1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
|
// Copyright (c) 2017, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Adapted from Java code by Sarang Noether
#include <stdlib.h>
#include <openssl/ssl.h>
#include <boost/thread/mutex.hpp>
#include "misc_log_ex.h"
#include "common/perf_timer.h"
extern "C"
{
#include "crypto/crypto-ops.h"
}
#include "rctOps.h"
#include "bulletproofs.h"
#undef MONERO_DEFAULT_LOG_CATEGORY
#define MONERO_DEFAULT_LOG_CATEGORY "bulletproofs"
//#define DEBUG_BP
#define PERF_TIMER_START_BP(x) PERF_TIMER_START_UNIT(x, 1000000)
namespace rct
{
static rct::key vector_exponent(const rct::keyV &a, const rct::keyV &b);
static rct::keyV vector_powers(rct::key x, size_t n);
static rct::key inner_product(const rct::keyV &a, const rct::keyV &b);
static constexpr size_t maxN = 64;
static rct::key Hi[maxN], Gi[maxN];
static ge_dsmp Gprecomp[64], Hprecomp[64];
static const rct::key TWO = { {0x02, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } };
static const rct::keyV oneN = vector_powers(rct::identity(), maxN);
static const rct::keyV twoN = vector_powers(TWO, maxN);
static const rct::key ip12 = inner_product(oneN, twoN);
static boost::mutex init_mutex;
static rct::key get_exponent(const rct::key &base, size_t idx)
{
static const std::string salt("bulletproof");
std::string hashed = std::string((const char*)base.bytes, sizeof(base)) + salt + tools::get_varint_data(idx);
return rct::hashToPoint(rct::hash2rct(crypto::cn_fast_hash(hashed.data(), hashed.size())));
}
static void init_exponents()
{
boost::lock_guard<boost::mutex> lock(init_mutex);
static bool init_done = false;
if (init_done)
return;
for (size_t i = 0; i < maxN; ++i)
{
Hi[i] = get_exponent(rct::H, i * 2);
rct::precomp(Hprecomp[i], Hi[i]);
Gi[i] = get_exponent(rct::H, i * 2 + 1);
rct::precomp(Gprecomp[i], Gi[i]);
}
init_done = true;
}
/* Given two scalar arrays, construct a vector commitment */
static rct::key vector_exponent(const rct::keyV &a, const rct::keyV &b)
{
CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN, "Incompatible sizes of a and maxN");
rct::key res = rct::identity();
for (size_t i = 0; i < a.size(); ++i)
{
rct::key term;
rct::addKeys3(term, a[i], Gprecomp[i], b[i], Hprecomp[i]);
rct::addKeys(res, res, term);
}
return res;
}
/* Compute a custom vector-scalar commitment */
static rct::key vector_exponent_custom(const rct::keyV &A, const rct::keyV &B, const rct::keyV &a, const rct::keyV &b)
{
CHECK_AND_ASSERT_THROW_MES(A.size() == B.size(), "Incompatible sizes of A and B");
CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
CHECK_AND_ASSERT_THROW_MES(a.size() == A.size(), "Incompatible sizes of a and A");
CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN, "Incompatible sizes of a and maxN");
rct::key res = rct::identity();
for (size_t i = 0; i < a.size(); ++i)
{
rct::key term;
#if 0
// we happen to know where A and B might fall, so don't bother checking the rest
ge_dsmp *Acache = NULL, *Bcache = NULL;
ge_dsmp Acache_custom[1], Bcache_custom[1];
if (Gi[i] == A[i])
Acache = Gprecomp + i;
else if (i<32 && Gi[i+32] == A[i])
Acache = Gprecomp + i + 32;
else
{
rct::precomp(Acache_custom[0], A[i]);
Acache = Acache_custom;
}
if (i == 0 && B[i] == Hi[0])
Bcache = Hprecomp;
else
{
rct::precomp(Bcache_custom[0], B[i]);
Bcache = Bcache_custom;
}
rct::addKeys3(term, a[i], *Acache, b[i], *Bcache);
#else
ge_dsmp Acache, Bcache;
rct::precomp(Bcache, B[i]);
rct::addKeys3(term, a[i], A[i], b[i], Bcache);
#endif
rct::addKeys(res, res, term);
}
return res;
}
/* Given a scalar, construct a vector of powers */
static rct::keyV vector_powers(rct::key x, size_t n)
{
rct::keyV res(n);
if (n == 0)
return res;
res[0] = rct::identity();
if (n == 1)
return res;
res[1] = x;
for (size_t i = 2; i < n; ++i)
{
sc_mul(res[i].bytes, res[i-1].bytes, x.bytes);
}
return res;
}
/* Given two scalar arrays, construct the inner product */
static rct::key inner_product(const rct::keyV &a, const rct::keyV &b)
{
CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
rct::key res = rct::zero();
for (size_t i = 0; i < a.size(); ++i)
{
sc_muladd(res.bytes, a[i].bytes, b[i].bytes, res.bytes);
}
return res;
}
/* Given two scalar arrays, construct the Hadamard product */
static rct::keyV hadamard(const rct::keyV &a, const rct::keyV &b)
{
CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
rct::keyV res(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
sc_mul(res[i].bytes, a[i].bytes, b[i].bytes);
}
return res;
}
/* Given two curvepoint arrays, construct the Hadamard product */
static rct::keyV hadamard2(const rct::keyV &a, const rct::keyV &b)
{
CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
rct::keyV res(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
rct::addKeys(res[i], a[i], b[i]);
}
return res;
}
/* Add two vectors */
static rct::keyV vector_add(const rct::keyV &a, const rct::keyV &b)
{
CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
rct::keyV res(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
sc_add(res[i].bytes, a[i].bytes, b[i].bytes);
}
return res;
}
/* Subtract two vectors */
static rct::keyV vector_subtract(const rct::keyV &a, const rct::keyV &b)
{
CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b");
rct::keyV res(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
sc_sub(res[i].bytes, a[i].bytes, b[i].bytes);
}
return res;
}
/* Multiply a scalar and a vector */
static rct::keyV vector_scalar(const rct::keyV &a, const rct::key &x)
{
rct::keyV res(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
sc_mul(res[i].bytes, a[i].bytes, x.bytes);
}
return res;
}
/* Exponentiate a curve vector by a scalar */
static rct::keyV vector_scalar2(const rct::keyV &a, const rct::key &x)
{
rct::keyV res(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
rct::scalarmultKey(res[i], a[i], x);
}
return res;
}
static rct::key switch_endianness(rct::key k)
{
std::reverse(k.bytes, k.bytes + sizeof(k));
return k;
}
/* Compute the inverse of a scalar, the stupid way */
static rct::key invert(const rct::key &x)
{
rct::key inv;
BN_CTX *ctx = BN_CTX_new();
BIGNUM *X = BN_new();
BIGNUM *L = BN_new();
BIGNUM *I = BN_new();
BN_bin2bn(switch_endianness(x).bytes, sizeof(rct::key), X);
BN_bin2bn(switch_endianness(rct::curveOrder()).bytes, sizeof(rct::key), L);
CHECK_AND_ASSERT_THROW_MES(BN_mod_inverse(I, X, L, ctx), "Failed to invert");
const int len = BN_num_bytes(I);
CHECK_AND_ASSERT_THROW_MES((size_t)len <= sizeof(rct::key), "Invalid number length");
inv = rct::zero();
BN_bn2bin(I, inv.bytes);
std::reverse(inv.bytes, inv.bytes + len);
BN_free(I);
BN_free(L);
BN_free(X);
BN_CTX_free(ctx);
#ifdef DEBUG_BP
rct::key tmp;
sc_mul(tmp.bytes, inv.bytes, x.bytes);
CHECK_AND_ASSERT_THROW_MES(tmp == rct::identity(), "invert failed");
#endif
return inv;
}
/* Compute the slice of a vector */
static rct::keyV slice(const rct::keyV &a, size_t start, size_t stop)
{
CHECK_AND_ASSERT_THROW_MES(start < a.size(), "Invalid start index");
CHECK_AND_ASSERT_THROW_MES(stop <= a.size(), "Invalid stop index");
CHECK_AND_ASSERT_THROW_MES(start < stop, "Invalid start/stop indices");
rct::keyV res(stop - start);
for (size_t i = start; i < stop; ++i)
{
res[i - start] = a[i];
}
return res;
}
/* Given a value v (0..2^N-1) and a mask gamma, construct a range proof */
Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma)
{
init_exponents();
PERF_TIMER_UNIT(PROVE, 1000000);
constexpr size_t logN = 6; // log2(64)
constexpr size_t N = 1<<logN;
rct::key V;
rct::keyV aL(N), aR(N);
PERF_TIMER_START_BP(PROVE_v);
rct::addKeys2(V, gamma, sv, rct::H);
PERF_TIMER_STOP(PROVE_v);
PERF_TIMER_START_BP(PROVE_aLaR);
for (size_t i = N; i-- > 0; )
{
if (sv[i/8] & (((uint64_t)1)<<(i%8)))
{
aL[i] = rct::identity();
}
else
{
aL[i] = rct::zero();
}
sc_sub(aR[i].bytes, aL[i].bytes, rct::identity().bytes);
}
PERF_TIMER_STOP(PROVE_aLaR);
// DEBUG: Test to ensure this recovers the value
#ifdef DEBUG_BP
uint64_t test_aL = 0, test_aR = 0;
for (size_t i = 0; i < N; ++i)
{
if (aL[i] == rct::identity())
test_aL += ((uint64_t)1)<<i;
if (aR[i] == rct::zero())
test_aR += ((uint64_t)1)<<i;
}
uint64_t v_test = 0;
for (int n = 0; n < 8; ++n) v_test |= (((uint64_t)sv[n]) << (8*n));
CHECK_AND_ASSERT_THROW_MES(test_aL == v_test, "test_aL failed");
CHECK_AND_ASSERT_THROW_MES(test_aR == v_test, "test_aR failed");
#endif
PERF_TIMER_START_BP(PROVE_step1);
// PAPER LINES 38-39
rct::key alpha = rct::skGen();
rct::key ve = vector_exponent(aL, aR);
rct::key A;
rct::addKeys(A, ve, rct::scalarmultBase(alpha));
// PAPER LINES 40-42
rct::keyV sL = rct::skvGen(N), sR = rct::skvGen(N);
rct::key rho = rct::skGen();
ve = vector_exponent(sL, sR);
rct::key S;
rct::addKeys(S, ve, rct::scalarmultBase(rho));
// PAPER LINES 43-45
rct::keyV hashed;
hashed.push_back(A);
hashed.push_back(S);
rct::key y = rct::hash_to_scalar(hashed);
rct::key z = rct::hash_to_scalar(y);
// Polynomial construction before PAPER LINE 46
rct::key t0 = rct::zero();
rct::key t1 = rct::zero();
rct::key t2 = rct::zero();
const auto yN = vector_powers(y, N);
rct::key ip1y = inner_product(oneN, yN);
rct::key tmp;
sc_muladd(t0.bytes, z.bytes, ip1y.bytes, t0.bytes);
rct::key zsq;
sc_mul(zsq.bytes, z.bytes, z.bytes);
sc_muladd(t0.bytes, zsq.bytes, sv.bytes, t0.bytes);
rct::key k = rct::zero();
sc_mulsub(k.bytes, zsq.bytes, ip1y.bytes, k.bytes);
rct::key zcu;
sc_mul(zcu.bytes, zsq.bytes, z.bytes);
sc_mulsub(k.bytes, zcu.bytes, ip12.bytes, k.bytes);
sc_add(t0.bytes, t0.bytes, k.bytes);
// DEBUG: Test the value of t0 has the correct form
#ifdef DEBUG_BP
rct::key test_t0 = rct::zero();
rct::key iph = inner_product(aL, hadamard(aR, yN));
sc_add(test_t0.bytes, test_t0.bytes, iph.bytes);
rct::key ips = inner_product(vector_subtract(aL, aR), yN);
sc_muladd(test_t0.bytes, z.bytes, ips.bytes, test_t0.bytes);
rct::key ipt = inner_product(twoN, aL);
sc_muladd(test_t0.bytes, zsq.bytes, ipt.bytes, test_t0.bytes);
sc_add(test_t0.bytes, test_t0.bytes, k.bytes);
CHECK_AND_ASSERT_THROW_MES(t0 == test_t0, "t0 check failed");
#endif
PERF_TIMER_STOP(PROVE_step1);
PERF_TIMER_START_BP(PROVE_step2);
const auto HyNsR = hadamard(yN, sR);
const auto vpIz = vector_scalar(oneN, z);
const auto vp2zsq = vector_scalar(twoN, zsq);
const auto aL_vpIz = vector_subtract(aL, vpIz);
const auto aR_vpIz = vector_add(aR, vpIz);
rct::key ip1 = inner_product(aL_vpIz, HyNsR);
sc_add(t1.bytes, t1.bytes, ip1.bytes);
rct::key ip2 = inner_product(sL, vector_add(hadamard(yN, aR_vpIz), vp2zsq));
sc_add(t1.bytes, t1.bytes, ip2.bytes);
rct::key ip3 = inner_product(sL, HyNsR);
sc_add(t2.bytes, t2.bytes, ip3.bytes);
// PAPER LINES 47-48
rct::key tau1 = rct::skGen(), tau2 = rct::skGen();
rct::key T1 = rct::addKeys(rct::scalarmultKey(rct::H, t1), rct::scalarmultBase(tau1));
rct::key T2 = rct::addKeys(rct::scalarmultKey(rct::H, t2), rct::scalarmultBase(tau2));
// PAPER LINES 49-51
hashed.clear();
hashed.push_back(z);
hashed.push_back(T1);
hashed.push_back(T2);
rct::key x = rct::hash_to_scalar(hashed);
// PAPER LINES 52-53
rct::key taux = rct::zero();
sc_mul(taux.bytes, tau1.bytes, x.bytes);
rct::key xsq;
sc_mul(xsq.bytes, x.bytes, x.bytes);
sc_muladd(taux.bytes, tau2.bytes, xsq.bytes, taux.bytes);
sc_muladd(taux.bytes, gamma.bytes, zsq.bytes, taux.bytes);
rct::key mu;
sc_muladd(mu.bytes, x.bytes, rho.bytes, alpha.bytes);
// PAPER LINES 54-57
rct::keyV l = vector_add(aL_vpIz, vector_scalar(sL, x));
rct::keyV r = vector_add(hadamard(yN, vector_add(aR_vpIz, vector_scalar(sR, x))), vp2zsq);
PERF_TIMER_STOP(PROVE_step2);
PERF_TIMER_START_BP(PROVE_step3);
rct::key t = inner_product(l, r);
// DEBUG: Test if the l and r vectors match the polynomial forms
#ifdef DEBUG_BP
rct::key test_t;
sc_muladd(test_t.bytes, t1.bytes, x.bytes, t0.bytes);
sc_muladd(test_t.bytes, t2.bytes, xsq.bytes, test_t.bytes);
CHECK_AND_ASSERT_THROW_MES(test_t == t, "test_t check failed");
#endif
// PAPER LINES 32-33
hashed.clear();
hashed.push_back(x);
hashed.push_back(taux);
hashed.push_back(mu);
hashed.push_back(t);
rct::key x_ip = rct::hash_to_scalar(hashed);
// These are used in the inner product rounds
size_t nprime = N;
rct::keyV Gprime(N);
rct::keyV Hprime(N);
rct::keyV aprime(N);
rct::keyV bprime(N);
const rct::key yinv = invert(y);
rct::key yinvpow = rct::identity();
for (size_t i = 0; i < N; ++i)
{
Gprime[i] = Gi[i];
Hprime[i] = scalarmultKey(Hi[i], yinvpow);
sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes);
aprime[i] = l[i];
bprime[i] = r[i];
}
rct::keyV L(logN);
rct::keyV R(logN);
int round = 0;
rct::keyV w(logN); // this is the challenge x in the inner product protocol
PERF_TIMER_STOP(PROVE_step3);
PERF_TIMER_START_BP(PROVE_step4);
// PAPER LINE 13
while (nprime > 1)
{
// PAPER LINE 15
nprime /= 2;
// PAPER LINES 16-17
rct::key cL = inner_product(slice(aprime, 0, nprime), slice(bprime, nprime, bprime.size()));
rct::key cR = inner_product(slice(aprime, nprime, aprime.size()), slice(bprime, 0, nprime));
// PAPER LINES 18-19
L[round] = vector_exponent_custom(slice(Gprime, nprime, Gprime.size()), slice(Hprime, 0, nprime), slice(aprime, 0, nprime), slice(bprime, nprime, bprime.size()));
sc_mul(tmp.bytes, cL.bytes, x_ip.bytes);
rct::addKeys(L[round], L[round], rct::scalarmultKey(rct::H, tmp));
R[round] = vector_exponent_custom(slice(Gprime, 0, nprime), slice(Hprime, nprime, Hprime.size()), slice(aprime, nprime, aprime.size()), slice(bprime, 0, nprime));
sc_mul(tmp.bytes, cR.bytes, x_ip.bytes);
rct::addKeys(R[round], R[round], rct::scalarmultKey(rct::H, tmp));
// PAPER LINES 21-22
hashed.clear();
if (round == 0)
{
hashed.push_back(L[0]);
hashed.push_back(R[0]);
w[0] = rct::hash_to_scalar(hashed);
}
else
{
hashed.push_back(w[round - 1]);
hashed.push_back(L[round]);
hashed.push_back(R[round]);
w[round] = rct::hash_to_scalar(hashed);
}
// PAPER LINES 24-25
const rct::key winv = invert(w[round]);
Gprime = hadamard2(vector_scalar2(slice(Gprime, 0, nprime), winv), vector_scalar2(slice(Gprime, nprime, Gprime.size()), w[round]));
Hprime = hadamard2(vector_scalar2(slice(Hprime, 0, nprime), w[round]), vector_scalar2(slice(Hprime, nprime, Hprime.size()), winv));
// PAPER LINES 28-29
aprime = vector_add(vector_scalar(slice(aprime, 0, nprime), w[round]), vector_scalar(slice(aprime, nprime, aprime.size()), winv));
bprime = vector_add(vector_scalar(slice(bprime, 0, nprime), winv), vector_scalar(slice(bprime, nprime, bprime.size()), w[round]));
++round;
}
PERF_TIMER_STOP(PROVE_step4);
// PAPER LINE 58 (with inclusions from PAPER LINE 8 and PAPER LINE 20)
return Bulletproof(V, A, S, T1, T2, taux, mu, L, R, aprime[0], bprime[0], t);
}
Bulletproof bulletproof_PROVE(uint64_t v, const rct::key &gamma)
{
// vG + gammaH
PERF_TIMER_START_BP(PROVE_v);
rct::key sv = rct::zero();
sv.bytes[0] = v & 255;
sv.bytes[1] = (v >> 8) & 255;
sv.bytes[2] = (v >> 16) & 255;
sv.bytes[3] = (v >> 24) & 255;
sv.bytes[4] = (v >> 32) & 255;
sv.bytes[5] = (v >> 40) & 255;
sv.bytes[6] = (v >> 48) & 255;
sv.bytes[7] = (v >> 56) & 255;
PERF_TIMER_STOP(PROVE_v);
return bulletproof_PROVE(sv, gamma);
}
/* Given a range proof, determine if it is valid */
bool bulletproof_VERIFY(const Bulletproof &proof)
{
init_exponents();
CHECK_AND_ASSERT_MES(proof.L.size() == proof.R.size(), false, "Mismatched L and R sizes");
CHECK_AND_ASSERT_MES(proof.L.size() > 0, false, "Empty proof");
CHECK_AND_ASSERT_MES(proof.L.size() == 6, false, "Proof is not for 64 bits");
const size_t logN = proof.L.size();
const size_t N = 1 << logN;
// Reconstruct the challenges
PERF_TIMER_START_BP(VERIFY);
PERF_TIMER_START_BP(VERIFY_start);
rct::keyV hashed;
hashed.push_back(proof.A);
hashed.push_back(proof.S);
rct::key y = rct::hash_to_scalar(hashed);
rct::key z = rct::hash_to_scalar(y);
hashed.clear();
hashed.push_back(z);
hashed.push_back(proof.T1);
hashed.push_back(proof.T2);
rct::key x = rct::hash_to_scalar(hashed);
PERF_TIMER_STOP(VERIFY_start);
PERF_TIMER_START_BP(VERIFY_line_60);
// Reconstruct the challenges
hashed.clear();
hashed.push_back(x);
hashed.push_back(proof.taux);
hashed.push_back(proof.mu);
hashed.push_back(proof.t);
rct::key x_ip = hash_to_scalar(hashed);
PERF_TIMER_STOP(VERIFY_line_60);
PERF_TIMER_START_BP(VERIFY_line_61);
// PAPER LINE 61
rct::key L61Left = rct::addKeys(rct::scalarmultBase(proof.taux), rct::scalarmultKey(rct::H, proof.t));
rct::key k = rct::zero();
const auto yN = vector_powers(y, N);
rct::key ip1y = inner_product(oneN, yN);
rct::key zsq;
sc_mul(zsq.bytes, z.bytes, z.bytes);
rct::key tmp, tmp2;
sc_mulsub(k.bytes, zsq.bytes, ip1y.bytes, k.bytes);
rct::key zcu;
sc_mul(zcu.bytes, zsq.bytes, z.bytes);
sc_mulsub(k.bytes, zcu.bytes, ip12.bytes, k.bytes);
PERF_TIMER_STOP(VERIFY_line_61);
PERF_TIMER_START_BP(VERIFY_line_61rl);
sc_muladd(tmp.bytes, z.bytes, ip1y.bytes, k.bytes);
rct::key L61Right = rct::scalarmultKey(rct::H, tmp);
CHECK_AND_ASSERT_MES(proof.V.size() == 1, false, "proof.V does not have exactly one element");
tmp = rct::scalarmultKey(proof.V[0], zsq);
rct::addKeys(L61Right, L61Right, tmp);
tmp = rct::scalarmultKey(proof.T1, x);
rct::addKeys(L61Right, L61Right, tmp);
rct::key xsq;
sc_mul(xsq.bytes, x.bytes, x.bytes);
tmp = rct::scalarmultKey(proof.T2, xsq);
rct::addKeys(L61Right, L61Right, tmp);
PERF_TIMER_STOP(VERIFY_line_61rl);
if (!(L61Right == L61Left))
{
MERROR("Verification failure at step 1");
return false;
}
PERF_TIMER_START_BP(VERIFY_line_62);
// PAPER LINE 62
rct::key P = rct::addKeys(proof.A, rct::scalarmultKey(proof.S, x));
PERF_TIMER_STOP(VERIFY_line_62);
// Compute the number of rounds for the inner product
const size_t rounds = proof.L.size();
CHECK_AND_ASSERT_MES(rounds > 0, false, "Zero rounds");
PERF_TIMER_START_BP(VERIFY_line_21_22);
// PAPER LINES 21-22
// The inner product challenges are computed per round
rct::keyV w(rounds);
hashed.clear();
hashed.push_back(proof.L[0]);
hashed.push_back(proof.R[0]);
w[0] = rct::hash_to_scalar(hashed);
for (size_t i = 1; i < rounds; ++i)
{
hashed.clear();
hashed.push_back(w[i-1]);
hashed.push_back(proof.L[i]);
hashed.push_back(proof.R[i]);
w[i] = rct::hash_to_scalar(hashed);
}
PERF_TIMER_STOP(VERIFY_line_21_22);
PERF_TIMER_START_BP(VERIFY_line_24_25);
// Basically PAPER LINES 24-25
// Compute the curvepoints from G[i] and H[i]
rct::key inner_prod = rct::identity();
rct::key yinvpow = rct::identity();
rct::key ypow = rct::identity();
PERF_TIMER_START_BP(VERIFY_line_24_25_invert);
const rct::key yinv = invert(y);
rct::keyV winv(rounds);
for (size_t i = 0; i < rounds; ++i)
winv[i] = invert(w[i]);
PERF_TIMER_STOP(VERIFY_line_24_25_invert);
for (size_t i = 0; i < N; ++i)
{
// Convert the index to binary IN REVERSE and construct the scalar exponent
rct::key g_scalar = proof.a;
rct::key h_scalar;
sc_mul(h_scalar.bytes, proof.b.bytes, yinvpow.bytes);
for (size_t j = rounds; j-- > 0; )
{
size_t J = w.size() - j - 1;
if ((i & (((size_t)1)<<j)) == 0)
{
sc_mul(g_scalar.bytes, g_scalar.bytes, winv[J].bytes);
sc_mul(h_scalar.bytes, h_scalar.bytes, w[J].bytes);
}
else
{
sc_mul(g_scalar.bytes, g_scalar.bytes, w[J].bytes);
sc_mul(h_scalar.bytes, h_scalar.bytes, winv[J].bytes);
}
}
// Adjust the scalars using the exponents from PAPER LINE 62
sc_add(g_scalar.bytes, g_scalar.bytes, z.bytes);
sc_mul(tmp.bytes, zsq.bytes, twoN[i].bytes);
sc_muladd(tmp.bytes, z.bytes, ypow.bytes, tmp.bytes);
sc_mulsub(h_scalar.bytes, tmp.bytes, yinvpow.bytes, h_scalar.bytes);
// Now compute the basepoint's scalar multiplication
// Each of these could be written as a multiexp operation instead
rct::addKeys3(tmp, g_scalar, Gprecomp[i], h_scalar, Hprecomp[i]);
rct::addKeys(inner_prod, inner_prod, tmp);
if (i != N-1)
{
sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes);
sc_mul(ypow.bytes, ypow.bytes, y.bytes);
}
}
PERF_TIMER_STOP(VERIFY_line_24_25);
PERF_TIMER_START_BP(VERIFY_line_26);
// PAPER LINE 26
rct::key pprime;
sc_sub(tmp.bytes, rct::zero().bytes, proof.mu.bytes);
rct::addKeys(pprime, P, rct::scalarmultBase(tmp));
for (size_t i = 0; i < rounds; ++i)
{
sc_mul(tmp.bytes, w[i].bytes, w[i].bytes);
sc_mul(tmp2.bytes, winv[i].bytes, winv[i].bytes);
#if 1
ge_dsmp cacheL, cacheR;
rct::precomp(cacheL, proof.L[i]);
rct::precomp(cacheR, proof.R[i]);
rct::addKeys3(tmp, tmp, cacheL, tmp2, cacheR);
rct::addKeys(pprime, pprime, tmp);
#else
rct::addKeys(pprime, pprime, rct::scalarmultKey(proof.L[i], tmp));
rct::addKeys(pprime, pprime, rct::scalarmultKey(proof.R[i], tmp2));
#endif
}
sc_mul(tmp.bytes, proof.t.bytes, x_ip.bytes);
rct::addKeys(pprime, pprime, rct::scalarmultKey(rct::H, tmp));
PERF_TIMER_STOP(VERIFY_line_26);
PERF_TIMER_START_BP(VERIFY_step2_check);
sc_mul(tmp.bytes, proof.a.bytes, proof.b.bytes);
sc_mul(tmp.bytes, tmp.bytes, x_ip.bytes);
tmp = rct::scalarmultKey(rct::H, tmp);
rct::addKeys(tmp, tmp, inner_prod);
PERF_TIMER_STOP(VERIFY_step2_check);
if (!(pprime == tmp))
{
MERROR("Verification failure at step 2");
return false;
}
PERF_TIMER_STOP(VERIFY);
return true;
}
}
|