uint64_t)1)<<(i%8)))
{
aL[i] = rct::identity();
}
else
{
aL[i] = rct::zero();
}
sc_sub(aR[i].bytes, aL[i].bytes, rct::identity().bytes);
}
PERF_TIMER_STOP(PROVE_aLaR);
rct::key hash_cache = rct::hash_to_scalar(V);
// DEBUG: Test to ensure this recovers the value
#ifdef DEBUG_BP
uint64_t test_aL = 0, test_aR = 0;
for (size_t i = 0; i < N; ++i)
{
if (aL[i] == rct::identity())
test_aL += ((uint64_t)1)<<i;
if (aR[i] == rct::zero())
test_aR += ((uint64_t)1)<<i;
}
uint64_t v_test = 0;
for (int n = 0; n < 8; ++n) v_test |= (((uint64_t)sv[n]) << (8*n));
CHECK_AND_ASSERT_THROW_MES(test_aL == v_test, "test_aL failed");
CHECK_AND_ASSERT_THROW_MES(test_aR == v_test, "test_aR failed");
#endif
try_again:
PERF_TIMER_START_BP(PROVE_step1);
// PAPER LINES 38-39
rct::key alpha = rct::skGen();
rct::key ve = vector_exponent(aL, aR);
rct::key A;
rct::addKeys(A, ve, rct::scalarmultBase(alpha));
A = rct::scalarmultKey(A, INV_EIGHT);
// PAPER LINES 40-42
rct::keyV sL = rct::skvGen(N), sR = rct::skvGen(N);
rct::key rho = rct::skGen();
ve = vector_exponent(sL, sR);
rct::key S;
rct::addKeys(S, ve, rct::scalarmultBase(rho));
S = rct::scalarmultKey(S, INV_EIGHT);
// PAPER LINES 43-45
rct::key y = hash_cache_mash(hash_cache, A, S);
if (y == rct::zero())
{
PERF_TIMER_STOP(PROVE_step1);
MINFO("y is 0, trying again");
goto try_again;
}
rct::key z = hash_cache = rct::hash_to_scalar(y);
if (z == rct::zero())
{
PERF_TIMER_STOP(PROVE_step1);
MINFO("z is 0, trying again");
goto try_again;
}
// Polynomial construction before PAPER LINE 46
rct::key t0 = rct::zero();
rct::key t1 = rct::zero();
rct::key t2 = rct::zero();
const auto yN = vector_powers(y, N);
rct::key ip1y = vector_sum(yN);
rct::key tmp;
sc_muladd(t0.bytes, z.bytes, ip1y.bytes, t0.bytes);
rct::key zsq;
sc_mul(zsq.bytes, z.bytes, z.bytes);
sc_muladd(t0.bytes, zsq.bytes, sv.bytes, t0.bytes);
rct::key k = rct::zero();
sc_mulsub(k.bytes, zsq.bytes, ip1y.bytes, k.bytes);
rct::key zcu;
sc_mul(zcu.bytes, zsq.bytes, z.bytes);
sc_mulsub(k.bytes, zcu.bytes, ip12.bytes, k.bytes);
sc_add(t0.bytes, t0.bytes, k.bytes);
// DEBUG: Test the value of t0 has the correct form
#ifdef DEBUG_BP
rct::key test_t0 = rct::zero();
rct::key iph = inner_product(aL, hadamard(aR, yN));
sc_add(test_t0.bytes, test_t0.bytes, iph.bytes);
rct::key ips = inner_product(vector_subtract(aL, aR), yN);
sc_muladd(test_t0.bytes, z.bytes, ips.bytes, test_t0.bytes);
rct::key ipt = inner_product(twoN, aL);
sc_muladd(test_t0.bytes, zsq.bytes, ipt.bytes, test_t0.bytes);
sc_add(test_t0.bytes, test_t0.bytes, k.bytes);
CHECK_AND_ASSERT_THROW_MES(t0 == test_t0, "t0 check failed");
#endif
PERF_TIMER_STOP(PROVE_step1);
PERF_TIMER_START_BP(PROVE_step2);
const auto HyNsR = hadamard(yN, sR);
const auto vpIz = vector_dup(z, N);
const auto vp2zsq = vector_scalar(twoN, zsq);
const auto aL_vpIz = vector_subtract(aL, vpIz);
const auto aR_vpIz = vector_add(aR, vpIz);
rct::key ip1 = inner_product(aL_vpIz, HyNsR);
sc_add(t1.bytes, t1.bytes, ip1.bytes);
rct::key ip2 = inner_product(sL, vector_add(hadamard(yN, aR_vpIz), vp2zsq));
sc_add(t1.bytes, t1.bytes, ip2.bytes);
rct::key ip3 = inner_product(sL, HyNsR);
sc_add(t2.bytes, t2.bytes, ip3.bytes);
// PAPER LINES 47-48
rct::key tau1 = rct::skGen(), tau2 = rct::skGen();
rct::key T1 = rct::addKeys(rct::scalarmultH(t1), rct::scalarmultBase(tau1));
T1 = rct::scalarmultKey(T1, INV_EIGHT);
rct::key T2 = rct::addKeys(rct::scalarmultH(t2), rct::scalarmultBase(tau2));
T2 = rct::scalarmultKey(T2, INV_EIGHT);
// PAPER LINES 49-51
rct::key x = hash_cache_mash(hash_cache, z, T1, T2);
if (x == rct::zero())
{
PERF_TIMER_STOP(PROVE_step2);
MINFO("x is 0, trying again");
goto try_again;
}
// PAPER LINES 52-53
rct::key taux = rct::zero();
sc_mul(taux.bytes, tau1.bytes, x.bytes);
rct::key xsq;
sc_mul(xsq.bytes, x.bytes, x.bytes);
sc_muladd(taux.bytes, tau2.bytes, xsq.bytes, taux.bytes);
sc_muladd(taux.bytes, gamma.bytes, zsq.bytes, taux.bytes);
rct::key mu;
sc_muladd(mu.bytes, x.bytes, rho.bytes, alpha.bytes);
// PAPER LINES 54-57
rct::keyV l = vector_add(aL_vpIz, vector_scalar(sL, x));
rct::keyV r = vector_add(hadamard(yN, vector_add(aR_vpIz, vector_scalar(sR, x))), vp2zsq);
PERF_TIMER_STOP(PROVE_step2);
PERF_TIMER_START_BP(PROVE_step3);
rct::key t = inner_product(l, r);
// DEBUG: Test if the l and r vectors match the polynomial forms
#ifdef DEBUG_BP
rct::key test_t;
sc_muladd(test_t.bytes, t1.bytes, x.bytes, t0.bytes);
sc_muladd(test_t.bytes, t2.bytes, xsq.bytes, test_t.bytes);
CHECK_AND_ASSERT_THROW_MES(test_t == t, "test_t check failed");
#endif
// PAPER LINES 32-33
rct::key x_ip = hash_cache_mash(hash_cache, x, taux, mu, t);
// These are used in the inner product rounds
size_t nprime = N;
std::vector<ge_p3> Gprime(N);
std::vector<ge_p3> Hprime(N);
rct::keyV aprime(N);
rct::keyV bprime(N);
const rct::key yinv = invert(y);
rct::key yinvpow = rct::identity();
for (size_t i = 0; i < N; ++i)
{
Gprime[i] = Gi_p3[i];
ge_scalarmult_p3(&Hprime[i], yinvpow.bytes, &Hi_p3[i]);
sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes);
aprime[i] = l[i];
bprime[i] = r[i];
}
rct::keyV L(logN);
rct::keyV R(logN);
int round = 0;
rct::keyV w(logN); // this is the challenge x in the inner product protocol
PERF_TIMER_STOP(PROVE_step3);
PERF_TIMER_START_BP(PROVE_step4);
// PAPER LINE 13
while (nprime > 1)
{
// PAPER LINE 15
nprime /= 2;
// PAPER LINES 16-17
rct::key cL = inner_product(slice(aprime, 0, nprime), slice(bprime, nprime, bprime.size()));
rct::key cR = inner_product(slice(aprime, nprime, aprime.size()), slice(bprime, 0, nprime));
// PAPER LINES 18-19
sc_mul(tmp.bytes, cL.bytes, x_ip.bytes);
L[round] = cross_vector_exponent8(nprime, Gprime, nprime, Hprime, 0, aprime, 0, bprime, nprime, &ge_p3_H, &tmp);
sc_mul(tmp.bytes, cR.bytes, x_ip.bytes);
R[round] = cross_vector_exponent8(nprime, Gprime, 0, Hprime, nprime, aprime, nprime, bprime, 0, &ge_p3_H, &tmp);
// PAPER LINES 21-22
w[round] = hash_cache_mash(hash_cache, L[round], R[round]);
if (w[round] == rct::zero())
{
PERF_TIMER_STOP(PROVE_step4);
MINFO("w[round] is 0, trying again");
goto try_again;
}
// PAPER LINES 24-25
const rct::key winv = invert(w[round]);
if (nprime > 1)
{
hadamard_fold(Gprime, winv, w[round]);
hadamard_fold(Hprime, w[round], winv);
}
// PAPER LINES 28-29
aprime = vector_add(vector_scalar(slice(aprime, 0, nprime), w[round]), vector_scalar(slice(aprime, nprime, aprime.size()), winv));
bprime = vector_add(vector_scalar(slice(bprime, 0, nprime), winv), vector_scalar(slice(bprime, nprime, bprime.size()), w[round]));
++round;
}
PERF_TIMER_STOP(PROVE_step4);
// PAPER LINE 58 (with inclusions from PAPER LINE 8 and PAPER LINE 20)
return Bulletproof(V, A, S, T1, T2, taux, mu, L, R, aprime[0], bprime[0], t);
}
Bulletproof bulletproof_PROVE(uint64_t v, const rct::key &gamma)
{
// vG + gammaH
PERF_TIMER_START_BP(PROVE_v);
rct::key sv = rct::zero();
sv.bytes[0] = v & 255;
sv.bytes[1] = (v >> 8) & 255;
sv.bytes[2] = (v >> 16) & 255;
sv.bytes[3] = (v >> 24) & 255;
sv.bytes[4] = (v >> 32) & 255;
sv.bytes[5] = (v >> 40) & 255;
sv.bytes[6] = (v >> 48) & 255;
sv.bytes[7] = (v >> 56) & 255;
PERF_TIMER_STOP(PROVE_v);
return bulletproof_PROVE(sv, gamma);
}
/* Given a set of values v (0..2^N-1) and masks gamma, construct a range proof */
Bulletproof bulletproof_PROVE(const rct::keyV &sv, const rct::keyV &gamma)
{
CHECK_AND_ASSERT_THROW_MES(sv.size() == gamma.size(), "Incompatible sizes of sv and gamma");
CHECK_AND_ASSERT_THROW_MES(!sv.empty(), "sv is empty");
for (const rct::key &sve: sv)
CHECK_AND_ASSERT_THROW_MES(is_reduced(sve), "Invalid sv input");
for (const rct::key &g: gamma)
CHECK_AND_ASSERT_THROW_MES(is_reduced(g), "Invalid gamma input");
init_exponents();
PERF_TIMER_UNIT(PROVE, 1000000);
constexpr size_t logN = 6; // log2(64)
constexpr size_t N = 1<<logN;
size_t M, logM;
for (logM = 0; (M = 1<<logM) <= maxM && M < sv.size(); ++logM);
CHECK_AND_ASSERT_THROW_MES(M <= maxM, "sv/gamma are too large");
const size_t logMN = logM + logN;
const size_t MN = M * N;
rct::keyV V(sv.size());
rct::keyV aL(MN), aR(MN);
rct::key tmp;
PERF_TIMER_START_BP(PROVE_v);
for (size_t i = 0; i < sv.size(); ++i)
{
rct::addKeys2(V[i], gamma[i], sv[i], rct::H);
V[i] = rct::scalarmultKey(V[i], INV_EIGHT);
}
PERF_TIMER_STOP(PROVE_v);
PERF_TIMER_START_BP(PROVE_aLaR);
for (size_t j = 0; j < M; ++j)
{
for (size_t i = N; i-- > 0; )
{
if (j >= sv.size())
{
aL[j*N+i] = rct::zero();
}
else if (sv[j][i/8] & (((uint64_t)1)<<(i%8)))
{
aL[j*N+i] = rct::identity();
}
else
{
aL[j*N+i] = rct::zero();
}
sc_sub(aR[j*N+i].bytes, aL[j*N+i].bytes, rct::identity().bytes);
}
}
PERF_TIMER_STOP(PROVE_aLaR);
// DEBUG: Test to ensure this recovers the value
#ifdef DEBUG_BP
for (size_t j = 0; j < M; ++j)
{
uint64_t test_aL = 0, test_aR = 0;
for (size_t i = 0; i < N; ++i)
{
if (aL[j*N+i] == rct::identity())
test_aL += ((uint64_t)1)<<i;
if (aR[j*N+i] == rct::zero())
test_aR += ((uint64_t)1)<<i;
}
uint64_t v_test = 0;
if (j < sv.size())
for (int n = 0; n < 8; ++n) v_test |= (((uint64_t)sv[j][n]) << (8*n));
CHECK_AND_ASSERT_THROW_MES(test_aL == v_test, "test_aL failed");
CHECK_AND_ASSERT_THROW_MES(test_aR == v_test, "test_aR failed");
}
#endif
try_again:
rct::key hash_cache = rct::hash_to_scalar(V);
PERF_TIMER_START_BP(PROVE_step1);
// PAPER LINES 38-39
rct::key alpha = rct::skGen();
rct::key ve = vector_exponent(aL, aR);
rct::key A;
rct::addKeys(A, ve, rct::scalarmultBase(alpha));
A = rct::scalarmultKey(A, INV_EIGHT);
// PAPER LINES 40-42
rct::keyV sL = rct::skvGen(MN), sR = rct::skvGen(MN);
rct::key rho = rct::skGen();
ve = vector_exponent(sL, sR);
rct::key S;
rct::addKeys(S, ve, rct::scalarmultBase(rho));
S = rct::scalarmultKey(S, INV_EIGHT);
// PAPER LINES 43-45
rct::key y = hash_cache_mash(hash_cache, A, S);
if (y == rct::zero())
{
PERF_TIMER_STOP(PROVE_step1);
MINFO("y is 0, trying again");
goto try_again;
}
rct::key z = hash_cache = rct::hash_to_scalar(y);
if (z == rct::zero())
{
PERF_TIMER_STOP(PROVE_step1);
MINFO("z is 0, trying again");
goto try_again;
}
// Polynomial construction by coefficients
const auto zMN = vector_dup(z, MN);
rct::keyV l0 = vector_subtract(aL, zMN);
const rct::keyV &l1 = sL;
// This computes the ugly sum/concatenation from PAPER LINE 65
rct::keyV zero_twos(MN);
const rct::keyV zpow = vector_powers(z, M+2);
for (size_t i = 0; i < MN; ++i)
{
zero_twos[i] = rct::zero();
for (size_t j = 1; j <= M; ++j)
{
if (i >= (j-1)*N && i < j*N)
{
CHECK_AND_ASSERT_THROW_MES(1+j < zpow.size(), "invalid zpow index");
CHECK_AND_ASSERT_THROW_MES(i-(j-1)*N < twoN.size(), "invalid twoN index");
sc_muladd(zero_twos[i].bytes, zpow[1+j].bytes, twoN[i-(j-1)*N].bytes, zero_twos[i].bytes);
}
}
}
rct::keyV r0 = vector_add(aR, zMN);
const auto yMN = vector_powers(y, MN);
r0 = hadamard(r0, yMN);
r0 = vector_add(r0, zero_twos);
rct::keyV r1 = hadamard(yMN, sR);
// Polynomial construction before PAPER LINE 46
rct::key t1_1 = inner_product(l0, r1);
rct::key t1_2 = inner_product(l1, r0);
rct::key t1;
sc_add(t1.bytes, t1_1.bytes, t1_2.bytes);
rct::key t2 = inner_product(l1, r1);
PERF_TIMER_STOP(PROVE_step1);
PERF_TIMER_START_BP(PROVE_step2);
// PAPER LINES 47-48
rct::key tau1 = rct::skGen(), tau2 = rct::skGen();
rct::key T1 = rct::addKeys(rct::scalarmultH(t1), rct::scalarmultBase(tau1));
T1 = rct::scalarmultKey(T1, INV_EIGHT);
rct::key T2 = rct::addKeys(rct::scalarmultH(t2), rct::scalarmultBase(tau2));
T2 = rct::scalarmultKey(T2, INV_EIGHT);
// PAPER LINES 49-51
rct::key x = hash_cache_mash(hash_cache, z, T1, T2);
if (x == rct::zero())
{
PERF_TIMER_STOP(PROVE_step2);
MINFO("x is 0, trying again");
goto try_again;
}
// PAPER LINES 52-53
rct::key taux;
sc_mul(taux.bytes, tau1.bytes, x.bytes);
rct::key xsq;
sc_mul(xsq.bytes, x.bytes, x.bytes);
sc_muladd(taux.bytes, tau2.bytes, xsq.bytes, taux.bytes);
for (size_t j = 1; j <= sv.size(); ++j)
{
CHECK_AND_ASSERT_THROW_MES(j+1 < zpow.size(), "invalid zpow index");
sc_muladd(taux.bytes, zpow[j+1].bytes, gamma[j-1].bytes, taux.bytes);
}
rct::key mu;
sc_muladd(mu.bytes, x.bytes, rho.bytes, alpha.bytes);
// PAPER LINES 54-57
rct::keyV l = l0;
l = vector_add(l, vector_scalar(l1, x));
rct::keyV r = r0;
r = vector_add(r, vector_scalar(r1, x));
PERF_TIMER_STOP(PROVE_step2);
PERF_TIMER_START_BP(PROVE_step3);
rct::key t = inner_product(l, r);
// DEBUG: Test if the l and r vectors match the polynomial forms
#ifdef DEBUG_BP
rct::key test_t;
const rct::key t0 = inner_product(l0, r0);
sc_muladd(test_t.bytes, t1.bytes, x.bytes, t0.bytes);
sc_muladd(test_t.bytes, t2.bytes, xsq.bytes, test_t.bytes);
CHECK_AND_ASSERT_THROW_MES(test_t == t, "test_t check failed");
#endif
// PAPER LINES 32-33
rct::key x_ip = hash_cache_mash(hash_cache, x, taux, mu, t);
if (x_ip == rct::zero())
{
PERF_TIMER_STOP(PROVE_step3);
MINFO("x_ip is 0, trying again");
goto try_again;
}
// These are used in the inner product rounds
size_t nprime = MN;
std::vector<ge_p3> Gprime(MN);
std::vector<ge_p3> Hprime(MN);
rct::keyV aprime(MN);
rct::keyV bprime(MN);
const rct::key yinv = invert(y);
rct::key yinvpow = rct::identity();
for (size_t i = 0; i < MN; ++i)
{
Gprime[i] = Gi_p3[i];
ge_scalarmult_p3(&Hprime[i], yinvpow.bytes, &Hi_p3[i]);
sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes);
aprime[i] = l[i];
bprime[i] = r[i];
}
rct::keyV L(logMN);
rct::keyV R(logMN);
int round = 0;
rct::keyV w(logMN); // this is the challenge x in the inner product protocol
PERF_TIMER_STOP(PROVE_step3);
PERF_TIMER_START_BP(PROVE_step4);
// PAPER LINE 13
while (nprime > 1)
{
// PAPER LINE 15
nprime /= 2;
// PAPER LINES 16-17
PERF_TIMER_START_BP(PROVE_inner_product);
rct::key cL = inner_product(slice(aprime, 0, nprime), slice(bprime, nprime, bprime.size()));
rct::key cR = inner_product(slice(aprime, nprime, aprime.size()), slice(bprime, 0, nprime));
PERF_TIMER_STOP(PROVE_inner_product);
// PAPER LINES 18-19
PERF_TIMER_START_BP(PROVE_LR);
sc_mul(tmp.bytes, cL.bytes, x_ip.bytes);
L[round] = cross_vector_exponent8(nprime, Gprime, nprime, Hprime, 0, aprime, 0, bprime, nprime, &ge_p3_H, &tmp);
sc_mul(tmp.bytes, cR.bytes, x_ip.bytes);
R[round] = cross_vector_exponent8(nprime, Gprime, 0, Hprime, nprime, aprime, nprime, bprime, 0, &ge_p3_H, &tmp);
PERF_TIMER_STOP(PROVE_LR);
// PAPER LINES 21-22
w[round] = hash_cache_mash(hash_cache, L[round], R[round]);
if (w[round] == rct::zero())
{
PERF_TIMER_STOP(PROVE_step4);
MINFO("w[round] is 0, trying again");
goto try_again;
}
// PAPER LINES 24-25
const rct::key winv = invert(w[round]);
if (nprime > 1)
{
PERF_TIMER_START_BP(PROVE_hadamard2);
hadamard_fold(Gprime, winv, w[round]);
hadamard_fold(Hprime, w[round], winv);
PERF_TIMER_STOP(PROVE_hadamard2);
}
// PAPER LINES 28-29
PERF_TIMER_START_BP(PROVE_prime);
aprime = vector_add(vector_scalar(slice(aprime, 0, nprime), w[round]), vector_scalar(slice(aprime, nprime, aprime.size()), winv));
bprime = vector_add(vector_scalar(slice(bprime, 0, nprime), winv), vector_scalar(slice(bprime, nprime, bprime.size()), w[round]));
PERF_TIMER_STOP(PROVE_prime);
++round;
}
PERF_TIMER_STOP(PROVE_step4);
// PAPER LINE 58 (with inclusions from PAPER LINE 8 and PAPER LINE 20)
return Bulletproof(V, A, S, T1, T2, taux, mu, L, R, aprime[0], bprime[0], t);
}
Bulletproof bulletproof_PROVE(const std::vector<uint64_t> &v, const rct::keyV &gamma)
{
CHECK_AND_ASSERT_THROW_MES(v.size() == gamma.size(), "Incompatible sizes of v and gamma");
// vG + gammaH
PERF_TIMER_START_BP(PROVE_v);
rct::keyV sv(v.size());
for (size_t i = 0; i < v.size(); ++i)
{
sv[i] = rct::zero();
sv[i].bytes[0] = v[i] & 255;
sv[i].bytes[1] = (v[i] >> 8) & 255;
sv[i].bytes[2] = (v[i] >> 16) & 255;
sv[i].bytes[3] = (v[i] >> 24) & 255;
sv[i].bytes[4] = (v[i] >> 32) & 255;
sv[i].bytes[5] = (v[i] >> 40) & 255;
sv[i].bytes[6] = (v[i] >> 48) & 255;
sv[i].bytes[7] = (v[i] >> 56) & 255;
}
PERF_TIMER_STOP(PROVE_v);
return bulletproof_PROVE(sv, gamma);
}
/* Given a range proof, determine if it is valid */
bool bulletproof_VERIFY(const std::vector<const Bulletproof*> &proofs)
{
init_exponents();
PERF_TIMER_START_BP(VERIFY);
// sanity and figure out which proof is longest
size_t max_length = 0;
for (const Bulletproof *p: proofs)
{
const Bulletproof &proof = *p;
// check scalar range
CHECK_AND_ASSERT_MES(is_reduced(proof.taux), false, "Input scalar not in range");
CHECK_AND_ASSERT_MES(is_reduced(proof.mu), false, "Input scalar not in range");
CHECK_AND_ASSERT_MES(is_reduced(proof.a), false, "Input scalar not in range");
CHECK_AND_ASSERT_MES(is_reduced(proof.b), false, "Input scalar not in range");
CHECK_AND_ASSERT_MES(is_reduced(proof.t), false, "Input scalar not in range");
CHECK_AND_ASSERT_MES(proof.V.size() >= 1, false, "V does not have at least one element");
CHECK_AND_ASSERT_MES(proof.L.size() == proof.R.size(), false, "Mismatched L and R sizes");
CHECK_AND_ASSERT_MES(proof.L.size() > 0, false, "Empty proof");
max_length = std::max(max_length, proof.L.size());
}
CHECK_AND_ASSERT_MES(max_length < 32, false, "At least one proof is too large");
size_t maxMN = 1u << max_length;
const size_t logN = 6;
const size_t N = 1 << logN;
rct::key tmp;
// setup weighted aggregates
rct::key Z0 = rct::identity();
rct::key z1 = rct::zero();
rct::key Z2 = rct::identity();
rct::key z3 = rct::zero();
rct::keyV z4(maxMN, rct::zero()), z5(maxMN, rct::zero());
rct::key Y2 = rct::identity(), Y3 = rct::identity(), Y4 = rct::identity();
rct::key y0 = rct::zero(), y1 = rct::zero();
for (const Bulletproof *p: proofs)
{
const Bulletproof &proof = *p;
size_t M, logM;
for (logM = 0; (M = 1<<logM) <= maxM && M < proof.V.size(); ++logM);
CHECK_AND_ASSERT_MES(proof.L.size() == 6+logM, false, "Proof is not the expected size");
const size_t MN = M*N;
rct::key weight = rct::skGen();
// Reconstruct the challenges
PERF_TIMER_START_BP(VERIFY_start);
rct::key hash_cache = rct::hash_to_scalar(proof.V);
rct::key y = hash_cache_mash(hash_cache, proof.A, proof.S);
CHECK_AND_ASSERT_MES(!(y == rct::zero()), false, "y == 0");
rct::key z = hash_cache = rct::hash_to_scalar(y);
CHECK_AND_ASSERT_MES(!(z == rct::zero()), false, "z == 0");
rct::key x = hash_cache_mash(hash_cache, z, proof.T1, proof.T2);
CHECK_AND_ASSERT_MES(!(x == rct::zero()), false, "x == 0");
rct::key x_ip = hash_cache_mash(hash_cache, x, proof.taux, proof.mu, proof.t);
CHECK_AND_ASSERT_MES(!(x_ip == rct::zero()), false, "x_ip == 0");
PERF_TIMER_STOP(VERIFY_start);
// pre-multiply some points by 8
rct::keyV proof8_V = proof.V; for (rct::key &k: proof8_V) k = rct::scalarmult8(k);
rct::keyV proof8_L = proof.L; for (rct::key &k: proof8_L) k = rct::scalarmult8(k);
rct::keyV proof8_R = proof.R; for (rct::key &k: proof8_R) k = rct::scalarmult8(k);
rct::key proof8_T1 = rct::scalarmult8(proof.T1);
rct::key proof8_T2 = rct::scalarmult8(proof.T2);
rct::key proof8_S = rct::scalarmult8(proof.S);
PERF_TIMER_START_BP(VERIFY_line_61);
// PAPER LINE 61
sc_muladd(y0.bytes, proof.taux.bytes, weight.bytes, y0.bytes);
const rct::keyV zpow = vector_powers(z, M+3);
rct::key k;
const rct::key ip1y = vector_power_sum(y, MN);
sc_mulsub(k.bytes, zpow[2].bytes, ip1y.bytes, rct::zero().bytes);
for (size_t j = 1; j <= M; ++j)
{
CHECK_AND_ASSERT_MES(j+2 < zpow.size(), false, "invalid zpow index");
sc_mulsub(k.bytes, zpow[j+2].bytes, ip12.bytes, k.bytes);
}
PERF_TIMER_STOP(VERIFY_line_61);
PERF_TIMER_START_BP(VERIFY_line_61rl_new);
sc_muladd(tmp.bytes, z.bytes, ip1y.bytes, k.bytes);
std::vector<MultiexpData> multiexp_data;
multiexp_data.reserve(proof.V.size());
sc_sub(tmp.bytes, proof.t.bytes, tmp.bytes);
sc_muladd(y1.bytes, tmp.bytes, weight.bytes, y1.bytes);
for (size_t j = 0; j < proof8_V.size(); j++)
{
multiexp_data.emplace_back(zpow[j+2], proof8_V[j]);
}
rct::addKeys(Y2, Y2, rct::scalarmultKey(multiexp(multiexp_data, false), weight));
sc_mul(tmp.bytes, x.bytes, weight.bytes);
rct::addKeys(Y3, Y3, rct::scalarmultKey(proof8_T1, tmp));
rct::key xsq;
sc_mul(xsq.bytes, x.bytes, x.bytes);
sc_mul(tmp.bytes, xsq.bytes, weight.bytes);
rct::addKeys(Y4, Y4, rct::scalarmultKey(proof8_T2, tmp));
PERF_TIMER_STOP(VERIFY_line_61rl_new);
PERF_TIMER_START_BP(VERIFY_line_62);
// PAPER LINE 62
rct::addKeys(Z0, Z0, rct::scalarmultKey(rct::addKeys(rct::scalarmult8(proof.A), rct::scalarmultKey(proof8_S, x)), weight));
PERF_TIMER_STOP(VERIFY_line_62);
// Compute the number of rounds for the inner product
const size_t rounds = logM+logN;
CHECK_AND_ASSERT_MES(rounds > 0, false, "Zero rounds");
PERF_TIMER_START_BP(VERIFY_line_21_22);
// PAPER LINES 21-22
// The inner product challenges are computed per round
rct::keyV w(rounds);
for (size_t i = 0; i < rounds; ++i)
{
w[i] = hash_cache_mash(hash_cache, proof.L[i], proof.R[i]);
CHECK_AND_ASSERT_MES(!(w[i] == rct::zero()), false, "w[i] == 0");
}
PERF_TIMER_STOP(VERIFY_line_21_22);
PERF_TIMER_START_BP(VERIFY_line_24_25);
// Basically PAPER LINES 24-25
// Compute the curvepoints from G[i] and H[i]
rct::key yinvpow = rct::identity();
rct::key ypow = rct::identity();
PERF_TIMER_START_BP(VERIFY_line_24_25_invert);
const rct::key yinv = invert(y);
rct::keyV winv(rounds);
for (size_t i = 0; i < rounds; ++i)
winv[i] = invert(w[i]);
PERF_TIMER_STOP(VERIFY_line_24_25_invert);
// precalc
PERF_TIMER_START_BP(VERIFY_line_24_25_precalc);
rct::keyV w_cache(1<<rounds);
w_cache[0] = winv[0];
w_cache[1] = w[0];
for (size_t j = 1; j < rounds; ++j)
{
const size_t slots = 1<<(j+1);
for (size_t s = slots; s-- > 0; --s)
{
sc_mul(w_cache[s].bytes, w_cache[s/2].bytes, w[j].bytes);
sc_mul(w_cache[s-1].bytes, w_cache[s/2].bytes, winv[j].bytes);
}
}
PERF_TIMER_STOP(VERIFY_line_24_25_precalc);
for (size_t i = 0; i < MN; ++i)
{
rct::key g_scalar = proof.a;
rct::key h_scalar;
if (i == 0)
h_scalar = proof.b;
else
sc_mul(h_scalar.bytes, proof.b.bytes, yinvpow.bytes);
// Convert the index to binary IN REVERSE and construct the scalar exponent
sc_mul(g_scalar.bytes, g_scalar.bytes, w_cache[i].bytes);
sc_mul(h_scalar.bytes, h_scalar.bytes, w_cache[(~i) & (MN-1)].bytes);
// Adjust the scalars using the exponents from PAPER LINE 62
sc_add(g_scalar.bytes, g_scalar.bytes, z.bytes);
CHECK_AND_ASSERT_MES(2+i/N < zpow.size(), false, "invalid zpow index");
CHECK_AND_ASSERT_MES(i%N < twoN.size(), false, "invalid twoN index");
sc_mul(tmp.bytes, zpow[2+i/N].bytes, twoN[i%N].bytes);
if (i == 0)
{
sc_add(tmp.bytes, tmp.bytes, z.bytes);
sc_sub(h_scalar.bytes, h_scalar.bytes, tmp.bytes);
}
else
{
sc_muladd(tmp.bytes, z.bytes, ypow.bytes, tmp.bytes);
sc_mulsub(h_scalar.bytes, tmp.bytes, yinvpow.bytes, h_scalar.bytes);
}
sc_muladd(z4[i].bytes, g_scalar.bytes, weight.bytes, z4[i].bytes);
sc_muladd(z5[i].bytes, h_scalar.bytes, weight.bytes, z5[i].bytes);
if (i == 0)
{
yinvpow = yinv;
ypow = y;
}
else if (i != MN-1)
{
sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes);
sc_mul(ypow.bytes, ypow.bytes, y.bytes);
}
}
PERF_TIMER_STOP(VERIFY_line_24_25);
// PAPER LINE 26
PERF_TIMER_START_BP(VERIFY_line_26_new);
multiexp_data.clear();
multiexp_data.reserve(2*rounds);
sc_muladd(z1.bytes, proof.mu.bytes, weight.bytes, z1.bytes);
for (size_t i = 0; i < rounds; ++i)
{
sc_mul(tmp.bytes, w[i].bytes, w[i].bytes);
multiexp_data.emplace_back(tmp, proof8_L[i]);
sc_mul(tmp.bytes, winv[i].bytes, winv[i].bytes);
multiexp_data.emplace_back(tmp, proof8_R[i]);
}
rct::key acc = multiexp(multiexp_data, false);
rct::addKeys(Z2, Z2, rct::scalarmultKey(acc, weight));
sc_mulsub(tmp.bytes, proof.a.bytes, proof.b.bytes, proof.t.bytes);
sc_mul(tmp.bytes, tmp.bytes, x_ip.bytes);
sc_muladd(z3.bytes, tmp.bytes, weight.bytes, z3.bytes);
PERF_TIMER_STOP(VERIFY_line_26_new);
}
// now check all proofs at once
PERF_TIMER_START_BP(VERIFY_step2_check);
ge_p3 check1;
ge_scalarmult_base(&check1, y0.bytes);
addKeys_acc_p3(&check1, y1, rct::H);
sub_acc_p3(&check1, Y2);
sub_acc_p3(&check1, Y3);
sub_acc_p3(&check1, Y4);
if (!ge_p3_is_point_at_infinity(&check1))
{
MERROR("Verification failure at step 1");
return false;
}
ge_p3 check2;
sc_sub(tmp.bytes, rct::zero().bytes, z1.bytes);
ge_double_scalarmult_base_vartime_p3(&check2, z3.bytes, &ge_p3_H, tmp.bytes);
add_acc_p3(&check2, Z0);
add_acc_p3(&check2, Z2);
std::vector<MultiexpData> multiexp_data;
multiexp_data.reserve(2 * maxMN);
for (size_t i = 0; i < maxMN; ++i)
{
sc_sub(tmp.bytes, rct::zero().bytes, z4[i].bytes);
multiexp_data.emplace_back(tmp, Gi_p3[i]);
sc_sub(tmp.bytes, rct::zero().bytes, z5[i].bytes);
multiexp_data.emplace_back(tmp, Hi_p3[i]);
}
add_acc_p3(&check2, multiexp(multiexp_data, true));
PERF_TIMER_STOP(VERIFY_step2_check);
if (!ge_p3_is_point_at_infinity(&check2))
{
MERROR("Verification failure at step 2");
return false;
}
PERF_TIMER_STOP(VERIFY);
return true;
}
bool bulletproof_VERIFY(const std::vector<Bulletproof> &proofs)
{
std::vector<const Bulletproof*> proof_pointers;
for (const Bulletproof &proof: proofs)
proof_pointers.push_back(&proof);
return bulletproof_VERIFY(proof_pointers);
}
bool bulletproof_VERIFY(const Bulletproof &proof)
{
std::vector<const Bulletproof*> proofs;
proofs.push_back(&proof);
return bulletproof_VERIFY(proofs);
}
}
|