aboutsummaryrefslogtreecommitdiff
path: root/src/cryptonote_basic/difficulty.cpp
blob: a9777c5812c3641fed9fea3744e23651a6e62020 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
// Copyright (c) 2014-2023, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers

#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <vector>

#include "int-util.h"
#include "crypto/hash.h"
#include "cryptonote_config.h"
#include "difficulty.h"

#undef MONERO_DEFAULT_LOG_CATEGORY
#define MONERO_DEFAULT_LOG_CATEGORY "difficulty"

namespace cryptonote {

  using std::size_t;
  using std::uint64_t;
  using std::vector;

#if defined(__x86_64__)
  static inline void mul(uint64_t a, uint64_t b, uint64_t &low, uint64_t &high) {
    low = mul128(a, b, &high);
  }

#else

  static inline void mul(uint64_t a, uint64_t b, uint64_t &low, uint64_t &high) {
    // __int128 isn't part of the standard, so the previous function wasn't portable. mul128() in Windows is fine,
    // but this portable function should be used elsewhere. Credit for this function goes to latexi95.

    uint64_t aLow = a & 0xFFFFFFFF;
    uint64_t aHigh = a >> 32;
    uint64_t bLow = b & 0xFFFFFFFF;
    uint64_t bHigh = b >> 32;

    uint64_t res = aLow * bLow;
    uint64_t lowRes1 = res & 0xFFFFFFFF;
    uint64_t carry = res >> 32;

    res = aHigh * bLow + carry;
    uint64_t highResHigh1 = res >> 32;
    uint64_t highResLow1 = res & 0xFFFFFFFF;

    res = aLow * bHigh;
    uint64_t lowRes2 = res & 0xFFFFFFFF;
    carry = res >> 32;

    res = aHigh * bHigh + carry;
    uint64_t highResHigh2 = res >> 32;
    uint64_t highResLow2 = res & 0xFFFFFFFF;

    //Addition

    uint64_t r = highResLow1 + lowRes2;
    carry = r >> 32;
    low = (r << 32) | lowRes1;
    r = highResHigh1 + highResLow2 + carry;
    uint64_t d3 = r & 0xFFFFFFFF;
    carry = r >> 32;
    r = highResHigh2 + carry;
    high = d3 | (r << 32);
  }

#endif

  static inline bool cadd(uint64_t a, uint64_t b) {
    return a + b < a;
  }

  static inline bool cadc(uint64_t a, uint64_t b, bool c) {
    return a + b < a || (c && a + b == (uint64_t) -1);
  }

  bool check_hash_64(const crypto::hash &hash, uint64_t difficulty) {
    uint64_t low, high, top, cur;
    // First check the highest word, this will most likely fail for a random hash.
    mul(swap64le(((const uint64_t *) &hash)[3]), difficulty, top, high);
    if (high != 0) {
      return false;
    }
    mul(swap64le(((const uint64_t *) &hash)[0]), difficulty, low, cur);
    mul(swap64le(((const uint64_t *) &hash)[1]), difficulty, low, high);
    bool carry = cadd(cur, low);
    cur = high;
    mul(swap64le(((const uint64_t *) &hash)[2]), difficulty, low, high);
    carry = cadc(cur, low, carry);
    carry = cadc(high, top, carry);
    return !carry;
  }

  uint64_t next_difficulty_64(std::vector<std::uint64_t> timestamps, std::vector<uint64_t> cumulative_difficulties, size_t target_seconds) {

    if(timestamps.size() > DIFFICULTY_WINDOW)
    {
      timestamps.resize(DIFFICULTY_WINDOW);
      cumulative_difficulties.resize(DIFFICULTY_WINDOW);
    }


    size_t length = timestamps.size();
    assert(length == cumulative_difficulties.size());
    if (length <= 1) {
      return 1;
    }
    static_assert(DIFFICULTY_WINDOW >= 2, "Window is too small");
    assert(length <= DIFFICULTY_WINDOW);
    sort(timestamps.begin(), timestamps.end());
    size_t cut_begin, cut_end;
    static_assert(2 * DIFFICULTY_CUT <= DIFFICULTY_WINDOW - 2, "Cut length is too large");
    if (length <= DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT) {
      cut_begin = 0;
      cut_end = length;
    } else {
      cut_begin = (length - (DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT) + 1) / 2;
      cut_end = cut_begin + (DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT);
    }
    assert(/*cut_begin >= 0 &&*/ cut_begin + 2 <= cut_end && cut_end <= length);
    uint64_t time_span = timestamps[cut_end - 1] - timestamps[cut_begin];
    if (time_span == 0) {
      time_span = 1;
    }
    uint64_t total_work = cumulative_difficulties[cut_end - 1] - cumulative_difficulties[cut_begin];
    assert(total_work > 0);
    uint64_t low, high;
    mul(total_work, target_seconds, low, high);
    // blockchain errors "difficulty overhead" if this function returns zero.
    // TODO: consider throwing an exception instead
    if (high != 0 || low + time_span - 1 < low) {
      return 0;
    }
    return (low + time_span - 1) / time_span;
  }

#if defined(_MSC_VER)
#ifdef max
#undef max
#endif
#endif

  const difficulty_type max64bit(std::numeric_limits<std::uint64_t>::max());
  const boost::multiprecision::uint256_t max128bit(std::numeric_limits<boost::multiprecision::uint128_t>::max());
  const boost::multiprecision::uint512_t max256bit(std::numeric_limits<boost::multiprecision::uint256_t>::max());

#define FORCE_FULL_128_BITS

  bool check_hash_128(const crypto::hash &hash, difficulty_type difficulty) {
#ifndef FORCE_FULL_128_BITS
    // fast check
    if (difficulty >= max64bit && ((const uint64_t *) &hash)[3] > 0)
      return false;
#endif
    // usual slow check
    boost::multiprecision::uint512_t hashVal = 0;
#ifdef FORCE_FULL_128_BITS
    for(int i = 0; i < 4; i++) { // highest word is zero
#else
    for(int i = 1; i < 4; i++) { // highest word is zero
#endif
      hashVal <<= 64;
      hashVal |= swap64le(((const uint64_t *) &hash)[3 - i]);
    }
    return hashVal * difficulty <= max256bit;
  }

  bool check_hash(const crypto::hash &hash, difficulty_type difficulty) {
    if (difficulty <= max64bit) // if can convert to small difficulty - do it
      return check_hash_64(hash, difficulty.convert_to<std::uint64_t>());
    else
      return check_hash_128(hash, difficulty);
  }

  difficulty_type next_difficulty(std::vector<uint64_t> timestamps, std::vector<difficulty_type> cumulative_difficulties, size_t target_seconds) {
    //cutoff DIFFICULTY_LAG
    if(timestamps.size() > DIFFICULTY_WINDOW)
    {
      timestamps.resize(DIFFICULTY_WINDOW);
      cumulative_difficulties.resize(DIFFICULTY_WINDOW);
    }


    size_t length = timestamps.size();
    assert(length == cumulative_difficulties.size());
    if (length <= 1) {
      return 1;
    }
    static_assert(DIFFICULTY_WINDOW >= 2, "Window is too small");
    assert(length <= DIFFICULTY_WINDOW);
    sort(timestamps.begin(), timestamps.end());
    size_t cut_begin, cut_end;
    static_assert(2 * DIFFICULTY_CUT <= DIFFICULTY_WINDOW - 2, "Cut length is too large");
    if (length <= DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT) {
      cut_begin = 0;
      cut_end = length;
    } else {
      cut_begin = (length - (DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT) + 1) / 2;
      cut_end = cut_begin + (DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT);
    }
    assert(/*cut_begin >= 0 &&*/ cut_begin + 2 <= cut_end && cut_end <= length);
    uint64_t time_span = timestamps[cut_end - 1] - timestamps[cut_begin];
    if (time_span == 0) {
      time_span = 1;
    }
    difficulty_type total_work = cumulative_difficulties[cut_end - 1] - cumulative_difficulties[cut_begin];
    assert(total_work > 0);
    boost::multiprecision::uint256_t res =  (boost::multiprecision::uint256_t(total_work) * target_seconds + time_span - 1) / time_span;
    if(res > max128bit)
      return 0; // to behave like previous implementation, may be better return max128bit?
    return res.convert_to<difficulty_type>();
  }

  std::string hex(difficulty_type v)
  {
    static const char chars[] = "0123456789abcdef";
    std::string s;
    while (v > 0)
    {
      s.push_back(chars[(v & 0xf).convert_to<unsigned>()]);
      v >>= 4;
    }
    if (s.empty())
      s += "0";
    std::reverse(s.begin(), s.end());
    return "0x" + s;
  }

}