aboutsummaryrefslogtreecommitdiff
path: root/src/cryptonote_protocol/levin_notify.cpp
blob: a0a4bbbb108ad7c1b2f8846de6d14a99690cd82e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
// Copyright (c) 2019, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "levin_notify.h"

#include <boost/asio/steady_timer.hpp>
#include <boost/system/system_error.hpp>
#include <chrono>
#include <deque>
#include <stdexcept>
#include <utility>

#include "common/expect.h"
#include "common/varint.h"
#include "cryptonote_config.h"
#include "crypto/random.h"
#include "cryptonote_basic/connection_context.h"
#include "cryptonote_protocol/cryptonote_protocol_defs.h"
#include "net/dandelionpp.h"
#include "p2p/net_node.h"

namespace cryptonote
{
namespace levin
{
  namespace
  {
    constexpr std::size_t connection_id_reserve_size = 100;

    constexpr const std::chrono::minutes noise_min_epoch{CRYPTONOTE_NOISE_MIN_EPOCH};
    constexpr const std::chrono::seconds noise_epoch_range{CRYPTONOTE_NOISE_EPOCH_RANGE};

    constexpr const std::chrono::seconds noise_min_delay{CRYPTONOTE_NOISE_MIN_DELAY};
    constexpr const std::chrono::seconds noise_delay_range{CRYPTONOTE_NOISE_DELAY_RANGE};

    /* A custom duration is used for the poisson distribution because of the
       variance. If 5 seconds is given to `std::poisson_distribution`, 95% of
       the values fall between 1-9s in 1s increments (not granular enough). If
       5000 milliseconds is given, 95% of the values fall between 4859ms-5141ms
       in 1ms increments (not enough time variance). Providing 20 quarter
       seconds yields 95% of the values between 3s-7.25s in 1/4s increments. */
    using fluff_stepsize = std::chrono::duration<std::chrono::milliseconds::rep, std::ratio<1, 4>>;
    constexpr const std::chrono::seconds fluff_average_in{CRYPTONOTE_DANDELIONPP_FLUSH_AVERAGE};

    /*! Bitcoin Core is using 1/2 average seconds for outgoing connections
        compared to incoming. The thinking is that the user controls outgoing
        connections (Dandelion++ makes similar assumptions in its stem
        algorithm). The randomization yields 95% values between 1s-4s in
	1/4s increments. */
    constexpr const fluff_stepsize fluff_average_out{fluff_stepsize{fluff_average_in} / 2};

    class random_poisson
    {
      std::poisson_distribution<fluff_stepsize::rep> dist;
    public:
      explicit random_poisson(fluff_stepsize average)
        : dist(average.count() < 0 ? 0 : average.count())
      {}

      fluff_stepsize operator()()
      {
        crypto::random_device rand{};
        return fluff_stepsize{dist(rand)};
      }
    };

    /*! Select a randomized duration from 0 to `range`. The precision will be to
        the systems `steady_clock`. As an example, supplying 3 seconds to this
        function will select a duration from [0, 3] seconds, and the increments
        for the selection will be determined by the `steady_clock` precision
        (typically nanoseconds).

        \return A randomized duration from 0 to `range`. */
    std::chrono::steady_clock::duration random_duration(std::chrono::steady_clock::duration range)
    {
      using rep = std::chrono::steady_clock::rep;
      return std::chrono::steady_clock::duration{crypto::rand_range(rep(0), range.count())};
    }

    //! \return All outgoing connections supporting fragments in `connections`.
    std::vector<boost::uuids::uuid> get_out_connections(connections& p2p)
    {
      std::vector<boost::uuids::uuid> outs;
      outs.reserve(connection_id_reserve_size);

      /* The foreach call is serialized with a lock, but should be quick due to
         the reserve call so a strand is not used. Investigate if there is lots
         of waiting in here. */

      p2p.foreach_connection([&outs] (detail::p2p_context& context) {
        if (!context.m_is_income)
          outs.emplace_back(context.m_connection_id);
        return true;
      });

      return outs;
    }

    std::string make_tx_payload(std::vector<blobdata>&& txs, const bool pad)
    {
      NOTIFY_NEW_TRANSACTIONS::request request{};
      request.txs = std::move(txs);

      if (pad)
      {
        size_t bytes = 9 /* header */ + 4 /* 1 + 'txs' */ + tools::get_varint_data(request.txs.size()).size();
        for(auto tx_blob_it = request.txs.begin(); tx_blob_it!=request.txs.end(); ++tx_blob_it)
          bytes += tools::get_varint_data(tx_blob_it->size()).size() + tx_blob_it->size();

        // stuff some dummy bytes in to stay safe from traffic volume analysis
        static constexpr const size_t granularity = 1024;
        size_t padding = granularity - bytes % granularity;
        const size_t overhead = 2 /* 1 + '_' */ + tools::get_varint_data(padding).size();
        if (overhead > padding)
          padding = 0;
        else
          padding -= overhead;
        request._ = std::string(padding, ' ');

        std::string arg_buff;
        epee::serialization::store_t_to_binary(request, arg_buff);

        // we probably lowballed the payload size a bit, so added a but too much. Fix this now.
        size_t remove = arg_buff.size() % granularity;
        if (remove > request._.size())
          request._.clear();
        else
          request._.resize(request._.size() - remove);
        // if the size of _ moved enough, we might lose byte in size encoding, we don't care
      }

      std::string fullBlob;
      if (!epee::serialization::store_t_to_binary(request, fullBlob))
        throw std::runtime_error{"Failed to serialize to epee binary format"};

      return fullBlob;
    }

    bool make_payload_send_txs(connections& p2p, std::vector<blobdata>&& txs, const boost::uuids::uuid& destination, const bool pad)
    {
      const cryptonote::blobdata blob = make_tx_payload(std::move(txs), pad);
      return p2p.notify(NOTIFY_NEW_TRANSACTIONS::ID, epee::strspan<std::uint8_t>(blob), destination);
    }

    /* The current design uses `asio::strand`s. The documentation isn't as clear
       as it should be - a `strand` has an internal `mutex` and `bool`. The
       `mutex` synchronizes thread access and the `bool` is set when a thread is
       executing something "in the strand". Therefore, if a callback has lots of
       work to do in a `strand`, asio can switch to some other task instead of
       blocking 1+ threads to wait for the original thread to complete the task
       (as is the case when client code has a `mutex` inside the callback). The
       downside is that asio _always_ allocates for the callback, even if it can
       be immediately executed. So if all work in a strand is minimal, a lock
       may be better.

       This code uses a strand per "zone" and a strand per "channel in a zone".
       `dispatch` is used heavily, which means "execute immediately in _this_
       thread if the strand is not in use, otherwise queue the callback to be
       executed immediately after the strand completes its current task".
       `post` is used where deferred execution to an `asio::io_service::run`
       thread is preferred.

       The strand per "zone" is useful because the levin
       `foreach_connection` is blocked with a mutex anyway. So this primarily
       helps with reducing blocking of a thread attempting a "flood"
       notification. Updating/merging the outgoing connections in the
       Dandelion++ map is also somewhat expensive.

       The strand per "channel" may need a re-visit. The most "expensive" code
       is figuring out the noise/notification to send. If levin code is
       optimized further, it might be better to just use standard locks per
       channel. */

    //! A queue of levin messages for a noise i2p/tor link
    struct noise_channel
    {
      explicit noise_channel(boost::asio::io_service& io_service)
        : active(nullptr),
          queue(),
          strand(io_service),
          next_noise(io_service),
          connection(boost::uuids::nil_uuid())
      {}

      // `asio::io_service::strand` cannot be copied or moved
      noise_channel(const noise_channel&) = delete;
      noise_channel& operator=(const noise_channel&) = delete;

      // Only read/write these values "inside the strand"

      epee::byte_slice active;
      std::deque<epee::byte_slice> queue;
      boost::asio::io_service::strand strand;
      boost::asio::steady_timer next_noise;
      boost::uuids::uuid connection;
    };
  } // anonymous

  namespace detail
  {
    struct zone
    {
      explicit zone(boost::asio::io_service& io_service, std::shared_ptr<connections> p2p, epee::byte_slice noise_in, bool is_public, bool pad_txs)
        : p2p(std::move(p2p)),
          noise(std::move(noise_in)),
          next_epoch(io_service),
          flush_txs(io_service),
          strand(io_service),
          map(),
          channels(),
          flush_time(std::chrono::steady_clock::time_point::max()),
          connection_count(0),
          is_public(is_public),
          pad_txs(pad_txs)
      {
        for (std::size_t count = 0; !noise.empty() && count < CRYPTONOTE_NOISE_CHANNELS; ++count)
          channels.emplace_back(io_service);
      }

      const std::shared_ptr<connections> p2p;
      const epee::byte_slice noise; //!< `!empty()` means zone is using noise channels
      boost::asio::steady_timer next_epoch;
      boost::asio::steady_timer flush_txs;
      boost::asio::io_service::strand strand;
      net::dandelionpp::connection_map map;//!< Tracks outgoing uuid's for noise channels or Dandelion++ stems
      std::deque<noise_channel> channels;  //!< Never touch after init; only update elements on `noise_channel.strand`
      std::chrono::steady_clock::time_point flush_time; //!< Next expected Dandelion++ fluff flush
      std::atomic<std::size_t> connection_count; //!< Only update in strand, can be read at any time
      const bool is_public;                      //!< Zone is public ipv4/ipv6 connections
      const bool pad_txs;                        //!< Pad txs to the next boundary for privacy
    };
  } // detail

  namespace
  {
    //! Adds a message to the sending queue of the channel.
    class queue_covert_notify
    {
      std::shared_ptr<detail::zone> zone_;
      epee::byte_slice message_; // Requires manual copy constructor
      const std::size_t destination_;

    public:
      queue_covert_notify(std::shared_ptr<detail::zone> zone, epee::byte_slice message, std::size_t destination)
        : zone_(std::move(zone)), message_(std::move(message)), destination_(destination)
      {}

      queue_covert_notify(queue_covert_notify&&) = default;
      queue_covert_notify(const queue_covert_notify& source)
        : zone_(source.zone_), message_(source.message_.clone()), destination_(source.destination_)
      {}

      //! \pre Called within `zone_->channels[destionation_].strand`.
      void operator()()
      {
        if (!zone_)
          return;

        noise_channel& channel = zone_->channels.at(destination_);
        assert(channel.strand.running_in_this_thread());

        if (!channel.connection.is_nil())
          channel.queue.push_back(std::move(message_));
      }
    };

    //! Sends txs on connections with expired timers, and queues callback for next timer expiration (if any).
    struct fluff_flush
    {
      std::shared_ptr<detail::zone> zone_;
      std::chrono::steady_clock::time_point flush_time_;

      static void queue(std::shared_ptr<detail::zone> zone, const std::chrono::steady_clock::time_point flush_time)
      {
        assert(zone != nullptr);
        assert(zone->strand.running_in_this_thread());

        detail::zone& this_zone = *zone;
        this_zone.flush_time = flush_time;
        this_zone.flush_txs.expires_at(flush_time);
        this_zone.flush_txs.async_wait(this_zone.strand.wrap(fluff_flush{std::move(zone), flush_time}));
      }

      void operator()(const boost::system::error_code error)
      {
        if (!zone_ || !zone_->p2p)
          return;

        assert(zone_->strand.running_in_this_thread());

        const bool timer_error = bool(error);
        if (timer_error)
        {
          if (error != boost::system::errc::operation_canceled)
            throw boost::system::system_error{error, "fluff_flush timer failed"};

          // new timer canceled this one set in future
          if (zone_->flush_time < flush_time_)
            return;
        }

        const auto now = std::chrono::steady_clock::now();
        auto next_flush = std::chrono::steady_clock::time_point::max();
        std::vector<std::pair<std::vector<blobdata>, boost::uuids::uuid>> connections{};
        zone_->p2p->foreach_connection([timer_error, now, &next_flush, &connections] (detail::p2p_context& context)
        {
          if (!context.fluff_txs.empty())
          {
            if (context.flush_time <= now || timer_error) // flush on canceled timer
            {
              context.flush_time = std::chrono::steady_clock::time_point::max();
              connections.emplace_back(std::move(context.fluff_txs), context.m_connection_id);
              context.fluff_txs.clear();
            }
            else // not flushing yet
              next_flush = std::min(next_flush, context.flush_time);
          }
          else // nothing to flush
            context.flush_time = std::chrono::steady_clock::time_point::max();
          return true;
        });

        for (auto& connection : connections)
          make_payload_send_txs(*zone_->p2p, std::move(connection.first), connection.second, zone_->pad_txs);

        if (next_flush != std::chrono::steady_clock::time_point::max())
          fluff_flush::queue(std::move(zone_), next_flush);
        else
          zone_->flush_time = next_flush; // signal that no timer is set
      }
    };

    /*! The "fluff" portion of the Dandelion++ algorithm. Every tx is queued
        per-connection and flushed with a randomized poisson timer. This
        implementation only has one system timer per-zone, and instead tracks
        the lowest flush time. */
    struct fluff_notify
    {
      std::shared_ptr<detail::zone> zone_;
      std::vector<blobdata> txs_;
      boost::uuids::uuid source_;

      void operator()()
      {
        if (!zone_ || !zone_->p2p || txs_.empty())
          return;

        assert(zone_->strand.running_in_this_thread());

        const auto now = std::chrono::steady_clock::now();
        auto next_flush = std::chrono::steady_clock::time_point::max();

        random_poisson in_duration(fluff_average_in);
        random_poisson out_duration(fluff_average_out);

        zone_->p2p->foreach_connection([this, now, &in_duration, &out_duration, &next_flush] (detail::p2p_context& context)
        {
          if (this->source_ != context.m_connection_id && (this->zone_->is_public || !context.m_is_income))
          {
            if (context.fluff_txs.empty())
              context.flush_time = now + (context.m_is_income ? in_duration() : out_duration());

            next_flush = std::min(next_flush, context.flush_time);
            context.fluff_txs.reserve(context.fluff_txs.size() + this->txs_.size());
            for (const blobdata& tx : this->txs_)
              context.fluff_txs.push_back(tx); // must copy instead of move (multiple conns)
          }
          return true;
        });

        if (next_flush < zone_->flush_time)
          fluff_flush::queue(std::move(zone_), next_flush);
      }
    };

    //! Updates the connection for a channel.
    struct update_channel
    {
      std::shared_ptr<detail::zone> zone_;
      const std::size_t channel_;
      const boost::uuids::uuid connection_;

      //! \pre Called within `stem_.strand`.
      void operator()() const
      {
        if (!zone_)
          return;

        noise_channel& channel = zone_->channels.at(channel_);
        assert(channel.strand.running_in_this_thread());
        static_assert(
          CRYPTONOTE_MAX_FRAGMENTS <= (noise_min_epoch / (noise_min_delay + noise_delay_range)),
          "Max fragments more than the max that can be sent in an epoch"
        );

        /* This clears the active message so that a message "in-flight" is
           restarted. DO NOT try to send the remainder of the fragments, this
           additional send time can leak that this node was sending out a real
           notify (tx) instead of dummy noise. */

        channel.connection = connection_;
        channel.active = nullptr;

        if (connection_.is_nil())
          channel.queue.clear();
      }
    };

    //! Merges `out_connections_` into the existing `zone_->map`.
    struct update_channels
    {
      std::shared_ptr<detail::zone> zone_;
      std::vector<boost::uuids::uuid> out_connections_;

      //! \pre Called within `zone->strand`.
      static void post(std::shared_ptr<detail::zone> zone)
      {
        if (!zone)
          return;

        assert(zone->strand.running_in_this_thread());

        zone->connection_count = zone->map.size();
        for (auto id = zone->map.begin(); id != zone->map.end(); ++id)
        {
          const std::size_t i = id - zone->map.begin();
          zone->channels[i].strand.post(update_channel{zone, i, *id});
        }
      }

      //! \pre Called within `zone_->strand`.
      void operator()()
      {
        if (!zone_)
          return;

        assert(zone_->strand.running_in_this_thread());
        if (zone_->map.update(std::move(out_connections_)))
          post(std::move(zone_));
      }
    };

    //! Swaps out noise channels entirely; new epoch start.
    class change_channels
    {
      std::shared_ptr<detail::zone> zone_;
      net::dandelionpp::connection_map map_; // Requires manual copy constructor

    public:
      explicit change_channels(std::shared_ptr<detail::zone> zone, net::dandelionpp::connection_map map)
        : zone_(std::move(zone)), map_(std::move(map))
      {}

      change_channels(change_channels&&) = default;
      change_channels(const change_channels& source)
        : zone_(source.zone_), map_(source.map_.clone())
      {}

      //! \pre Called within `zone_->strand`.
      void operator()()
      {
        if (!zone_)
          return

        assert(zone_->strand.running_in_this_thread());

        zone_->map = std::move(map_);
        update_channels::post(std::move(zone_));
      }
    };

    //! Sends a noise packet or real notification and sets timer for next call.
    struct send_noise
    {
      std::shared_ptr<detail::zone> zone_;
      const std::size_t channel_;

      static void wait(const std::chrono::steady_clock::time_point start, std::shared_ptr<detail::zone> zone, const std::size_t index)
      {
        if (!zone)
          return;

        noise_channel& channel = zone->channels.at(index);
        channel.next_noise.expires_at(start + noise_min_delay + random_duration(noise_delay_range));
        channel.next_noise.async_wait(
          channel.strand.wrap(send_noise{std::move(zone), index})
        );
      }

      //! \pre Called within `zone_->channels[channel_].strand`.
      void operator()(boost::system::error_code error)
      {
        if (!zone_ || !zone_->p2p || zone_->noise.empty())
          return;

        if (error && error != boost::system::errc::operation_canceled)
          throw boost::system::system_error{error, "send_noise timer failed"};

        assert(zone_->channels.at(channel_).strand.running_in_this_thread());

        const auto start = std::chrono::steady_clock::now();
        noise_channel& channel = zone_->channels.at(channel_);

        if (!channel.connection.is_nil())
        {
          epee::byte_slice message = nullptr;
          if (!channel.active.empty())
            message = channel.active.take_slice(zone_->noise.size());
          else if (!channel.queue.empty())
          {
            channel.active = channel.queue.front().clone();
            message = channel.active.take_slice(zone_->noise.size());
          }
          else
            message = zone_->noise.clone();

          if (zone_->p2p->send(std::move(message), channel.connection))
          {
            if (!channel.queue.empty() && channel.active.empty())
              channel.queue.pop_front();
          }
          else
          {
            channel.active = nullptr;
            channel.connection = boost::uuids::nil_uuid();
            zone_->strand.post(
              update_channels{zone_, get_out_connections(*zone_->p2p)}
            );
          }
        }

        wait(start, std::move(zone_), channel_);
      }
    };

    //! Prepares connections for new channel/dandelionpp epoch and sets timer for next epoch
    struct start_epoch
    {
      // Variables allow for Dandelion++ extension
      std::shared_ptr<detail::zone> zone_;
      std::chrono::seconds min_epoch_;
      std::chrono::seconds epoch_range_;
      std::size_t count_;

      //! \pre Should not be invoked within any strand to prevent blocking.
      void operator()(const boost::system::error_code error = {})
      {
        if (!zone_ || !zone_->p2p)
          return;

        if (error && error != boost::system::errc::operation_canceled)
          throw boost::system::system_error{error, "start_epoch timer failed"};

        const auto start = std::chrono::steady_clock::now();
        zone_->strand.dispatch(
          change_channels{zone_, net::dandelionpp::connection_map{get_out_connections(*(zone_->p2p)), count_}}
        );

        detail::zone& alias = *zone_;
        alias.next_epoch.expires_at(start + min_epoch_ + random_duration(epoch_range_));
        alias.next_epoch.async_wait(start_epoch{std::move(*this)});
      }
    };
  } // anonymous

  notify::notify(boost::asio::io_service& service, std::shared_ptr<connections> p2p, epee::byte_slice noise, const bool is_public, const bool pad_txs)
    : zone_(std::make_shared<detail::zone>(service, std::move(p2p), std::move(noise), is_public, pad_txs))
  {
    if (!zone_->p2p)
      throw std::logic_error{"cryptonote::levin::notify cannot have nullptr p2p argument"};

    if (!zone_->noise.empty())
    {
      const auto now = std::chrono::steady_clock::now();
      start_epoch{zone_, noise_min_epoch, noise_epoch_range, CRYPTONOTE_NOISE_CHANNELS}();
      for (std::size_t channel = 0; channel < zone_->channels.size(); ++channel)
        send_noise::wait(now, zone_, channel);
    }
  }

  notify::~notify() noexcept
  {}

  notify::status notify::get_status() const noexcept
  {
    if (!zone_)
      return {false, false};

    return {!zone_->noise.empty(), CRYPTONOTE_NOISE_CHANNELS <= zone_->connection_count};
  }

  void notify::new_out_connection()
  {
    if (!zone_ || zone_->noise.empty() || CRYPTONOTE_NOISE_CHANNELS <= zone_->connection_count)
      return;

    zone_->strand.dispatch(
      update_channels{zone_, get_out_connections(*(zone_->p2p))}
    );
  }

  void notify::run_epoch()
  {
    if (!zone_)
      return;
    zone_->next_epoch.cancel();
  }

  void notify::run_stems()
  {
    if (!zone_)
      return;

    for (noise_channel& channel : zone_->channels)
      channel.next_noise.cancel();
  }

  void notify::run_fluff()
  {
    if (!zone_)
      return;
    zone_->flush_txs.cancel();
  }

  bool notify::send_txs(std::vector<blobdata> txs, const boost::uuids::uuid& source)
  {
    if (txs.empty())
      return true;

    if (!zone_)
      return false;

    if (!zone_->noise.empty() && !zone_->channels.empty())
    {
      // covert send in "noise" channel
      static_assert(
        CRYPTONOTE_MAX_FRAGMENTS * CRYPTONOTE_NOISE_BYTES <= LEVIN_DEFAULT_MAX_PACKET_SIZE, "most nodes will reject this fragment setting"
      );

      // padding is not useful when using noise mode
      const std::string payload = make_tx_payload(std::move(txs), false);
      epee::byte_slice message = epee::levin::make_fragmented_notify(
        zone_->noise, NOTIFY_NEW_TRANSACTIONS::ID, epee::strspan<std::uint8_t>(payload)
      );
      if (CRYPTONOTE_MAX_FRAGMENTS * zone_->noise.size() < message.size())
      {
        MERROR("notify::send_txs provided message exceeding covert fragment size");
        return false;
      }

      for (std::size_t channel = 0; channel < zone_->channels.size(); ++channel)
      {
        zone_->channels[channel].strand.dispatch(
          queue_covert_notify{zone_, message.clone(), channel}
        );
      }
    }
    else
    {
      zone_->strand.dispatch(fluff_notify{zone_, std::move(txs), source});
    }

    return true;
  }
} // levin
} // net