1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
|
// Copyright (c) 2017-2019, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#include "device_default.hpp"
#include "int-util.h"
#include "cryptonote_basic/account.h"
#include "cryptonote_basic/subaddress_index.h"
#include "cryptonote_core/cryptonote_tx_utils.h"
#include "ringct/rctOps.h"
#define ENCRYPTED_PAYMENT_ID_TAIL 0x8d
#define CHACHA8_KEY_TAIL 0x8c
namespace hw {
namespace core {
device_default::device_default() { }
device_default::~device_default() { }
/* ===================================================================== */
/* === Misc ==== */
/* ===================================================================== */
static inline unsigned char *operator &(crypto::ec_scalar &scalar) {
return &reinterpret_cast<unsigned char &>(scalar);
}
static inline const unsigned char *operator &(const crypto::ec_scalar &scalar) {
return &reinterpret_cast<const unsigned char &>(scalar);
}
/* ======================================================================= */
/* SETUP/TEARDOWN */
/* ======================================================================= */
bool device_default::set_name(const std::string &name) {
this->name = name;
return true;
}
const std::string device_default::get_name() const {
return this->name;
}
bool device_default::init(void) {
return true;
}
bool device_default::release() {
return true;
}
bool device_default::connect(void) {
return true;
}
bool device_default::disconnect() {
return true;
}
bool device_default::set_mode(device_mode mode) {
return device::set_mode(mode);
}
/* ======================================================================= */
/* LOCKER */
/* ======================================================================= */
void device_default::lock() { }
bool device_default::try_lock() { return true; }
void device_default::unlock() { }
/* ======================================================================= */
/* WALLET & ADDRESS */
/* ======================================================================= */
bool device_default::generate_chacha_key(const cryptonote::account_keys &keys, crypto::chacha_key &key, uint64_t kdf_rounds) {
const crypto::secret_key &view_key = keys.m_view_secret_key;
const crypto::secret_key &spend_key = keys.m_spend_secret_key;
epee::mlocked<tools::scrubbed_arr<char, sizeof(view_key) + sizeof(spend_key) + 1>> data;
memcpy(data.data(), &view_key, sizeof(view_key));
memcpy(data.data() + sizeof(view_key), &spend_key, sizeof(spend_key));
data[sizeof(data) - 1] = CHACHA8_KEY_TAIL;
crypto::generate_chacha_key(data.data(), sizeof(data), key, kdf_rounds);
return true;
}
bool device_default::get_public_address(cryptonote::account_public_address &pubkey) {
dfns();
}
bool device_default::get_secret_keys(crypto::secret_key &viewkey , crypto::secret_key &spendkey) {
dfns();
}
/* ======================================================================= */
/* SUB ADDRESS */
/* ======================================================================= */
bool device_default::derive_subaddress_public_key(const crypto::public_key &out_key, const crypto::key_derivation &derivation, const std::size_t output_index, crypto::public_key &derived_key) {
return crypto::derive_subaddress_public_key(out_key, derivation, output_index,derived_key);
}
crypto::public_key device_default::get_subaddress_spend_public_key(const cryptonote::account_keys& keys, const cryptonote::subaddress_index &index) {
if (index.is_zero())
return keys.m_account_address.m_spend_public_key;
// m = Hs(a || index_major || index_minor)
crypto::secret_key m = get_subaddress_secret_key(keys.m_view_secret_key, index);
// M = m*G
crypto::public_key M;
crypto::secret_key_to_public_key(m, M);
// D = B + M
crypto::public_key D = rct::rct2pk(rct::addKeys(rct::pk2rct(keys.m_account_address.m_spend_public_key), rct::pk2rct(M)));
return D;
}
std::vector<crypto::public_key> device_default::get_subaddress_spend_public_keys(const cryptonote::account_keys &keys, uint32_t account, uint32_t begin, uint32_t end) {
CHECK_AND_ASSERT_THROW_MES(begin <= end, "begin > end");
std::vector<crypto::public_key> pkeys;
pkeys.reserve(end - begin);
cryptonote::subaddress_index index = {account, begin};
ge_p3 p3;
ge_cached cached;
CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&p3, (const unsigned char*)keys.m_account_address.m_spend_public_key.data) == 0,
"ge_frombytes_vartime failed to convert spend public key");
ge_p3_to_cached(&cached, &p3);
for (uint32_t idx = begin; idx < end; ++idx)
{
index.minor = idx;
if (index.is_zero())
{
pkeys.push_back(keys.m_account_address.m_spend_public_key);
continue;
}
crypto::secret_key m = get_subaddress_secret_key(keys.m_view_secret_key, index);
// M = m*G
ge_scalarmult_base(&p3, (const unsigned char*)m.data);
// D = B + M
crypto::public_key D;
ge_p1p1 p1p1;
ge_add(&p1p1, &p3, &cached);
ge_p1p1_to_p3(&p3, &p1p1);
ge_p3_tobytes((unsigned char*)D.data, &p3);
pkeys.push_back(D);
}
return pkeys;
}
cryptonote::account_public_address device_default::get_subaddress(const cryptonote::account_keys& keys, const cryptonote::subaddress_index &index) {
if (index.is_zero())
return keys.m_account_address;
crypto::public_key D = get_subaddress_spend_public_key(keys, index);
// C = a*D
crypto::public_key C = rct::rct2pk(rct::scalarmultKey(rct::pk2rct(D), rct::sk2rct(keys.m_view_secret_key)));
// result: (C, D)
cryptonote::account_public_address address;
address.m_view_public_key = C;
address.m_spend_public_key = D;
return address;
}
crypto::secret_key device_default::get_subaddress_secret_key(const crypto::secret_key &a, const cryptonote::subaddress_index &index) {
const char prefix[] = "SubAddr";
char data[sizeof(prefix) + sizeof(crypto::secret_key) + 2 * sizeof(uint32_t)];
memcpy(data, prefix, sizeof(prefix));
memcpy(data + sizeof(prefix), &a, sizeof(crypto::secret_key));
uint32_t idx = SWAP32LE(index.major);
memcpy(data + sizeof(prefix) + sizeof(crypto::secret_key), &idx, sizeof(uint32_t));
idx = SWAP32LE(index.minor);
memcpy(data + sizeof(prefix) + sizeof(crypto::secret_key) + sizeof(uint32_t), &idx, sizeof(uint32_t));
crypto::secret_key m;
crypto::hash_to_scalar(data, sizeof(data), m);
return m;
}
/* ======================================================================= */
/* DERIVATION & KEY */
/* ======================================================================= */
bool device_default::verify_keys(const crypto::secret_key &secret_key, const crypto::public_key &public_key) {
crypto::public_key calculated_pub;
bool r = crypto::secret_key_to_public_key(secret_key, calculated_pub);
return r && public_key == calculated_pub;
}
bool device_default::scalarmultKey(rct::key & aP, const rct::key &P, const rct::key &a) {
rct::scalarmultKey(aP, P,a);
return true;
}
bool device_default::scalarmultBase(rct::key &aG, const rct::key &a) {
rct::scalarmultBase(aG,a);
return true;
}
bool device_default::sc_secret_add(crypto::secret_key &r, const crypto::secret_key &a, const crypto::secret_key &b) {
sc_add(&r, &a, &b);
return true;
}
crypto::secret_key device_default::generate_keys(crypto::public_key &pub, crypto::secret_key &sec, const crypto::secret_key& recovery_key, bool recover) {
return crypto::generate_keys(pub, sec, recovery_key, recover);
}
bool device_default::generate_key_derivation(const crypto::public_key &key1, const crypto::secret_key &key2, crypto::key_derivation &derivation) {
return crypto::generate_key_derivation(key1, key2, derivation);
}
bool device_default::derivation_to_scalar(const crypto::key_derivation &derivation, const size_t output_index, crypto::ec_scalar &res){
crypto::derivation_to_scalar(derivation,output_index, res);
return true;
}
bool device_default::derive_secret_key(const crypto::key_derivation &derivation, const std::size_t output_index, const crypto::secret_key &base, crypto::secret_key &derived_key){
crypto::derive_secret_key(derivation, output_index, base, derived_key);
return true;
}
bool device_default::derive_public_key(const crypto::key_derivation &derivation, const std::size_t output_index, const crypto::public_key &base, crypto::public_key &derived_key){
return crypto::derive_public_key(derivation, output_index, base, derived_key);
}
bool device_default::secret_key_to_public_key(const crypto::secret_key &sec, crypto::public_key &pub) {
return crypto::secret_key_to_public_key(sec,pub);
}
bool device_default::generate_key_image(const crypto::public_key &pub, const crypto::secret_key &sec, crypto::key_image &image){
crypto::generate_key_image(pub, sec,image);
return true;
}
bool device_default::conceal_derivation(crypto::key_derivation &derivation, const crypto::public_key &tx_pub_key, const std::vector<crypto::public_key> &additional_tx_pub_keys, const crypto::key_derivation &main_derivation, const std::vector<crypto::key_derivation> &additional_derivations){
return true;
}
/* ======================================================================= */
/* TRANSACTION */
/* ======================================================================= */
void device_default::generate_tx_proof(const crypto::hash &prefix_hash,
const crypto::public_key &R, const crypto::public_key &A, const boost::optional<crypto::public_key> &B, const crypto::public_key &D, const crypto::secret_key &r,
crypto::signature &sig) {
crypto::generate_tx_proof(prefix_hash, R, A, B, D, r, sig);
}
bool device_default::open_tx(crypto::secret_key &tx_key) {
cryptonote::keypair txkey = cryptonote::keypair::generate(*this);
tx_key = txkey.sec;
return true;
}
void device_default::get_transaction_prefix_hash(const cryptonote::transaction_prefix& tx, crypto::hash& h) {
cryptonote::get_transaction_prefix_hash(tx, h);
}
bool device_default::generate_output_ephemeral_keys(const size_t tx_version,
const cryptonote::account_keys &sender_account_keys, const crypto::public_key &txkey_pub, const crypto::secret_key &tx_key,
const cryptonote::tx_destination_entry &dst_entr, const boost::optional<cryptonote::account_public_address> &change_addr, const size_t output_index,
const bool &need_additional_txkeys, const std::vector<crypto::secret_key> &additional_tx_keys,
std::vector<crypto::public_key> &additional_tx_public_keys,
std::vector<rct::key> &amount_keys, crypto::public_key &out_eph_public_key) {
crypto::key_derivation derivation;
// make additional tx pubkey if necessary
cryptonote::keypair additional_txkey;
if (need_additional_txkeys)
{
additional_txkey.sec = additional_tx_keys[output_index];
if (dst_entr.is_subaddress)
additional_txkey.pub = rct::rct2pk(rct::scalarmultKey(rct::pk2rct(dst_entr.addr.m_spend_public_key), rct::sk2rct(additional_txkey.sec)));
else
additional_txkey.pub = rct::rct2pk(rct::scalarmultBase(rct::sk2rct(additional_txkey.sec)));
}
bool r;
if (change_addr && dst_entr.addr == *change_addr)
{
// sending change to yourself; derivation = a*R
r = generate_key_derivation(txkey_pub, sender_account_keys.m_view_secret_key, derivation);
CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to generate_key_derivation(" << txkey_pub << ", " << sender_account_keys.m_view_secret_key << ")");
}
else
{
// sending to the recipient; derivation = r*A (or s*C in the subaddress scheme)
r = generate_key_derivation(dst_entr.addr.m_view_public_key, dst_entr.is_subaddress && need_additional_txkeys ? additional_txkey.sec : tx_key, derivation);
CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to generate_key_derivation(" << dst_entr.addr.m_view_public_key << ", " << (dst_entr.is_subaddress && need_additional_txkeys ? additional_txkey.sec : tx_key) << ")");
}
if (need_additional_txkeys)
{
additional_tx_public_keys.push_back(additional_txkey.pub);
}
if (tx_version > 1)
{
crypto::secret_key scalar1;
derivation_to_scalar(derivation, output_index, scalar1);
amount_keys.push_back(rct::sk2rct(scalar1));
}
r = derive_public_key(derivation, output_index, dst_entr.addr.m_spend_public_key, out_eph_public_key);
CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to derive_public_key(" << derivation << ", " << output_index << ", "<< dst_entr.addr.m_spend_public_key << ")");
return r;
}
bool device_default::encrypt_payment_id(crypto::hash8 &payment_id, const crypto::public_key &public_key, const crypto::secret_key &secret_key) {
crypto::key_derivation derivation;
crypto::hash hash;
char data[33]; /* A hash, and an extra byte */
if (!generate_key_derivation(public_key, secret_key, derivation))
return false;
memcpy(data, &derivation, 32);
data[32] = ENCRYPTED_PAYMENT_ID_TAIL;
cn_fast_hash(data, 33, hash);
for (size_t b = 0; b < 8; ++b)
payment_id.data[b] ^= hash.data[b];
return true;
}
rct::key device_default::genCommitmentMask(const rct::key &amount_key) {
return rct::genCommitmentMask(amount_key);
}
bool device_default::ecdhEncode(rct::ecdhTuple & unmasked, const rct::key & sharedSec, bool short_amount) {
rct::ecdhEncode(unmasked, sharedSec, short_amount);
return true;
}
bool device_default::ecdhDecode(rct::ecdhTuple & masked, const rct::key & sharedSec, bool short_amount) {
rct::ecdhDecode(masked, sharedSec, short_amount);
return true;
}
bool device_default::mlsag_prepare(const rct::key &H, const rct::key &xx,
rct::key &a, rct::key &aG, rct::key &aHP, rct::key &II) {
rct::skpkGen(a, aG);
rct::scalarmultKey(aHP, H, a);
rct::scalarmultKey(II, H, xx);
return true;
}
bool device_default::mlsag_prepare(rct::key &a, rct::key &aG) {
rct::skpkGen(a, aG);
return true;
}
bool device_default::mlsag_prehash(const std::string &blob, size_t inputs_size, size_t outputs_size, const rct::keyV &hashes, const rct::ctkeyV &outPk, rct::key &prehash) {
prehash = rct::cn_fast_hash(hashes);
return true;
}
bool device_default::mlsag_hash(const rct::keyV &toHash, rct::key &c_old) {
c_old = rct::hash_to_scalar(toHash);
return true;
}
bool device_default::mlsag_sign(const rct::key &c, const rct::keyV &xx, const rct::keyV &alpha, const size_t rows, const size_t dsRows, rct::keyV &ss ) {
CHECK_AND_ASSERT_THROW_MES(dsRows<=rows, "dsRows greater than rows");
CHECK_AND_ASSERT_THROW_MES(xx.size() == rows, "xx size does not match rows");
CHECK_AND_ASSERT_THROW_MES(alpha.size() == rows, "alpha size does not match rows");
CHECK_AND_ASSERT_THROW_MES(ss.size() == rows, "ss size does not match rows");
for (size_t j = 0; j < rows; j++) {
sc_mulsub(ss[j].bytes, c.bytes, xx[j].bytes, alpha[j].bytes);
}
return true;
}
bool device_default::close_tx() {
return true;
}
/* ---------------------------------------------------------- */
static device_default *default_core_device = NULL;
void register_all(std::map<std::string, std::unique_ptr<device>> ®istry) {
if (!default_core_device) {
default_core_device = new device_default();
default_core_device->set_name("default_core_device");
}
registry.insert(std::make_pair("default", std::unique_ptr<device>(default_core_device)));
}
}
}
|