aboutsummaryrefslogtreecommitdiff
path: root/src/crypto/slow-hash.c
blob: 14fa0f46856e60ac8d1ec919423150ec7d17a07a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
// Copyright (c) 2014-2018, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers

#include <assert.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

#include "int-util.h"
#include "hash-ops.h"
#include "oaes_lib.h"
#include "variant2_int_sqrt.h"
#include "variant4_random_math.h"
#include "CryptonightR_JIT.h"

#include <errno.h>
#include <string.h>

#define MEMORY         (1 << 21) // 2MB scratchpad
#define ITER           (1 << 20)
#define AES_BLOCK_SIZE  16
#define AES_KEY_SIZE    32
#define INIT_SIZE_BLK   8
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)

extern void aesb_single_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey);
extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey);

static void local_abort(const char *msg)
{
  fprintf(stderr, "%s\n", msg);
#ifdef NDEBUG
  _exit(1);
#else
  abort();
#endif
}

volatile int use_v4_jit_flag = -1;

static inline int use_v4_jit(void)
{
#if defined(__x86_64__)

  if (use_v4_jit_flag != -1)
    return use_v4_jit_flag;

  const char *env = getenv("MONERO_USE_CNV4_JIT");
  if (!env) {
    use_v4_jit_flag = 0;
  }
  else if (!strcmp(env, "0") || !strcmp(env, "no")) {
    use_v4_jit_flag = 0;
  }
  else {
    use_v4_jit_flag = 1;
  }
  return use_v4_jit_flag;
#else
  return 0;
#endif
}

#define VARIANT1_1(p) \
  do if (variant == 1) \
  { \
    const uint8_t tmp = ((const uint8_t*)(p))[11]; \
    static const uint32_t table = 0x75310; \
    const uint8_t index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; \
    ((uint8_t*)(p))[11] = tmp ^ ((table >> index) & 0x30); \
  } while(0)

#define VARIANT1_2(p) \
  do if (variant == 1) \
  { \
    xor64(p, tweak1_2); \
  } while(0)

#define VARIANT1_CHECK() \
  do if (length < 43) \
  { \
    fprintf(stderr, "Cryptonight variant 1 needs at least 43 bytes of data"); \
    _exit(1); \
  } while(0)

#define NONCE_POINTER (((const uint8_t*)data)+35)

#define VARIANT1_PORTABLE_INIT() \
  uint8_t tweak1_2[8]; \
  do if (variant == 1) \
  { \
    VARIANT1_CHECK(); \
    memcpy(&tweak1_2, &state.hs.b[192], sizeof(tweak1_2)); \
    xor64(tweak1_2, NONCE_POINTER); \
  } while(0)

#define VARIANT1_INIT64() \
  if (variant == 1) \
  { \
    VARIANT1_CHECK(); \
  } \
  const uint64_t tweak1_2 = (variant == 1) ? (state.hs.w[24] ^ (*((const uint64_t*)NONCE_POINTER))) : 0

#define VARIANT2_INIT64() \
  uint64_t division_result = 0; \
  uint64_t sqrt_result = 0; \
  do if (variant >= 2) \
  { \
    U64(b)[2] = state.hs.w[8] ^ state.hs.w[10]; \
    U64(b)[3] = state.hs.w[9] ^ state.hs.w[11]; \
    division_result = state.hs.w[12]; \
    sqrt_result = state.hs.w[13]; \
  } while (0)

#define VARIANT2_PORTABLE_INIT() \
  uint64_t division_result = 0; \
  uint64_t sqrt_result = 0; \
  do if (variant >= 2) \
  { \
    memcpy(b + AES_BLOCK_SIZE, state.hs.b + 64, AES_BLOCK_SIZE); \
    xor64(b + AES_BLOCK_SIZE, state.hs.b + 80); \
    xor64(b + AES_BLOCK_SIZE + 8, state.hs.b + 88); \
    division_result = SWAP64LE(state.hs.w[12]); \
    sqrt_result = SWAP64LE(state.hs.w[13]); \
  } while (0)

#define VARIANT2_SHUFFLE_ADD_SSE2(base_ptr, offset) \
  do if (variant >= 2) \
  { \
    __m128i chunk1 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10))); \
    const __m128i chunk2 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20))); \
    const __m128i chunk3 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30))); \
    _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10)), _mm_add_epi64(chunk3, _b1)); \
    _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20)), _mm_add_epi64(chunk1, _b)); \
    _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30)), _mm_add_epi64(chunk2, _a)); \
    if (variant >= 4) \
    { \
      chunk1 = _mm_xor_si128(chunk1, chunk2); \
      _c = _mm_xor_si128(_c, chunk3); \
      _c = _mm_xor_si128(_c, chunk1); \
    } \
  } while (0)

#define VARIANT2_SHUFFLE_ADD_NEON(base_ptr, offset) \
  do if (variant >= 2) \
  { \
    uint64x2_t chunk1 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x10))); \
    const uint64x2_t chunk2 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x20))); \
    const uint64x2_t chunk3 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x30))); \
    vst1q_u64(U64((base_ptr) + ((offset) ^ 0x10)), vaddq_u64(chunk3, vreinterpretq_u64_u8(_b1))); \
    vst1q_u64(U64((base_ptr) + ((offset) ^ 0x20)), vaddq_u64(chunk1, vreinterpretq_u64_u8(_b))); \
    vst1q_u64(U64((base_ptr) + ((offset) ^ 0x30)), vaddq_u64(chunk2, vreinterpretq_u64_u8(_a))); \
    if (variant >= 4) \
    { \
      chunk1 = veorq_u64(chunk1, chunk2); \
      _c = vreinterpretq_u8_u64(veorq_u64(vreinterpretq_u64_u8(_c), chunk3)); \
      _c = vreinterpretq_u8_u64(veorq_u64(vreinterpretq_u64_u8(_c), chunk1)); \
    } \
  } while (0)

#define VARIANT2_PORTABLE_SHUFFLE_ADD(out, a_, base_ptr, offset) \
  do if (variant >= 2) \
  { \
    uint64_t* chunk1 = U64((base_ptr) + ((offset) ^ 0x10)); \
    uint64_t* chunk2 = U64((base_ptr) + ((offset) ^ 0x20)); \
    uint64_t* chunk3 = U64((base_ptr) + ((offset) ^ 0x30)); \
    \
    uint64_t chunk1_old[2] = { SWAP64LE(chunk1[0]), SWAP64LE(chunk1[1]) }; \
    const uint64_t chunk2_old[2] = { SWAP64LE(chunk2[0]), SWAP64LE(chunk2[1]) }; \
    const uint64_t chunk3_old[2] = { SWAP64LE(chunk3[0]), SWAP64LE(chunk3[1]) }; \
    \
    uint64_t b1[2]; \
    memcpy_swap64le(b1, b + 16, 2); \
    chunk1[0] = SWAP64LE(chunk3_old[0] + b1[0]); \
    chunk1[1] = SWAP64LE(chunk3_old[1] + b1[1]); \
    \
    uint64_t a0[2]; \
    memcpy_swap64le(a0, a_, 2); \
    chunk3[0] = SWAP64LE(chunk2_old[0] + a0[0]); \
    chunk3[1] = SWAP64LE(chunk2_old[1] + a0[1]); \
    \
    uint64_t b0[2]; \
    memcpy_swap64le(b0, b, 2); \
    chunk2[0] = SWAP64LE(chunk1_old[0] + b0[0]); \
    chunk2[1] = SWAP64LE(SWAP64LE(chunk1_old[1]) + b0[1]); \
    if (variant >= 4) \
    { \
      uint64_t out_copy[2]; \
      memcpy_swap64le(out_copy, out, 2); \
      chunk1_old[0] ^= chunk2_old[0]; \
      chunk1_old[1] ^= chunk2_old[1]; \
      out_copy[0] ^= chunk3_old[0]; \
      out_copy[1] ^= chunk3_old[1]; \
      out_copy[0] ^= chunk1_old[0]; \
      out_copy[1] ^= chunk1_old[1]; \
      memcpy_swap64le(out, out_copy, 2); \
    } \
  } while (0)

#define VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr) \
  uint64_t tmpx = division_result ^ (sqrt_result << 32); \
  ((uint64_t*)(b))[0] ^= SWAP64LE(tmpx); \
  { \
    const uint64_t dividend = SWAP64LE(((uint64_t*)(ptr))[1]); \
    const uint32_t divisor = (SWAP64LE(((uint64_t*)(ptr))[0]) + (uint32_t)(sqrt_result << 1)) | 0x80000001UL; \
    division_result = ((uint32_t)(dividend / divisor)) + \
                     (((uint64_t)(dividend % divisor)) << 32); \
  } \
  const uint64_t sqrt_input = SWAP64LE(((uint64_t*)(ptr))[0]) + division_result

#define VARIANT2_INTEGER_MATH_SSE2(b, ptr) \
  do if ((variant == 2) || (variant == 3)) \
  { \
    VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
    VARIANT2_INTEGER_MATH_SQRT_STEP_SSE2(); \
    VARIANT2_INTEGER_MATH_SQRT_FIXUP(sqrt_result); \
  } while(0)

#if defined DBL_MANT_DIG && (DBL_MANT_DIG >= 50)
  // double precision floating point type has enough bits of precision on current platform
  #define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \
    do if ((variant == 2) || (variant == 3)) \
    { \
      VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
      VARIANT2_INTEGER_MATH_SQRT_STEP_FP64(); \
      VARIANT2_INTEGER_MATH_SQRT_FIXUP(sqrt_result); \
    } while (0)
#else
  // double precision floating point type is not good enough on current platform
  // fall back to the reference code (integer only)
  #define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \
    do if ((variant == 2) || (variant == 3)) \
    { \
      VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
      VARIANT2_INTEGER_MATH_SQRT_STEP_REF(); \
    } while (0)
#endif

#define VARIANT2_2_PORTABLE() \
    if (variant == 2 || variant == 3) { \
      xor_blocks(long_state + (j ^ 0x10), d); \
      xor_blocks(d, long_state + (j ^ 0x20)); \
    }

#define VARIANT2_2() \
  do if (variant == 2 || variant == 3) \
  { \
    *U64(local_hp_state + (j ^ 0x10)) ^= SWAP64LE(hi); \
    *(U64(local_hp_state + (j ^ 0x10)) + 1) ^= SWAP64LE(lo); \
    hi ^= SWAP64LE(*U64(local_hp_state + (j ^ 0x20))); \
    lo ^= SWAP64LE(*(U64(local_hp_state + (j ^ 0x20)) + 1)); \
  } while (0)

#define V4_REG_LOAD(dst, src) \
  do { \
    memcpy((dst), (src), sizeof(v4_reg)); \
    if (sizeof(v4_reg) == sizeof(uint32_t)) \
      *(dst) = SWAP32LE(*(dst)); \
    else \
      *(dst) = SWAP64LE(*(dst)); \
  } while (0)

#define VARIANT4_RANDOM_MATH_INIT() \
  v4_reg r[9]; \
  struct V4_Instruction code[NUM_INSTRUCTIONS_MAX + 1]; \
  int jit = use_v4_jit(); \
  do if (variant >= 4) \
  { \
    for (int i = 0; i < 4; ++i) \
      V4_REG_LOAD(r + i, (uint8_t*)(state.hs.w + 12) + sizeof(v4_reg) * i); \
    v4_random_math_init(code, height); \
    if (jit) \
    { \
      int ret = v4_generate_JIT_code(code, hp_jitfunc, 4096); \
      if (ret < 0) \
        local_abort("Error generating CryptonightR code"); \
    } \
  } while (0)

#define VARIANT4_RANDOM_MATH(a, b, r, _b, _b1) \
  do if (variant >= 4) \
  { \
    uint64_t t[2]; \
    memcpy(t, b, sizeof(uint64_t)); \
    \
    if (sizeof(v4_reg) == sizeof(uint32_t)) \
      t[0] ^= SWAP64LE((r[0] + r[1]) | ((uint64_t)(r[2] + r[3]) << 32)); \
    else \
      t[0] ^= SWAP64LE((r[0] + r[1]) ^ (r[2] + r[3])); \
    \
    memcpy(b, t, sizeof(uint64_t)); \
    \
    V4_REG_LOAD(r + 4, a); \
    V4_REG_LOAD(r + 5, (uint64_t*)(a) + 1); \
    V4_REG_LOAD(r + 6, _b); \
    V4_REG_LOAD(r + 7, _b1); \
    V4_REG_LOAD(r + 8, (uint64_t*)(_b1) + 1); \
    \
    if (jit) \
      (*hp_jitfunc)(r); \
    else \
      v4_random_math(code, r); \
    \
    memcpy(t, a, sizeof(uint64_t) * 2); \
    \
    if (sizeof(v4_reg) == sizeof(uint32_t)) { \
      t[0] ^= SWAP64LE(r[2] | ((uint64_t)(r[3]) << 32)); \
      t[1] ^= SWAP64LE(r[0] | ((uint64_t)(r[1]) << 32)); \
    } else { \
      t[0] ^= SWAP64LE(r[2] ^ r[3]); \
      t[1] ^= SWAP64LE(r[0] ^ r[1]); \
    } \
    memcpy(a, t, sizeof(uint64_t) * 2); \
  } while (0)


#if !defined NO_AES && (defined(__x86_64__) || (defined(_MSC_VER) && defined(_WIN64)))
// Optimised code below, uses x86-specific intrinsics, SSE2, AES-NI
// Fall back to more portable code is down at the bottom

#include <emmintrin.h>

#if defined(_MSC_VER)
#include <intrin.h>
#include <windows.h>
#define STATIC
#define INLINE __inline
#if !defined(RDATA_ALIGN16)
#define RDATA_ALIGN16 __declspec(align(16))
#endif
#elif defined(__MINGW32__)
#include <intrin.h>
#include <windows.h>
#define STATIC static
#define INLINE inline
#if !defined(RDATA_ALIGN16)
#define RDATA_ALIGN16 __attribute__ ((aligned(16)))
#endif
#else
#include <wmmintrin.h>
#include <sys/mman.h>
#define STATIC static
#define INLINE inline
#if !defined(RDATA_ALIGN16)
#define RDATA_ALIGN16 __attribute__ ((aligned(16)))
#endif
#endif

#if defined(__INTEL_COMPILER)
#define ASM __asm__
#elif !defined(_MSC_VER)
#define ASM __asm__
#else
#define ASM __asm
#endif

#define TOTALBLOCKS (MEMORY / AES_BLOCK_SIZE)

#define U64(x) ((uint64_t *) (x))
#define R128(x) ((__m128i *) (x))

#define state_index(x) (((*((uint64_t *)x) >> 4) & (TOTALBLOCKS - 1)) << 4)
#if defined(_MSC_VER)
#if !defined(_WIN64)
#define __mul() lo = mul128(c[0], b[0], &hi);
#else
#define __mul() lo = _umul128(c[0], b[0], &hi);
#endif
#else
#if defined(__x86_64__)
#define __mul() ASM("mulq %3\n\t" : "=d"(hi), "=a"(lo) : "%a" (c[0]), "rm" (b[0]) : "cc");
#else
#define __mul() lo = mul128(c[0], b[0], &hi);
#endif
#endif

#define pre_aes() \
  j = state_index(a); \
  _c = _mm_load_si128(R128(&local_hp_state[j])); \
  _a = _mm_load_si128(R128(a)); \

/*
 * An SSE-optimized implementation of the second half of CryptoNight step 3.
 * After using AES to mix a scratchpad value into _c (done by the caller),
 * this macro xors it with _b and stores the result back to the same index (j) that it
 * loaded the scratchpad value from.  It then performs a second random memory
 * read/write from the scratchpad, but this time mixes the values using a 64
 * bit multiply.
 * This code is based upon an optimized implementation by dga.
 */
#define post_aes() \
  VARIANT2_SHUFFLE_ADD_SSE2(local_hp_state, j); \
  _mm_store_si128(R128(c), _c); \
  _mm_store_si128(R128(&local_hp_state[j]), _mm_xor_si128(_b, _c)); \
  VARIANT1_1(&local_hp_state[j]); \
  j = state_index(c); \
  p = U64(&local_hp_state[j]); \
  b[0] = p[0]; b[1] = p[1]; \
  VARIANT2_INTEGER_MATH_SSE2(b, c); \
  VARIANT4_RANDOM_MATH(a, b, r, &_b, &_b1); \
  __mul(); \
  VARIANT2_2(); \
  VARIANT2_SHUFFLE_ADD_SSE2(local_hp_state, j); \
  a[0] += hi; a[1] += lo; \
  p = U64(&local_hp_state[j]); \
  p[0] = a[0];  p[1] = a[1]; \
  a[0] ^= b[0]; a[1] ^= b[1]; \
  VARIANT1_2(p + 1); \
  _b1 = _b; \
  _b = _c; \

#if defined(_MSC_VER)
#define THREADV __declspec(thread)
#else
#define THREADV __thread
#endif

#pragma pack(push, 1)
union cn_slow_hash_state
{
    union hash_state hs;
    struct
    {
        uint8_t k[64];
        uint8_t init[INIT_SIZE_BYTE];
    };
};
#pragma pack(pop)

THREADV uint8_t *hp_state = NULL;
THREADV int hp_allocated = 0;
THREADV v4_random_math_JIT_func hp_jitfunc = NULL;
THREADV uint8_t *hp_jitfunc_memory = NULL;
THREADV int hp_jitfunc_allocated = 0;

#if defined(_MSC_VER)
#define cpuid(info,x)    __cpuidex(info,x,0)
#else
void cpuid(int CPUInfo[4], int InfoType)
{
    ASM __volatile__
    (
    "cpuid":
        "=a" (CPUInfo[0]),
        "=b" (CPUInfo[1]),
        "=c" (CPUInfo[2]),
        "=d" (CPUInfo[3]) :
            "a" (InfoType), "c" (0)
        );
}
#endif

/**
 * @brief a = (a xor b), where a and b point to 128 bit values
 */

STATIC INLINE void xor_blocks(uint8_t *a, const uint8_t *b)
{
    U64(a)[0] ^= U64(b)[0];
    U64(a)[1] ^= U64(b)[1];
}

STATIC INLINE void xor64(uint64_t *a, const uint64_t b)
{
    *a ^= b;
}

/**
 * @brief uses cpuid to determine if the CPU supports the AES instructions
 * @return true if the CPU supports AES, false otherwise
 */

STATIC INLINE int force_software_aes(void)
{
  static int use = -1;

  if (use != -1)
    return use;

  const char *env = getenv("MONERO_USE_SOFTWARE_AES");
  if (!env) {
    use = 0;
  }
  else if (!strcmp(env, "0") || !strcmp(env, "no")) {
    use = 0;
  }
  else {
    use = 1;
  }
  return use;
}

STATIC INLINE int check_aes_hw(void)
{
    int cpuid_results[4];
    static int supported = -1;

    if(supported >= 0)
        return supported;

    cpuid(cpuid_results,1);
    return supported = cpuid_results[2] & (1 << 25);
}

STATIC INLINE void aes_256_assist1(__m128i* t1, __m128i * t2)
{
    __m128i t4;
    *t2 = _mm_shuffle_epi32(*t2, 0xff);
    t4 = _mm_slli_si128(*t1, 0x04);
    *t1 = _mm_xor_si128(*t1, t4);
    t4 = _mm_slli_si128(t4, 0x04);
    *t1 = _mm_xor_si128(*t1, t4);
    t4 = _mm_slli_si128(t4, 0x04);
    *t1 = _mm_xor_si128(*t1, t4);
    *t1 = _mm_xor_si128(*t1, *t2);
}

STATIC INLINE void aes_256_assist2(__m128i* t1, __m128i * t3)
{
    __m128i t2, t4;
    t4 = _mm_aeskeygenassist_si128(*t1, 0x00);
    t2 = _mm_shuffle_epi32(t4, 0xaa);
    t4 = _mm_slli_si128(*t3, 0x04);
    *t3 = _mm_xor_si128(*t3, t4);
    t4 = _mm_slli_si128(t4, 0x04);
    *t3 = _mm_xor_si128(*t3, t4);
    t4 = _mm_slli_si128(t4, 0x04);
    *t3 = _mm_xor_si128(*t3, t4);
    *t3 = _mm_xor_si128(*t3, t2);
}

/**
 * @brief expands 'key' into a form it can be used for AES encryption.
 *
 * This is an SSE-optimized implementation of AES key schedule generation.  It
 * expands the key into multiple round keys, each of which is used in one round
 * of the AES encryption used to fill (and later, extract randomness from)
 * the large 2MB buffer.  Note that CryptoNight does not use a completely
 * standard AES encryption for its buffer expansion, so do not copy this
 * function outside of Monero without caution!  This version uses the hardware
 * AESKEYGENASSIST instruction to speed key generation, and thus requires
 * CPU AES support.
 * For more information about these functions, see page 19 of Intel's AES instructions
 * white paper:
 * https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
 *
 * @param key the input 128 bit key
 * @param expandedKey An output buffer to hold the generated key schedule
 */

STATIC INLINE void aes_expand_key(const uint8_t *key, uint8_t *expandedKey)
{
    __m128i *ek = R128(expandedKey);
    __m128i t1, t2, t3;

    t1 = _mm_loadu_si128(R128(key));
    t3 = _mm_loadu_si128(R128(key + 16));

    ek[0] = t1;
    ek[1] = t3;

    t2 = _mm_aeskeygenassist_si128(t3, 0x01);
    aes_256_assist1(&t1, &t2);
    ek[2] = t1;
    aes_256_assist2(&t1, &t3);
    ek[3] = t3;

    t2 = _mm_aeskeygenassist_si128(t3, 0x02);
    aes_256_assist1(&t1, &t2);
    ek[4] = t1;
    aes_256_assist2(&t1, &t3);
    ek[5] = t3;

    t2 = _mm_aeskeygenassist_si128(t3, 0x04);
    aes_256_assist1(&t1, &t2);
    ek[6] = t1;
    aes_256_assist2(&t1, &t3);
    ek[7] = t3;

    t2 = _mm_aeskeygenassist_si128(t3, 0x08);
    aes_256_assist1(&t1, &t2);
    ek[8] = t1;
    aes_256_assist2(&t1, &t3);
    ek[9] = t3;

    t2 = _mm_aeskeygenassist_si128(t3, 0x10);
    aes_256_assist1(&t1, &t2);
    ek[10] = t1;
}

/**
 * @brief a "pseudo" round of AES (similar to but slightly different from normal AES encryption)
 *
 * To fill its 2MB scratch buffer, CryptoNight uses a nonstandard implementation
 * of AES encryption:  It applies 10 rounds of the basic AES encryption operation
 * to an input 128 bit chunk of data <in>.  Unlike normal AES, however, this is
 * all it does;  it does not perform the initial AddRoundKey step (this is done
 * in subsequent steps by aesenc_si128), and it does not use the simpler final round.
 * Hence, this is a "pseudo" round - though the function actually implements 10 rounds together.
 *
 * Note that unlike aesb_pseudo_round, this function works on multiple data chunks.
 *
 * @param in a pointer to nblocks * 128 bits of data to be encrypted
 * @param out a pointer to an nblocks * 128 bit buffer where the output will be stored
 * @param expandedKey the expanded AES key
 * @param nblocks the number of 128 blocks of data to be encrypted
 */

STATIC INLINE void aes_pseudo_round(const uint8_t *in, uint8_t *out,
                                    const uint8_t *expandedKey, int nblocks)
{
    __m128i *k = R128(expandedKey);
    __m128i d;
    int i;

    for(i = 0; i < nblocks; i++)
    {
        d = _mm_loadu_si128(R128(in + i * AES_BLOCK_SIZE));
        d = _mm_aesenc_si128(d, *R128(&k[0]));
        d = _mm_aesenc_si128(d, *R128(&k[1]));
        d = _mm_aesenc_si128(d, *R128(&k[2]));
        d = _mm_aesenc_si128(d, *R128(&k[3]));
        d = _mm_aesenc_si128(d, *R128(&k[4]));
        d = _mm_aesenc_si128(d, *R128(&k[5]));
        d = _mm_aesenc_si128(d, *R128(&k[6]));
        d = _mm_aesenc_si128(d, *R128(&k[7]));
        d = _mm_aesenc_si128(d, *R128(&k[8]));
        d = _mm_aesenc_si128(d, *R128(&k[9]));
        _mm_storeu_si128((R128(out + i * AES_BLOCK_SIZE)), d);
    }
}

/**
 * @brief aes_pseudo_round that loads data from *in and xors it with *xor first
 *
 * This function performs the same operations as aes_pseudo_round, but before
 * performing the encryption of each 128 bit block from <in>, it xors
 * it with the corresponding block from <xor>.
 *
 * @param in a pointer to nblocks * 128 bits of data to be encrypted
 * @param out a pointer to an nblocks * 128 bit buffer where the output will be stored
 * @param expandedKey the expanded AES key
 * @param xor a pointer to an nblocks * 128 bit buffer that is xored into in before encryption (in is left unmodified)
 * @param nblocks the number of 128 blocks of data to be encrypted
 */

STATIC INLINE void aes_pseudo_round_xor(const uint8_t *in, uint8_t *out,
                                        const uint8_t *expandedKey, const uint8_t *xor, int nblocks)
{
    __m128i *k = R128(expandedKey);
    __m128i *x = R128(xor);
    __m128i d;
    int i;

    for(i = 0; i < nblocks; i++)
    {
        d = _mm_loadu_si128(R128(in + i * AES_BLOCK_SIZE));
        d = _mm_xor_si128(d, *R128(x++));
        d = _mm_aesenc_si128(d, *R128(&k[0]));
        d = _mm_aesenc_si128(d, *R128(&k[1]));
        d = _mm_aesenc_si128(d, *R128(&k[2]));
        d = _mm_aesenc_si128(d, *R128(&k[3]));
        d = _mm_aesenc_si128(d, *R128(&k[4]));
        d = _mm_aesenc_si128(d, *R128(&k[5]));
        d = _mm_aesenc_si128(d, *R128(&k[6]));
        d = _mm_aesenc_si128(d, *R128(&k[7]));
        d = _mm_aesenc_si128(d, *R128(&k[8]));
        d = _mm_aesenc_si128(d, *R128(&k[9]));
        _mm_storeu_si128((R128(out + i * AES_BLOCK_SIZE)), d);
    }
}

#if defined(_MSC_VER) || defined(__MINGW32__)
BOOL SetLockPagesPrivilege(HANDLE hProcess, BOOL bEnable)
{
    struct
    {
        DWORD count;
        LUID_AND_ATTRIBUTES privilege[1];
    } info;

    HANDLE token;
    if(!OpenProcessToken(hProcess, TOKEN_ADJUST_PRIVILEGES, &token))
        return FALSE;

    info.count = 1;
    info.privilege[0].Attributes = bEnable ? SE_PRIVILEGE_ENABLED : 0;

    if(!LookupPrivilegeValue(NULL, SE_LOCK_MEMORY_NAME, &(info.privilege[0].Luid)))
        return FALSE;

    if(!AdjustTokenPrivileges(token, FALSE, (PTOKEN_PRIVILEGES) &info, 0, NULL, NULL))
        return FALSE;

    if (GetLastError() != ERROR_SUCCESS)
        return FALSE;

    CloseHandle(token);

    return TRUE;

}
#endif

/**
 * @brief allocate the 2MB scratch buffer using OS support for huge pages, if available
 *
 * This function tries to allocate the 2MB scratch buffer using a single
 * 2MB "huge page" (instead of the usual 4KB page sizes) to reduce TLB misses
 * during the random accesses to the scratch buffer.  This is one of the
 * important speed optimizations needed to make CryptoNight faster.
 *
 * No parameters.  Updates a thread-local pointer, hp_state, to point to
 * the allocated buffer.
 */

void slow_hash_allocate_state(void)
{
    if(hp_state != NULL)
        return;

#if defined(_MSC_VER) || defined(__MINGW32__)
    SetLockPagesPrivilege(GetCurrentProcess(), TRUE);
    hp_state = (uint8_t *) VirtualAlloc(hp_state, MEMORY, MEM_LARGE_PAGES |
                                        MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
#else
#if defined(__APPLE__) || defined(__FreeBSD__) || defined(__OpenBSD__) || \
  defined(__DragonFly__) || defined(__NetBSD__)
    hp_state = mmap(0, MEMORY, PROT_READ | PROT_WRITE,
                    MAP_PRIVATE | MAP_ANON, 0, 0);
#else
    hp_state = mmap(0, MEMORY, PROT_READ | PROT_WRITE,
                    MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, 0, 0);
#endif
    if(hp_state == MAP_FAILED)
        hp_state = NULL;
#endif
    hp_allocated = 1;
    if(hp_state == NULL)
    {
        hp_allocated = 0;
        hp_state = (uint8_t *) malloc(MEMORY);
    }


#if defined(_MSC_VER) || defined(__MINGW32__)
    hp_jitfunc_memory = (uint8_t *) VirtualAlloc(hp_jitfunc_memory, 4096 + 4095,
                                                 MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
#else
#if defined(__APPLE__) || defined(__FreeBSD__) || defined(__OpenBSD__) || \
  defined(__DragonFly__) || defined(__NetBSD__)
    hp_jitfunc_memory = mmap(0, 4096 + 4095, PROT_READ | PROT_WRITE | PROT_EXEC,
                    MAP_PRIVATE | MAP_ANON, 0, 0);
#else
    hp_jitfunc_memory = mmap(0, 4096 + 4095, PROT_READ | PROT_WRITE | PROT_EXEC,
                    MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
#endif
    if(hp_jitfunc_memory == MAP_FAILED)
        hp_jitfunc_memory = NULL;
#endif
    hp_jitfunc_allocated = 1;
    if (hp_jitfunc_memory == NULL)
    {
        hp_jitfunc_allocated = 0;
        hp_jitfunc_memory = malloc(4096 + 4095);
    }
    hp_jitfunc = (v4_random_math_JIT_func)((size_t)(hp_jitfunc_memory + 4095) & ~4095);
#if !(defined(_MSC_VER) || defined(__MINGW32__))
    mprotect(hp_jitfunc, 4096, PROT_READ | PROT_WRITE | PROT_EXEC);
#endif
}

/**
 *@brief frees the state allocated by slow_hash_allocate_state
 */

void slow_hash_free_state(void)
{
    if(hp_state == NULL)
        return;

    if(!hp_allocated)
        free(hp_state);
    else
    {
#if defined(_MSC_VER) || defined(__MINGW32__)
        VirtualFree(hp_state, 0, MEM_RELEASE);
#else
        munmap(hp_state, MEMORY);
#endif
    }

    if(!hp_jitfunc_allocated)
        free(hp_jitfunc_memory);
    else
    {
#if defined(_MSC_VER) || defined(__MINGW32__)
        VirtualFree(hp_jitfunc_memory, 0, MEM_RELEASE);
#else
        munmap(hp_jitfunc_memory, 4096 + 4095);
#endif
    }

    hp_state = NULL;
    hp_allocated = 0;
    hp_jitfunc = NULL;
    hp_jitfunc_memory = NULL;
    hp_jitfunc_allocated = 0;
}

/**
 * @brief the hash function implementing CryptoNight, used for the Monero proof-of-work
 *
 * Computes the hash of <data> (which consists of <length> bytes), returning the
 * hash in <hash>.  The CryptoNight hash operates by first using Keccak 1600,
 * the 1600 bit variant of the Keccak hash used in SHA-3, to create a 200 byte
 * buffer of pseudorandom data by hashing the supplied data.  It then uses this
 * random data to fill a large 2MB buffer with pseudorandom data by iteratively
 * encrypting it using 10 rounds of AES per entry.  After this initialization,
 * it executes 524,288 rounds of mixing through the random 2MB buffer using
 * AES (typically provided in hardware on modern CPUs) and a 64 bit multiply.
 * Finally, it re-mixes this large buffer back into
 * the 200 byte "text" buffer, and then hashes this buffer using one of four
 * pseudorandomly selected hash functions (Blake, Groestl, JH, or Skein)
 * to populate the output.
 *
 * The 2MB buffer and choice of functions for mixing are designed to make the
 * algorithm "CPU-friendly" (and thus, reduce the advantage of GPU, FPGA,
 * or ASIC-based implementations):  the functions used are fast on modern
 * CPUs, and the 2MB size matches the typical amount of L3 cache available per
 * core on 2013-era CPUs.  When available, this implementation will use hardware
 * AES support on x86 CPUs.
 *
 * A diagram of the inner loop of this function can be found at
 * https://www.cs.cmu.edu/~dga/crypto/xmr/cryptonight.png
 *
 * @param data the data to hash
 * @param length the length in bytes of the data
 * @param hash a pointer to a buffer in which the final 256 bit hash will be stored
 */
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height)
{
    RDATA_ALIGN16 uint8_t expandedKey[240];  /* These buffers are aligned to use later with SSE functions */

    uint8_t text[INIT_SIZE_BYTE];
    RDATA_ALIGN16 uint64_t a[2];
    RDATA_ALIGN16 uint64_t b[4];
    RDATA_ALIGN16 uint64_t c[2];
    union cn_slow_hash_state state;
    __m128i _a, _b, _b1, _c;
    uint64_t hi, lo;

    size_t i, j;
    uint64_t *p = NULL;
    oaes_ctx *aes_ctx = NULL;
    int useAes = !force_software_aes() && check_aes_hw();

    static void (*const extra_hashes[4])(const void *, size_t, char *) =
    {
        hash_extra_blake, hash_extra_groestl, hash_extra_jh, hash_extra_skein
    };

    // this isn't supposed to happen, but guard against it for now.
    if(hp_state == NULL)
        slow_hash_allocate_state();

    // locals to avoid constant TLS dereferencing
    uint8_t *local_hp_state = hp_state;
    v4_random_math_JIT_func local_hp_jitfunc = hp_jitfunc;

    /* CryptoNight Step 1:  Use Keccak1600 to initialize the 'state' (and 'text') buffers from the data. */
    if (prehashed) {
        memcpy(&state.hs, data, length);
    } else {
        hash_process(&state.hs, data, length);
    }
    memcpy(text, state.init, INIT_SIZE_BYTE);

    VARIANT1_INIT64();
    VARIANT2_INIT64();
    VARIANT4_RANDOM_MATH_INIT();

    /* CryptoNight Step 2:  Iteratively encrypt the results from Keccak to fill
     * the 2MB large random access buffer.
     */

    if(useAes)
    {
        aes_expand_key(state.hs.b, expandedKey);
        for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
        {
            aes_pseudo_round(text, text, expandedKey, INIT_SIZE_BLK);
            memcpy(&local_hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
        }
    }
    else
    {
        aes_ctx = (oaes_ctx *) oaes_alloc();
        oaes_key_import_data(aes_ctx, state.hs.b, AES_KEY_SIZE);
        for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
        {
            for(j = 0; j < INIT_SIZE_BLK; j++)
                aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);

            memcpy(&local_hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
        }
    }

    U64(a)[0] = U64(&state.k[0])[0] ^ U64(&state.k[32])[0];
    U64(a)[1] = U64(&state.k[0])[1] ^ U64(&state.k[32])[1];
    U64(b)[0] = U64(&state.k[16])[0] ^ U64(&state.k[48])[0];
    U64(b)[1] = U64(&state.k[16])[1] ^ U64(&state.k[48])[1];

    /* CryptoNight Step 3:  Bounce randomly 1,048,576 times (1<<20) through the mixing buffer,
     * using 524,288 iterations of the following mixing function.  Each execution
     * performs two reads and writes from the mixing buffer.
     */

    _b = _mm_load_si128(R128(b));
    _b1 = _mm_load_si128(R128(b) + 1);
    // Two independent versions, one with AES, one without, to ensure that
    // the useAes test is only performed once, not every iteration.
    if(useAes)
    {
        for(i = 0; i < ITER / 2; i++)
        {
            pre_aes();
            _c = _mm_aesenc_si128(_c, _a);
            post_aes();
        }
    }
    else
    {
        for(i = 0; i < ITER / 2; i++)
        {
            pre_aes();
            aesb_single_round((uint8_t *) &_c, (uint8_t *) &_c, (uint8_t *) &_a);
            post_aes();
        }
    }

    /* CryptoNight Step 4:  Sequentially pass through the mixing buffer and use 10 rounds
     * of AES encryption to mix the random data back into the 'text' buffer.  'text'
     * was originally created with the output of Keccak1600. */

    memcpy(text, state.init, INIT_SIZE_BYTE);
    if(useAes)
    {
        aes_expand_key(&state.hs.b[32], expandedKey);
        for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
        {
            // add the xor to the pseudo round
            aes_pseudo_round_xor(text, text, expandedKey, &local_hp_state[i * INIT_SIZE_BYTE], INIT_SIZE_BLK);
        }
    }
    else
    {
        oaes_key_import_data(aes_ctx, &state.hs.b[32], AES_KEY_SIZE);
        for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
        {
            for(j = 0; j < INIT_SIZE_BLK; j++)
            {
                xor_blocks(&text[j * AES_BLOCK_SIZE], &local_hp_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
                aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);
            }
        }
        oaes_free((OAES_CTX **) &aes_ctx);
    }

    /* CryptoNight Step 5:  Apply Keccak to the state again, and then
     * use the resulting data to select which of four finalizer
     * hash functions to apply to the data (Blake, Groestl, JH, or Skein).
     * Use this hash to squeeze the state array down
     * to the final 256 bit hash output.
     */

    memcpy(state.init, text, INIT_SIZE_BYTE);
    hash_permutation(&state.hs);
    extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
}

#elif !defined NO_AES && (defined(__arm__) || defined(__aarch64__))
void slow_hash_allocate_state(void)
{
  // Do nothing, this is just to maintain compatibility with the upgraded slow-hash.c
  return;
}

void slow_hash_free_state(void)
{
  // As above
  return;
}

#if defined(__GNUC__)
#define RDATA_ALIGN16 __attribute__ ((aligned(16)))
#define STATIC static
#define INLINE inline
#else
#define RDATA_ALIGN16
#define STATIC static
#define INLINE
#endif

#define U64(x) ((uint64_t *) (x))

#define hp_jitfunc ((v4_random_math_JIT_func)NULL)

STATIC INLINE void xor64(uint64_t *a, const uint64_t b)
{
    *a ^= b;
}

#pragma pack(push, 1)
union cn_slow_hash_state
{
    union hash_state hs;
    struct
    {
        uint8_t k[64];
        uint8_t init[INIT_SIZE_BYTE];
    };
};
#pragma pack(pop)

#if defined(__aarch64__) && defined(__ARM_FEATURE_CRYPTO)

/* ARMv8-A optimized with NEON and AES instructions.
 * Copied from the x86-64 AES-NI implementation. It has much the same
 * characteristics as x86-64: there's no 64x64=128 multiplier for vectors,
 * and moving between vector and regular registers stalls the pipeline.
 */
#include <arm_neon.h>

#define TOTALBLOCKS (MEMORY / AES_BLOCK_SIZE)

#define state_index(x) (((*((uint64_t *)x) >> 4) & (TOTALBLOCKS - 1)) << 4)
#define __mul() __asm__("mul %0, %1, %2\n\t" : "=r"(lo) : "r"(c[0]), "r"(b[0]) ); \
  __asm__("umulh %0, %1, %2\n\t" : "=r"(hi) : "r"(c[0]), "r"(b[0]) );

#define pre_aes() \
  j = state_index(a); \
  _c = vld1q_u8(&local_hp_state[j]); \
  _a = vld1q_u8((const uint8_t *)a); \

#define post_aes() \
  VARIANT2_SHUFFLE_ADD_NEON(local_hp_state, j); \
  vst1q_u8((uint8_t *)c, _c); \
  vst1q_u8(&local_hp_state[j], veorq_u8(_b, _c)); \
  VARIANT1_1(&local_hp_state[j]); \
  j = state_index(c); \
  p = U64(&local_hp_state[j]); \
  b[0] = p[0]; b[1] = p[1]; \
  VARIANT2_PORTABLE_INTEGER_MATH(b, c); \
  VARIANT4_RANDOM_MATH(a, b, r, &_b, &_b1); \
  __mul(); \
  VARIANT2_2(); \
  VARIANT2_SHUFFLE_ADD_NEON(local_hp_state, j); \
  a[0] += hi; a[1] += lo; \
  p = U64(&local_hp_state[j]); \
  p[0] = a[0];  p[1] = a[1]; \
  a[0] ^= b[0]; a[1] ^= b[1]; \
  VARIANT1_2(p + 1); \
  _b1 = _b; \
  _b = _c; \


/* Note: this was based on a standard 256bit key schedule but
 * it's been shortened since Cryptonight doesn't use the full
 * key schedule. Don't try to use this for vanilla AES.
*/
static void aes_expand_key(const uint8_t *key, uint8_t *expandedKey) {
static const int rcon[] = {
	0x01,0x01,0x01,0x01,
	0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d,	// rotate-n-splat
	0x1b,0x1b,0x1b,0x1b };
__asm__(
"	eor	v0.16b,v0.16b,v0.16b\n"
"	ld1	{v3.16b},[%0],#16\n"
"	ld1	{v1.4s,v2.4s},[%2],#32\n"
"	ld1	{v4.16b},[%0]\n"
"	mov	w2,#5\n"
"	st1	{v3.4s},[%1],#16\n"
"\n"
"1:\n"
"	tbl	v6.16b,{v4.16b},v2.16b\n"
"	ext	v5.16b,v0.16b,v3.16b,#12\n"
"	st1	{v4.4s},[%1],#16\n"
"	aese	v6.16b,v0.16b\n"
"	subs	w2,w2,#1\n"
"\n"
"	eor	v3.16b,v3.16b,v5.16b\n"
"	ext	v5.16b,v0.16b,v5.16b,#12\n"
"	eor	v3.16b,v3.16b,v5.16b\n"
"	ext	v5.16b,v0.16b,v5.16b,#12\n"
"	eor	v6.16b,v6.16b,v1.16b\n"
"	eor	v3.16b,v3.16b,v5.16b\n"
"	shl	v1.16b,v1.16b,#1\n"
"	eor	v3.16b,v3.16b,v6.16b\n"
"	st1	{v3.4s},[%1],#16\n"
"	b.eq	2f\n"
"\n"
"	dup	v6.4s,v3.s[3]		// just splat\n"
"	ext	v5.16b,v0.16b,v4.16b,#12\n"
"	aese	v6.16b,v0.16b\n"
"\n"
"	eor	v4.16b,v4.16b,v5.16b\n"
"	ext	v5.16b,v0.16b,v5.16b,#12\n"
"	eor	v4.16b,v4.16b,v5.16b\n"
"	ext	v5.16b,v0.16b,v5.16b,#12\n"
"	eor	v4.16b,v4.16b,v5.16b\n"
"\n"
"	eor	v4.16b,v4.16b,v6.16b\n"
"	b	1b\n"
"\n"
"2:\n" : : "r"(key), "r"(expandedKey), "r"(rcon));
}

/* An ordinary AES round is a sequence of SubBytes, ShiftRows, MixColumns, AddRoundKey. There
 * is also an InitialRound which consists solely of AddRoundKey. The ARM instructions slice
 * this sequence differently; the aese instruction performs AddRoundKey, SubBytes, ShiftRows.
 * The aesmc instruction does the MixColumns. Since the aese instruction moves the AddRoundKey
 * up front, and Cryptonight's hash skips the InitialRound step, we have to kludge it here by
 * feeding in a vector of zeros for our first step. Also we have to do our own Xor explicitly
 * at the last step, to provide the AddRoundKey that the ARM instructions omit.
 */
STATIC INLINE void aes_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey, int nblocks)
{
	const uint8x16_t *k = (const uint8x16_t *)expandedKey, zero = {0};
	uint8x16_t tmp;
	int i;

	for (i=0; i<nblocks; i++)
	{
		uint8x16_t tmp = vld1q_u8(in + i * AES_BLOCK_SIZE);
		tmp = vaeseq_u8(tmp, zero);
		tmp = vaesmcq_u8(tmp);
		tmp = vaeseq_u8(tmp, k[0]);
		tmp = vaesmcq_u8(tmp);
		tmp = vaeseq_u8(tmp, k[1]);
		tmp = vaesmcq_u8(tmp);
		tmp = vaeseq_u8(tmp, k[2]);
		tmp = vaesmcq_u8(tmp);
		tmp = vaeseq_u8(tmp, k[3]);
		tmp = vaesmcq_u8(tmp);
		tmp = vaeseq_u8(tmp, k[4]);
		tmp = vaesmcq_u8(tmp);
		tmp = vaeseq_u8(tmp, k[5]);
		tmp = vaesmcq_u8(tmp);
		tmp = vaeseq_u8(tmp, k[6]);
		tmp = vaesmcq_u8(tmp);
		tmp = vaeseq_u8(tmp, k[7]);
		tmp = vaesmcq_u8(tmp);
		tmp = vaeseq_u8(tmp, k[8]);
		tmp = vaesmcq_u8(tmp);
		tmp = veorq_u8(tmp,  k[9]);
		vst1q_u8(out + i * AES_BLOCK_SIZE, tmp);
	}
}

STATIC INLINE void aes_pseudo_round_xor(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey, const uint8_t *xor, int nblocks)
{
	const uint8x16_t *k = (const uint8x16_t *)expandedKey;
	const uint8x16_t *x = (const uint8x16_t *)xor;
	uint8x16_t tmp;
	int i;

	for (i=0; i<nblocks; i++)
	{
		uint8x16_t tmp = vld1q_u8(in + i * AES_BLOCK_SIZE);
		tmp = vaeseq_u8(tmp, x[i]);
		tmp = vaesmcq_u8(tmp);
		tmp = vaeseq_u8(tmp, k[0]);
		tmp = vaesmcq_u8(tmp);
		tmp = vaeseq_u8(tmp, k[1]);
		tmp = vaesmcq_u8(tmp);
		tmp = vaeseq_u8(tmp, k[2]);
		tmp = vaesmcq_u8(tmp);
		tmp = vaeseq_u8(tmp, k[3]);
		tmp = vaesmcq_u8(tmp);
		tmp = vaeseq_u8(tmp, k[4]);
		tmp = vaesmcq_u8(tmp);
		tmp = vaeseq_u8(tmp, k[5]);
		tmp = vaesmcq_u8(tmp);
		tmp = vaeseq_u8(tmp, k[6]);
		tmp = vaesmcq_u8(tmp);
		tmp = vaeseq_u8(tmp, k[7]);
		tmp = vaesmcq_u8(tmp);
		tmp = vaeseq_u8(tmp, k[8]);
		tmp = vaesmcq_u8(tmp);
		tmp = veorq_u8(tmp,  k[9]);
		vst1q_u8(out + i * AES_BLOCK_SIZE, tmp);
	}
}

#ifdef FORCE_USE_HEAP
STATIC INLINE void* aligned_malloc(size_t size, size_t align)
{
    void *result;
#ifdef _MSC_VER
    result = _aligned_malloc(size, align);
#else
    if (posix_memalign(&result, align, size)) result = NULL;
#endif
    return result;
}

STATIC INLINE void aligned_free(void *ptr)
{
#ifdef _MSC_VER
    _aligned_free(ptr);
#else
    free(ptr);
#endif
}
#endif /* FORCE_USE_HEAP */

void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height)
{
    RDATA_ALIGN16 uint8_t expandedKey[240];

#ifndef FORCE_USE_HEAP
    RDATA_ALIGN16 uint8_t local_hp_state[MEMORY];
#else
    uint8_t *local_hp_state = (uint8_t *)aligned_malloc(MEMORY,16);
#endif

    uint8_t text[INIT_SIZE_BYTE];
    RDATA_ALIGN16 uint64_t a[2];
    RDATA_ALIGN16 uint64_t b[4];
    RDATA_ALIGN16 uint64_t c[2];
    union cn_slow_hash_state state;
    uint8x16_t _a, _b, _b1, _c, zero = {0};
    uint64_t hi, lo;

    size_t i, j;
    uint64_t *p = NULL;

    static void (*const extra_hashes[4])(const void *, size_t, char *) =
    {
        hash_extra_blake, hash_extra_groestl, hash_extra_jh, hash_extra_skein
    };

    /* CryptoNight Step 1:  Use Keccak1600 to initialize the 'state' (and 'text') buffers from the data. */

    if (prehashed) {
        memcpy(&state.hs, data, length);
    } else {
        hash_process(&state.hs, data, length);
    }
    memcpy(text, state.init, INIT_SIZE_BYTE);

    VARIANT1_INIT64();
    VARIANT2_INIT64();
    VARIANT4_RANDOM_MATH_INIT();

    /* CryptoNight Step 2:  Iteratively encrypt the results from Keccak to fill
     * the 2MB large random access buffer.
     */

    aes_expand_key(state.hs.b, expandedKey);
    for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
    {
        aes_pseudo_round(text, text, expandedKey, INIT_SIZE_BLK);
        memcpy(&local_hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
    }

    U64(a)[0] = U64(&state.k[0])[0] ^ U64(&state.k[32])[0];
    U64(a)[1] = U64(&state.k[0])[1] ^ U64(&state.k[32])[1];
    U64(b)[0] = U64(&state.k[16])[0] ^ U64(&state.k[48])[0];
    U64(b)[1] = U64(&state.k[16])[1] ^ U64(&state.k[48])[1];

    /* CryptoNight Step 3:  Bounce randomly 1,048,576 times (1<<20) through the mixing buffer,
     * using 524,288 iterations of the following mixing function.  Each execution
     * performs two reads and writes from the mixing buffer.
     */

    _b = vld1q_u8((const uint8_t *)b);
    _b1 = vld1q_u8(((const uint8_t *)b) + AES_BLOCK_SIZE);

    for(i = 0; i < ITER / 2; i++)
    {
        pre_aes();
        _c = vaeseq_u8(_c, zero);
        _c = vaesmcq_u8(_c);
        _c = veorq_u8(_c, _a);
        post_aes();
    }

    /* CryptoNight Step 4:  Sequentially pass through the mixing buffer and use 10 rounds
     * of AES encryption to mix the random data back into the 'text' buffer.  'text'
     * was originally created with the output of Keccak1600. */

    memcpy(text, state.init, INIT_SIZE_BYTE);

    aes_expand_key(&state.hs.b[32], expandedKey);
    for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
    {
        // add the xor to the pseudo round
        aes_pseudo_round_xor(text, text, expandedKey, &local_hp_state[i * INIT_SIZE_BYTE], INIT_SIZE_BLK);
    }

    /* CryptoNight Step 5:  Apply Keccak to the state again, and then
     * use the resulting data to select which of four finalizer
     * hash functions to apply to the data (Blake, Groestl, JH, or Skein).
     * Use this hash to squeeze the state array down
     * to the final 256 bit hash output.
     */

    memcpy(state.init, text, INIT_SIZE_BYTE);
    hash_permutation(&state.hs);
    extra_hashes[state.hs.b[0] & 3](&state, 200, hash);

#ifdef FORCE_USE_HEAP
    aligned_free(local_hp_state);
#endif
}
#else /* aarch64 && crypto */

// ND: Some minor optimizations for ARMv7 (raspberrry pi 2), effect seems to be ~40-50% faster.
//     Needs more work.

#ifdef NO_OPTIMIZED_MULTIPLY_ON_ARM
/* The asm corresponds to this C code */
#define SHORT uint32_t
#define LONG uint64_t

void mul(const uint8_t *ca, const uint8_t *cb, uint8_t *cres) {
  const SHORT *aa = (SHORT *)ca;
  const SHORT *bb = (SHORT *)cb;
  SHORT *res = (SHORT *)cres;
  union {
    SHORT tmp[8];
    LONG ltmp[4];
  } t;
  LONG A = aa[1];
  LONG a = aa[0];
  LONG B = bb[1];
  LONG b = bb[0];

  // Aa * Bb = ab + aB_ + Ab_ + AB__
  t.ltmp[0] = a * b;
  t.ltmp[1] = a * B;
  t.ltmp[2] = A * b;
  t.ltmp[3] = A * B;

  res[2] = t.tmp[0];
  t.ltmp[1] += t.tmp[1];
  t.ltmp[1] += t.tmp[4];
  t.ltmp[3] += t.tmp[3];
  t.ltmp[3] += t.tmp[5];
  res[3] = t.tmp[2];
  res[0] = t.tmp[6];
  res[1] = t.tmp[7];
}
#else // !NO_OPTIMIZED_MULTIPLY_ON_ARM

#ifdef __aarch64__ /* ARM64, no crypto */
#define mul(a, b, c)	cn_mul128((const uint64_t *)a, (const uint64_t *)b, (uint64_t *)c)
STATIC void cn_mul128(const uint64_t *a, const uint64_t *b, uint64_t *r)
{
  uint64_t lo, hi;
  __asm__("mul %0, %1, %2\n\t" : "=r"(lo) : "r"(a[0]), "r"(b[0]) );
  __asm__("umulh %0, %1, %2\n\t" : "=r"(hi) : "r"(a[0]), "r"(b[0]) );
  r[0] = hi;
  r[1] = lo;
}
#else /* ARM32 */
#define mul(a, b, c)	cn_mul128((const uint32_t *)a, (const uint32_t *)b, (uint32_t *)c)
STATIC void cn_mul128(const uint32_t *aa, const uint32_t *bb, uint32_t *r)
{
  uint32_t t0, t1, t2=0, t3=0;
__asm__ __volatile__(
  "umull %[t0], %[t1], %[a], %[b]\n\t"
  "str   %[t0], %[ll]\n\t"

  // accumulating with 0 can never overflow/carry
  "eor   %[t0], %[t0]\n\t"
  "umlal %[t1], %[t0], %[a], %[B]\n\t"

  "umlal %[t1], %[t2], %[A], %[b]\n\t"
  "str   %[t1], %[lh]\n\t"

  "umlal %[t0], %[t3], %[A], %[B]\n\t"

  // final add may have a carry
  "adds  %[t0], %[t0], %[t2]\n\t"
  "adc   %[t1], %[t3], #0\n\t"

  "str   %[t0], %[hl]\n\t"
  "str   %[t1], %[hh]\n\t"
  : [t0]"=&r"(t0), [t1]"=&r"(t1), [t2]"+r"(t2), [t3]"+r"(t3), [hl]"=m"(r[0]), [hh]"=m"(r[1]), [ll]"=m"(r[2]), [lh]"=m"(r[3])
  : [A]"r"(aa[1]), [a]"r"(aa[0]), [B]"r"(bb[1]), [b]"r"(bb[0])
  : "cc");
}
#endif /* !aarch64 */
#endif // NO_OPTIMIZED_MULTIPLY_ON_ARM

STATIC INLINE void copy_block(uint8_t* dst, const uint8_t* src)
{
  memcpy(dst, src, AES_BLOCK_SIZE);
}

STATIC INLINE void sum_half_blocks(uint8_t* a, const uint8_t* b)
{
  uint64_t a0, a1, b0, b1;
  a0 = U64(a)[0];
  a1 = U64(a)[1];
  b0 = U64(b)[0];
  b1 = U64(b)[1];
  a0 += b0;
  a1 += b1;
  U64(a)[0] = a0;
  U64(a)[1] = a1;
}

STATIC INLINE void swap_blocks(uint8_t *a, uint8_t *b)
{
  uint64_t t[2];
  U64(t)[0] = U64(a)[0];
  U64(t)[1] = U64(a)[1];
  U64(a)[0] = U64(b)[0];
  U64(a)[1] = U64(b)[1];
  U64(b)[0] = U64(t)[0];
  U64(b)[1] = U64(t)[1];
}

STATIC INLINE void xor_blocks(uint8_t* a, const uint8_t* b)
{
  U64(a)[0] ^= U64(b)[0];
  U64(a)[1] ^= U64(b)[1];
}

void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height)
{
    uint8_t text[INIT_SIZE_BYTE];
    uint8_t a[AES_BLOCK_SIZE];
    uint8_t a1[AES_BLOCK_SIZE];
    uint8_t b[AES_BLOCK_SIZE * 2];
    uint8_t c[AES_BLOCK_SIZE];
    uint8_t c1[AES_BLOCK_SIZE];
    uint8_t d[AES_BLOCK_SIZE];
    uint8_t aes_key[AES_KEY_SIZE];
    RDATA_ALIGN16 uint8_t expandedKey[256];

    union cn_slow_hash_state state;

    size_t i, j;
    uint8_t *p = NULL;
    oaes_ctx *aes_ctx;
    static void (*const extra_hashes[4])(const void *, size_t, char *) =
    {
        hash_extra_blake, hash_extra_groestl, hash_extra_jh, hash_extra_skein
    };

#ifndef FORCE_USE_HEAP
    uint8_t long_state[MEMORY];
#else
    uint8_t *long_state = (uint8_t *)malloc(MEMORY);
#endif

    if (prehashed) {
        memcpy(&state.hs, data, length);
    } else {
        hash_process(&state.hs, data, length);
    }
    memcpy(text, state.init, INIT_SIZE_BYTE);

    aes_ctx = (oaes_ctx *) oaes_alloc();
    oaes_key_import_data(aes_ctx, state.hs.b, AES_KEY_SIZE);

    VARIANT1_INIT64();
    VARIANT2_INIT64();
    VARIANT4_RANDOM_MATH_INIT();

    // use aligned data
    memcpy(expandedKey, aes_ctx->key->exp_data, aes_ctx->key->exp_data_len);
    for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
    {
        for(j = 0; j < INIT_SIZE_BLK; j++)
            aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], expandedKey);
        memcpy(&long_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
    }

    U64(a)[0] = U64(&state.k[0])[0] ^ U64(&state.k[32])[0];
    U64(a)[1] = U64(&state.k[0])[1] ^ U64(&state.k[32])[1];
    U64(b)[0] = U64(&state.k[16])[0] ^ U64(&state.k[48])[0];
    U64(b)[1] = U64(&state.k[16])[1] ^ U64(&state.k[48])[1];

    for(i = 0; i < ITER / 2; i++)
    {
      #define MASK ((uint32_t)(((MEMORY / AES_BLOCK_SIZE) - 1) << 4))
      #define state_index(x) ((*(uint32_t *) x) & MASK)

      // Iteration 1
      j = state_index(a);
      p = &long_state[j];
      aesb_single_round(p, c1, a);

      VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j);
      copy_block(p, c1);
      xor_blocks(p, b);
      VARIANT1_1(p);

      // Iteration 2
      j = state_index(c1);
      p = &long_state[j];
      copy_block(c, p);

      copy_block(a1, a);
      VARIANT2_PORTABLE_INTEGER_MATH(c, c1);
      VARIANT4_RANDOM_MATH(a1, c, r, b, b + AES_BLOCK_SIZE);
      mul(c1, c, d);
      VARIANT2_2_PORTABLE();
      VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j);
      sum_half_blocks(a1, d);
      swap_blocks(a1, c);
      xor_blocks(a1, c);
      VARIANT1_2(U64(c) + 1);
      copy_block(p, c);

      if (variant >= 2) {
        copy_block(b + AES_BLOCK_SIZE, b);
      }
      copy_block(b, c1);
      copy_block(a, a1);
    }

    memcpy(text, state.init, INIT_SIZE_BYTE);
    oaes_key_import_data(aes_ctx, &state.hs.b[32], AES_KEY_SIZE);
    memcpy(expandedKey, aes_ctx->key->exp_data, aes_ctx->key->exp_data_len);
    for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
    {
        for(j = 0; j < INIT_SIZE_BLK; j++)
        {
            xor_blocks(&text[j * AES_BLOCK_SIZE], &long_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
            aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], expandedKey);
        }
    }

    oaes_free((OAES_CTX **) &aes_ctx);
    memcpy(state.init, text, INIT_SIZE_BYTE);
    hash_permutation(&state.hs);
    extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
#ifdef FORCE_USE_HEAP
    free(long_state);
#endif
}
#endif /* !aarch64 || !crypto */

#else
// Portable implementation as a fallback

#define hp_jitfunc ((v4_random_math_JIT_func)NULL)

void slow_hash_allocate_state(void)
{
  // Do nothing, this is just to maintain compatibility with the upgraded slow-hash.c
  return;
}

void slow_hash_free_state(void)
{
  // As above
  return;
}

static void (*const extra_hashes[4])(const void *, size_t, char *) = {
  hash_extra_blake, hash_extra_groestl, hash_extra_jh, hash_extra_skein
};

static size_t e2i(const uint8_t* a, size_t count) { return (SWAP64LE(*((uint64_t*)a)) / AES_BLOCK_SIZE) & (count - 1); }

static void mul(const uint8_t* a, const uint8_t* b, uint8_t* res) {
  uint64_t a0, b0;
  uint64_t hi, lo;

  a0 = SWAP64LE(((uint64_t*)a)[0]);
  b0 = SWAP64LE(((uint64_t*)b)[0]);
  lo = mul128(a0, b0, &hi);
  ((uint64_t*)res)[0] = SWAP64LE(hi);
  ((uint64_t*)res)[1] = SWAP64LE(lo);
}

static void sum_half_blocks(uint8_t* a, const uint8_t* b) {
  uint64_t a0, a1, b0, b1;

  a0 = SWAP64LE(((uint64_t*)a)[0]);
  a1 = SWAP64LE(((uint64_t*)a)[1]);
  b0 = SWAP64LE(((uint64_t*)b)[0]);
  b1 = SWAP64LE(((uint64_t*)b)[1]);
  a0 += b0;
  a1 += b1;
  ((uint64_t*)a)[0] = SWAP64LE(a0);
  ((uint64_t*)a)[1] = SWAP64LE(a1);
}
#define U64(x) ((uint64_t *) (x))

static void copy_block(uint8_t* dst, const uint8_t* src) {
  memcpy(dst, src, AES_BLOCK_SIZE);
}

static void swap_blocks(uint8_t *a, uint8_t *b){
  uint64_t t[2];
  U64(t)[0] = U64(a)[0];
  U64(t)[1] = U64(a)[1];
  U64(a)[0] = U64(b)[0];
  U64(a)[1] = U64(b)[1];
  U64(b)[0] = U64(t)[0];
  U64(b)[1] = U64(t)[1];
}

static void xor_blocks(uint8_t* a, const uint8_t* b) {
  size_t i;
  for (i = 0; i < AES_BLOCK_SIZE; i++) {
    a[i] ^= b[i];
  }
}

static void xor64(uint8_t* left, const uint8_t* right)
{
  size_t i;
  for (i = 0; i < 8; ++i)
  {
    left[i] ^= right[i];
  }
}

#pragma pack(push, 1)
union cn_slow_hash_state {
  union hash_state hs;
  struct {
    uint8_t k[64];
    uint8_t init[INIT_SIZE_BYTE];
  };
};
#pragma pack(pop)

void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height) {
#ifndef FORCE_USE_HEAP
  uint8_t long_state[MEMORY];
#else
  uint8_t *long_state = (uint8_t *)malloc(MEMORY);
#endif

  union cn_slow_hash_state state;
  uint8_t text[INIT_SIZE_BYTE];
  uint8_t a[AES_BLOCK_SIZE];
  uint8_t a1[AES_BLOCK_SIZE];
  uint8_t b[AES_BLOCK_SIZE * 2];
  uint8_t c1[AES_BLOCK_SIZE];
  uint8_t c2[AES_BLOCK_SIZE];
  uint8_t d[AES_BLOCK_SIZE];
  size_t i, j;
  uint8_t aes_key[AES_KEY_SIZE];
  oaes_ctx *aes_ctx;

  if (prehashed) {
    memcpy(&state.hs, data, length);
  } else {
    hash_process(&state.hs, data, length);
  }
  memcpy(text, state.init, INIT_SIZE_BYTE);
  memcpy(aes_key, state.hs.b, AES_KEY_SIZE);
  aes_ctx = (oaes_ctx *) oaes_alloc();

  VARIANT1_PORTABLE_INIT();
  VARIANT2_PORTABLE_INIT();
  VARIANT4_RANDOM_MATH_INIT();

  oaes_key_import_data(aes_ctx, aes_key, AES_KEY_SIZE);
  for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) {
    for (j = 0; j < INIT_SIZE_BLK; j++) {
      aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);
    }
    memcpy(&long_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
  }

  for (i = 0; i < AES_BLOCK_SIZE; i++) {
    a[i] = state.k[     i] ^ state.k[AES_BLOCK_SIZE * 2 + i];
    b[i] = state.k[AES_BLOCK_SIZE + i] ^ state.k[AES_BLOCK_SIZE * 3 + i];
  }

  for (i = 0; i < ITER / 2; i++) {
    /* Dependency chain: address -> read value ------+
     * written value <-+ hard function (AES or MUL) <+
     * next address  <-+
     */
    /* Iteration 1 */
    j = e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE;
    copy_block(c1, &long_state[j]);
    aesb_single_round(c1, c1, a);
    VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j);
    copy_block(&long_state[j], c1);
    xor_blocks(&long_state[j], b);
    assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE);
    VARIANT1_1(&long_state[j]);
    /* Iteration 2 */
    j = e2i(c1, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE;
    copy_block(c2, &long_state[j]);
    copy_block(a1, a);
    VARIANT2_PORTABLE_INTEGER_MATH(c2, c1);
    VARIANT4_RANDOM_MATH(a1, c2, r, b, b + AES_BLOCK_SIZE);
    mul(c1, c2, d);
    VARIANT2_2_PORTABLE();
    VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j);
    sum_half_blocks(a1, d);
    swap_blocks(a1, c2);
    xor_blocks(a1, c2);
    VARIANT1_2(c2 + 8);
    copy_block(&long_state[j], c2);
    if (variant >= 2) {
      copy_block(b + AES_BLOCK_SIZE, b);
    }
    copy_block(b, c1);
    copy_block(a, a1);
  }

  memcpy(text, state.init, INIT_SIZE_BYTE);
  oaes_key_import_data(aes_ctx, &state.hs.b[32], AES_KEY_SIZE);
  for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) {
    for (j = 0; j < INIT_SIZE_BLK; j++) {
      xor_blocks(&text[j * AES_BLOCK_SIZE], &long_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
      aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);
    }
  }
  memcpy(state.init, text, INIT_SIZE_BYTE);
  hash_permutation(&state.hs);
  /*memcpy(hash, &state, 32);*/
  extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
  oaes_free((OAES_CTX **) &aes_ctx);

#ifdef FORCE_USE_HEAP
  free(long_state);
#endif
}

#endif