aboutsummaryrefslogtreecommitdiff
path: root/src/multisig/multisig.cpp
blob: 999894db0497ff327978797c18ca14a3272e218d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
// Copyright (c) 2017-2019, The Monero Project
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
// 
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
// 
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
// 
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <unordered_set>
#include "include_base_utils.h"
#include "crypto/crypto.h"
#include "ringct/rctOps.h"
#include "cryptonote_basic/account.h"
#include "cryptonote_basic/cryptonote_format_utils.h"
#include "multisig.h"
#include "cryptonote_config.h"

#undef MONERO_DEFAULT_LOG_CATEGORY
#define MONERO_DEFAULT_LOG_CATEGORY "multisig"

using namespace std;

namespace cryptonote
{
  //-----------------------------------------------------------------
  crypto::secret_key get_multisig_blinded_secret_key(const crypto::secret_key &key)
  {
    rct::key multisig_salt;
    static_assert(sizeof(rct::key) == sizeof(config::HASH_KEY_MULTISIG), "Hash domain separator is an unexpected size");
    memcpy(multisig_salt.bytes, config::HASH_KEY_MULTISIG, sizeof(rct::key));

    rct::keyV data;
    data.reserve(2);
    data.push_back(rct::sk2rct(key));
    data.push_back(multisig_salt);
    crypto::secret_key result = rct::rct2sk(rct::hash_to_scalar(data));
    memwipe(&data[0], sizeof(rct::key));
    return result;
  }
  //-----------------------------------------------------------------
  void generate_multisig_N_N(const account_keys &keys, const std::vector<crypto::public_key> &spend_keys, std::vector<crypto::secret_key> &multisig_keys, rct::key &spend_skey, rct::key &spend_pkey)
  {
    // the multisig spend public key is the sum of all spend public keys
    multisig_keys.clear();
    const crypto::secret_key spend_secret_key = get_multisig_blinded_secret_key(keys.m_spend_secret_key);
    CHECK_AND_ASSERT_THROW_MES(crypto::secret_key_to_public_key(spend_secret_key, (crypto::public_key&)spend_pkey), "Failed to derive public key");
    for (const auto &k: spend_keys)
      rct::addKeys(spend_pkey, spend_pkey, rct::pk2rct(k));
    multisig_keys.push_back(spend_secret_key);
    spend_skey = rct::sk2rct(spend_secret_key);
  }
  //-----------------------------------------------------------------
  void generate_multisig_N1_N(const account_keys &keys, const std::vector<crypto::public_key> &spend_keys, std::vector<crypto::secret_key> &multisig_keys, rct::key &spend_skey, rct::key &spend_pkey)
  {
    multisig_keys.clear();
    spend_pkey = rct::identity();
    spend_skey = rct::zero();

    // create all our composite private keys
    crypto::secret_key blinded_skey = get_multisig_blinded_secret_key(keys.m_spend_secret_key);
    for (const auto &k: spend_keys)
    {
      rct::key sk = rct::scalarmultKey(rct::pk2rct(k), rct::sk2rct(blinded_skey));
      crypto::secret_key msk = get_multisig_blinded_secret_key(rct::rct2sk(sk));
      multisig_keys.push_back(msk);
      sc_add(spend_skey.bytes, spend_skey.bytes, (const unsigned char*)msk.data);
    }
  }
  //-----------------------------------------------------------------
  std::vector<crypto::public_key> generate_multisig_derivations(const account_keys &keys, const std::vector<crypto::public_key> &derivations)
  {
    std::vector<crypto::public_key> multisig_keys;
    crypto::secret_key blinded_skey = get_multisig_blinded_secret_key(keys.m_spend_secret_key);
    for (const auto &k: derivations)
    {
      rct::key d = rct::scalarmultKey(rct::pk2rct(k), rct::sk2rct(blinded_skey));
      multisig_keys.push_back(rct::rct2pk(d));
    }

    return multisig_keys;
  }
  //-----------------------------------------------------------------
  crypto::secret_key calculate_multisig_signer_key(const std::vector<crypto::secret_key>& multisig_keys)
  {
    rct::key secret_key = rct::zero();
    for (const auto &k: multisig_keys)
    {
      sc_add(secret_key.bytes, secret_key.bytes, (const unsigned char*)k.data);
    }

    return rct::rct2sk(secret_key);
  }
  //-----------------------------------------------------------------
  std::vector<crypto::secret_key> calculate_multisig_keys(const std::vector<crypto::public_key>& derivations)
  {
    std::vector<crypto::secret_key> multisig_keys;
    multisig_keys.reserve(derivations.size());

    for (const auto &k: derivations)
    {
      multisig_keys.emplace_back(get_multisig_blinded_secret_key(rct::rct2sk(rct::pk2rct(k))));
    }

    return multisig_keys;
  }
  //-----------------------------------------------------------------
  crypto::secret_key generate_multisig_view_secret_key(const crypto::secret_key &skey, const std::vector<crypto::secret_key> &skeys)
  {
    rct::key view_skey = rct::sk2rct(get_multisig_blinded_secret_key(skey));
    for (const auto &k: skeys)
      sc_add(view_skey.bytes, view_skey.bytes, rct::sk2rct(k).bytes);
    return rct::rct2sk(view_skey);
  }
  //-----------------------------------------------------------------
  crypto::public_key generate_multisig_M_N_spend_public_key(const std::vector<crypto::public_key> &pkeys)
  {
    rct::key spend_public_key = rct::identity();
    for (const auto &pk: pkeys)
    {
      rct::addKeys(spend_public_key, spend_public_key, rct::pk2rct(pk));
    }
    return rct::rct2pk(spend_public_key);
  }
  //-----------------------------------------------------------------
  bool generate_multisig_key_image(const account_keys &keys, size_t multisig_key_index, const crypto::public_key& out_key, crypto::key_image& ki)
  {
    if (multisig_key_index >= keys.m_multisig_keys.size())
      return false;
    crypto::generate_key_image(out_key, keys.m_multisig_keys[multisig_key_index], ki);
    return true;
  }
  //-----------------------------------------------------------------
  void generate_multisig_LR(const crypto::public_key pkey, const crypto::secret_key &k, crypto::public_key &L, crypto::public_key &R)
  {
    rct::scalarmultBase((rct::key&)L, rct::sk2rct(k));
    crypto::generate_key_image(pkey, k, (crypto::key_image&)R);
  }
  //-----------------------------------------------------------------
  bool generate_multisig_composite_key_image(const account_keys &keys, const std::unordered_map<crypto::public_key, subaddress_index>& subaddresses, const crypto::public_key& out_key, const crypto::public_key &tx_public_key, const std::vector<crypto::public_key>& additional_tx_public_keys, size_t real_output_index, const std::vector<crypto::key_image> &pkis, crypto::key_image &ki)
  {
    cryptonote::keypair in_ephemeral;
    if (!cryptonote::generate_key_image_helper(keys, subaddresses, out_key, tx_public_key, additional_tx_public_keys, real_output_index, in_ephemeral, ki, keys.get_device()))
      return false;
    std::unordered_set<crypto::key_image> used;
    for (size_t m = 0; m < keys.m_multisig_keys.size(); ++m)
    {
      crypto::key_image pki;
      bool r = cryptonote::generate_multisig_key_image(keys, m, out_key, pki);
      if (!r)
        return false;
      used.insert(pki);
    }
    for (const auto &pki: pkis)
    {
      if (used.find(pki) == used.end())
      {
        used.insert(pki);
        rct::addKeys((rct::key&)ki, rct::ki2rct(ki), rct::ki2rct(pki));
      }
    }
    return true;
  }
  //-----------------------------------------------------------------
  uint32_t multisig_rounds_required(uint32_t participants, uint32_t threshold)
  {
    CHECK_AND_ASSERT_THROW_MES(participants >= threshold, "participants must be greater or equal than threshold");
    return participants - threshold + 1;
  }
}