aboutsummaryrefslogtreecommitdiff
path: root/src/crypto/slow-hash.c
blob: d4d0aaa6f79aae06c12eb4a8b459b953448bd712 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
// Copyright (c) 2014, The Monero Project
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
// 
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
// 
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
// 
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// 
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers

#include <assert.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>

#include "common/int-util.h"
#include "hash-ops.h"
#include "oaes_lib.h"

#include <emmintrin.h>

#if defined(_MSC_VER)
#include <intrin.h>
#include <windows.h>
#define STATIC
#define INLINE __inline
#if !defined(RDATA_ALIGN16)
#define RDATA_ALIGN16 __declspec(align(16))
#endif
#elif defined(__MINGW32__)
#include <intrin.h>
#include <windows.h>
#define STATIC static
#define INLINE inline
#if !defined(RDATA_ALIGN16)
#define RDATA_ALIGN16 __attribute__ ((aligned(16)))
#endif
#else
#include <wmmintrin.h>
#include <sys/mman.h>
#define STATIC static
#define INLINE inline
#if !defined(RDATA_ALIGN16)
#define RDATA_ALIGN16 __attribute__ ((aligned(16)))
#endif
#endif

#if defined(__INTEL_COMPILER)
#define ASM __asm__
#elif !defined(_MSC_VER)
#define ASM __asm__
#else
#define ASM __asm
#endif

#define MEMORY         (1 << 21) // 2MB scratchpad
#define ITER           (1 << 20)
#define AES_BLOCK_SIZE  16
#define AES_KEY_SIZE    32
#define INIT_SIZE_BLK   8
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
#define TOTALBLOCKS (MEMORY / AES_BLOCK_SIZE)

#define U64(x) ((uint64_t *) (x))
#define R128(x) ((__m128i *) (x))

#define state_index(x) (((*((uint64_t *)x) >> 4) & (TOTALBLOCKS - 1)) << 4)
#if defined(_MSC_VER)
#if !defined(_WIN64)
#define __mul() lo = mul128(c[0], b[0], &hi);
#else
#define __mul() lo = _umul128(c[0], b[0], &hi);
#endif
#else
#if defined(__x86_64__)
#define __mul() ASM("mulq %3\n\t" : "=d"(hi), "=a"(lo) : "%a" (c[0]), "rm" (b[0]) : "cc");
#else
#define __mul() lo = mul128(c[0], b[0], &hi);
#endif
#endif

#define pre_aes() \
    j = state_index(a); \
	_c = _mm_load_si128(R128(&hp_state[j])); \
	_a = _mm_load_si128(R128(a)); \

/*
 * An SSE-optimized implementation of the second half of CryptoNote step 3.
 * After using AES to mix a scratchpad value into _c (done by the caller), 
 * this macro xors it with _b and stores the result back to the same index (j) that it 
 * loaded the scratchpad value from.  It then performs a second random memory
 * read/write from the scratchpad, but this time mixes the values using a 64
 * bit multiply.
 * This code is based upon an optimized implementation by dga.
 */
#define post_aes() \
	_mm_store_si128(R128(c), _c); \
	_b = _mm_xor_si128(_b, _c); \
	_mm_store_si128(R128(&hp_state[j]), _b); \
	j = state_index(c); \
	p = U64(&hp_state[j]); \
	b[0] = p[0]; b[1] = p[1]; \
	__mul(); \
	a[0] += hi; a[1] += lo; \
	p = U64(&hp_state[j]); \
	p[0] = a[0];  p[1] = a[1]; \
	a[0] ^= b[0]; a[1] ^= b[1]; \
	_b = _c; \
 
#if defined(_MSC_VER)
#define THREADV __declspec(thread)
#else
#define THREADV __thread
#endif

extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey);

#pragma pack(push, 1)
union cn_slow_hash_state
{
    union hash_state hs;
    struct
    {
        uint8_t k[64];
        uint8_t init[INIT_SIZE_BYTE];
    };
};
#pragma pack(pop)

THREADV uint8_t *hp_state = NULL;
THREADV int hp_allocated = 0;

#if defined(_MSC_VER)
#define cpuid(info,x)    __cpuidex(info,x,0)
#else
void cpuid(int CPUInfo[4], int InfoType)
{
    ASM __volatile__
    (
    "cpuid":
        "=a" (CPUInfo[0]),
        "=b" (CPUInfo[1]),
        "=c" (CPUInfo[2]),
        "=d" (CPUInfo[3]) :
            "a" (InfoType), "c" (0)
        );
}
#endif

/**
 * @brief a = (a xor b), where a and b point to 128 bit values
 */

STATIC INLINE void xor_blocks(uint8_t *a, const uint8_t *b)
{
    U64(a)[0] ^= U64(b)[0];
    U64(a)[1] ^= U64(b)[1];
}

/**
 * @brief uses cpuid to determine if the CPU supports the AES instructions
 * @return true if the CPU supports AES, false otherwise
 */

STATIC INLINE int check_aes_hw(void)
{
    int cpuid_results[4];
    static int supported = -1;

    if(supported >= 0)
        return supported;

    cpuid(cpuid_results,1);
    return supported = cpuid_results[2] & (1 << 25);
}

STATIC INLINE void aes_256_assist1(__m128i* t1, __m128i * t2)
{
    __m128i t4;
    *t2 = _mm_shuffle_epi32(*t2, 0xff);
    t4 = _mm_slli_si128(*t1, 0x04);
    *t1 = _mm_xor_si128(*t1, t4);
    t4 = _mm_slli_si128(t4, 0x04);
    *t1 = _mm_xor_si128(*t1, t4);
    t4 = _mm_slli_si128(t4, 0x04);
    *t1 = _mm_xor_si128(*t1, t4);
    *t1 = _mm_xor_si128(*t1, *t2);
}

STATIC INLINE void aes_256_assist2(__m128i* t1, __m128i * t3)
{
    __m128i t2, t4;
    t4 = _mm_aeskeygenassist_si128(*t1, 0x00);
    t2 = _mm_shuffle_epi32(t4, 0xaa);
    t4 = _mm_slli_si128(*t3, 0x04);
    *t3 = _mm_xor_si128(*t3, t4);
    t4 = _mm_slli_si128(t4, 0x04);
    *t3 = _mm_xor_si128(*t3, t4);
    t4 = _mm_slli_si128(t4, 0x04);
    *t3 = _mm_xor_si128(*t3, t4);
    *t3 = _mm_xor_si128(*t3, t2);
}

/** 
 * @brief expands 'key' into a form it can be used for AES encryption.
 * 
 * This is an SSE-optimized implementation of AES key schedule generation.  It
 * expands the key into multiple round keys, each of which is used in one round
 * of the AES encryption used to fill (and later, extract randomness from)
 * the large 2MB buffer.  Note that CryptoNight does not use a completely
 * standard AES encryption for its buffer expansion, so do not copy this 
 * function outside of Monero without caution!  This version uses the hardware
 * AESKEYGENASSIST instruction to speed key generation, and thus requires
 * CPU AES support.
 * For more information about these functions, see page 19 of Intel's AES instructions
 * white paper:
 * http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/aes-instructions-set-white-paper.pdf
 *
 * @param key the input 128 bit key
 * @param expandedKey An output buffer to hold the generated key schedule
 */

STATIC INLINE void aes_expand_key(const uint8_t *key, uint8_t *expandedKey)
{
    __m128i *ek = R128(expandedKey);
    __m128i t1, t2, t3;

    t1 = _mm_loadu_si128(R128(key));
    t3 = _mm_loadu_si128(R128(key + 16));

    ek[0] = t1;
    ek[1] = t3;

    t2 = _mm_aeskeygenassist_si128(t3, 0x01);
    aes_256_assist1(&t1, &t2);
    ek[2] = t1;
    aes_256_assist2(&t1, &t3);
    ek[3] = t3;

    t2 = _mm_aeskeygenassist_si128(t3, 0x02);
    aes_256_assist1(&t1, &t2);
    ek[4] = t1;
    aes_256_assist2(&t1, &t3);
    ek[5] = t3;

    t2 = _mm_aeskeygenassist_si128(t3, 0x04);
    aes_256_assist1(&t1, &t2);
    ek[6] = t1;
    aes_256_assist2(&t1, &t3);
    ek[7] = t3;

    t2 = _mm_aeskeygenassist_si128(t3, 0x08);
    aes_256_assist1(&t1, &t2);
    ek[8] = t1;
    aes_256_assist2(&t1, &t3);
    ek[9] = t3;

    t2 = _mm_aeskeygenassist_si128(t3, 0x10);
    aes_256_assist1(&t1, &t2);
    ek[10] = t1;
}

/*
 * @brief a "pseudo" round of AES (similar to slightly different from normal AES encryption)
 *
 * To fill its 2MB scratch buffer, CryptoNight uses a nonstandard implementation
 * of AES encryption:  It applies 10 rounds of the basic AES encryption operation
 * to an input 128 bit chunk of data <in>.  Unlike normal AES, however, this is
 * all it does;  it does not perform the initial AddRoundKey step (this is done
 * in subsequent steps by aesenc_si128), and it does not use the simpler final round.
 * Hence, this is a "pseudo" round - though the function actually implements 10 rounds together.
 *
 * Note that unlike aesb_pseudo_round, this function works on multiple data chunks.
 *
 * @param in a pointer to nblocks * 128 bits of data to be encrypted
 * @param out a pointer to an nblocks * 128 bit buffer where the output will be stored
 * @param expandedKey the expanded AES key
 * @param nblocks the number of 128 blocks of data to be encrypted
 */

STATIC INLINE void aes_pseudo_round(const uint8_t *in, uint8_t *out,
                                    const uint8_t *expandedKey, int nblocks)
{
    __m128i *k = R128(expandedKey);
    __m128i d;
    int i;

    for(i = 0; i < nblocks; i++)
    {
        d = _mm_loadu_si128(R128(in + i * AES_BLOCK_SIZE));
        d = _mm_aesenc_si128(d, *R128(&k[0]));
        d = _mm_aesenc_si128(d, *R128(&k[1]));
        d = _mm_aesenc_si128(d, *R128(&k[2]));
        d = _mm_aesenc_si128(d, *R128(&k[3]));
        d = _mm_aesenc_si128(d, *R128(&k[4]));
        d = _mm_aesenc_si128(d, *R128(&k[5]));
        d = _mm_aesenc_si128(d, *R128(&k[6]));
        d = _mm_aesenc_si128(d, *R128(&k[7]));
        d = _mm_aesenc_si128(d, *R128(&k[8]));
        d = _mm_aesenc_si128(d, *R128(&k[9]));
        _mm_storeu_si128((R128(out + i * AES_BLOCK_SIZE)), d);
    }
}

/*
 * @brief aes_pseudo_round that loads data from *in and xors it with *xor first
 *
 * This function performs the same operations as aes_pseudo_round, but before
 * performing the encryption of each 128 bit block from <in>, it xors
 * it with the corresponding block from <xor>.
 *
 * @param in a pointer to nblocks * 128 bits of data to be encrypted
 * @param out a pointer to an nblocks * 128 bit buffer where the output will be stored
 * @param expandedKey the expanded AES key
 * @param xor a pointer to an nblocks * 128 bit buffer that is xored into in before encryption (in is left unmodified)
 * @param nblocks the number of 128 blocks of data to be encrypted
 */

STATIC INLINE void aes_pseudo_round_xor(const uint8_t *in, uint8_t *out,
                                        const uint8_t *expandedKey, const uint8_t *xor, int nblocks)
{
    __m128i *k = R128(expandedKey);
    __m128i *x = R128(xor);
    __m128i d;
    int i;

    for(i = 0; i < nblocks; i++)
    {
        d = _mm_loadu_si128(R128(in + i * AES_BLOCK_SIZE));
        d = _mm_xor_si128(d, *R128(x++));
        d = _mm_aesenc_si128(d, *R128(&k[0]));
        d = _mm_aesenc_si128(d, *R128(&k[1]));
        d = _mm_aesenc_si128(d, *R128(&k[2]));
        d = _mm_aesenc_si128(d, *R128(&k[3]));
        d = _mm_aesenc_si128(d, *R128(&k[4]));
        d = _mm_aesenc_si128(d, *R128(&k[5]));
        d = _mm_aesenc_si128(d, *R128(&k[6]));
        d = _mm_aesenc_si128(d, *R128(&k[7]));
        d = _mm_aesenc_si128(d, *R128(&k[8]));
        d = _mm_aesenc_si128(d, *R128(&k[9]));
        _mm_storeu_si128((R128(out + i * AES_BLOCK_SIZE)), d);
    }
}

#if defined(_MSC_VER) || defined(__MINGW32__)
BOOL SetLockPagesPrivilege(HANDLE hProcess, BOOL bEnable)
{
    struct
    {
        DWORD count;
        LUID_AND_ATTRIBUTES privilege[1];
    } info;

    HANDLE token;
    if(!OpenProcessToken(hProcess, TOKEN_ADJUST_PRIVILEGES, &token))
        return FALSE;

    info.count = 1;
    info.privilege[0].Attributes = bEnable ? SE_PRIVILEGE_ENABLED : 0;

    if(!LookupPrivilegeValue(NULL, SE_LOCK_MEMORY_NAME, &(info.privilege[0].Luid)))
        return FALSE;

    if(!AdjustTokenPrivileges(token, FALSE, (PTOKEN_PRIVILEGES) &info, 0, NULL, NULL))
        return FALSE;

    if (GetLastError() != ERROR_SUCCESS)
        return FALSE;

    CloseHandle(token);

    return TRUE;

}
#endif

/**
 * @brief allocate the 2MB scratch buffer using OS support for huge pages, if available
 *
 * This function tries to allocate the 2MB scratch buffer using a single 
 * 2MB "huge page" (instead of the usual 4KB page sizes) to reduce TLB misses
 * during the random accesses to the scratch buffer.  This is one of the
 * important speed optimizations needed to make CryptoNight faster.
 *
 * No parameters.  Updates a thread-local pointer, hp_state, to point to
 * the allocated buffer.
 */

void slow_hash_allocate_state(void)
{
    int state = 0;
    if(hp_state != NULL)
        return;

#if defined(_MSC_VER) || defined(__MINGW32__)
    SetLockPagesPrivilege(GetCurrentProcess(), TRUE);
    hp_state = (uint8_t *) VirtualAlloc(hp_state, MEMORY, MEM_LARGE_PAGES |
                                        MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
#else
#if defined(__APPLE__) || defined(__FreeBSD__)
    hp_state = mmap(0, MEMORY, PROT_READ | PROT_WRITE,
                    MAP_PRIVATE | MAP_ANON, 0, 0);    
#else
    hp_state = mmap(0, MEMORY, PROT_READ | PROT_WRITE,
                    MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, 0, 0);
#endif
    if(hp_state == MAP_FAILED)
        hp_state = NULL;
#endif
    hp_allocated = 1;
    if(hp_state == NULL)
    {
        hp_allocated = 0;
        hp_state = (uint8_t *) malloc(MEMORY);
    }
}

/**
 *@brief frees the state allocated by slow_hash_allocate_state
 */

void slow_hash_free_state(void)
{
    if(hp_state == NULL)
        return;

    if(!hp_allocated)
        free(hp_state);
    else
    {
#if defined(_MSC_VER) || defined(__MINGW32__)
        VirtualFree(hp_state, MEMORY, MEM_RELEASE);
#else
        munmap(hp_state, MEMORY);
#endif
    }

    hp_state = NULL;
    hp_allocated = 0;
}

/**
 * @brief the hash function implementing CryptoNight, used for the Monero proof-of-work
 *
 * Computes the hash of <data> (which consists of <length> bytes), returning the
 * hash in <hash>.  The CryptoNight hash operates by first using Keccak 1600,
 * the 1600 bit variant of the Keccak hash used in SHA-3, to create a 200 byte
 * buffer of pseudorandom data by hashing the supplied data.  It then uses this
 * random data to fill a large 2MB buffer with pseudorandom data by iteratively
 * encrypting it using 10 rounds of AES per entry.  After this initialization,
 * it executes 500,000 rounds of mixing through the random 2MB buffer using
 * AES (typically provided in hardware on modern CPUs) and a 64 bit multiply.
 * Finally, it re-mixes this large buffer back into
 * the 200 byte "text" buffer, and then hashes this buffer using one of four
 * pseudorandomly selected hash functions (Blake, Groestl, JH, or Skein)
 * to populate the output.
 *
 * The 2MB buffer and choice of functions for mixing are designed to make the
 * algorithm "CPU-friendly" (and thus, reduce the advantage of GPU, FPGA,
 * or ASIC-based implementations):  the functions used are fast on modern
 * CPUs, and the 2MB size matches the typical amount of L3 cache available per
 * core on 2013-era CPUs.  When available, this implementation will use hardware
 * AES support on x86 CPUs.
 *
 * A diagram of the inner loop of this function can be found at
 * http://www.cs.cmu.edu/~dga/crypto/xmr/cryptonight.png
 *
 * @param data the data to hash
 * @param length the length in bytes of the data
 * @param hash a pointer to a buffer in which the final 256 bit hash will be stored
 */

void cn_slow_hash(const void *data, size_t length, char *hash)
{
    RDATA_ALIGN16 uint8_t expandedKey[240];  /* These buffers are aligned to use later with SSE functions */

    uint8_t text[INIT_SIZE_BYTE];
    RDATA_ALIGN16 uint64_t a[2];
    RDATA_ALIGN16 uint64_t b[2];
    RDATA_ALIGN16 uint64_t c[2];
    union cn_slow_hash_state state;
    __m128i _a, _b, _c;
    uint64_t hi, lo;

    size_t i, j;
    uint64_t *p = NULL;
    oaes_ctx *aes_ctx;
    int useAes = check_aes_hw();

    static void (*const extra_hashes[4])(const void *, size_t, char *) =
    {
        hash_extra_blake, hash_extra_groestl, hash_extra_jh, hash_extra_skein
    };

    // this isn't supposed to happen, but guard against it for now.
    if(hp_state == NULL)
        slow_hash_allocate_state();

    /* CryptoNight Step 1:  Use Keccak1600 to initialize the 'state' (and 'text') buffers from the data. */

    hash_process(&state.hs, data, length);
    memcpy(text, state.init, INIT_SIZE_BYTE);

    /* CryptoNight Step 2:  Iteratively encrypt the results from keccak to fill
     * the 2MB large random access buffer.
     */

    if(useAes)
    {
        aes_expand_key(state.hs.b, expandedKey);
        for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
        {
            aes_pseudo_round(text, text, expandedKey, INIT_SIZE_BLK);
            memcpy(&hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
        }
    }
    else
    {
        aes_ctx = (oaes_ctx *) oaes_alloc();
        oaes_key_import_data(aes_ctx, state.hs.b, AES_KEY_SIZE);
        for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
        {
            for(j = 0; j < INIT_SIZE_BLK; j++)
                aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);

            memcpy(&hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
        }
    }

    U64(a)[0] = U64(&state.k[0])[0] ^ U64(&state.k[32])[0];
    U64(a)[1] = U64(&state.k[0])[1] ^ U64(&state.k[32])[1];
    U64(b)[0] = U64(&state.k[16])[0] ^ U64(&state.k[48])[0];
    U64(b)[1] = U64(&state.k[16])[1] ^ U64(&state.k[48])[1];

    /* CryptoNight Step 3:  Bounce randomly 1 million times through the mixing buffer,
     * using 500,000 iterations of the following mixing function.  Each execution
     * performs two reads and writes from the mixing buffer.
     */

    _b = _mm_load_si128(R128(b));
    // Two independent versions, one with AES, one without, to ensure that 
    // the useAes test is only performed once, not every iteration.
    if(useAes)
    {
        for(i = 0; i < ITER / 2; i++)
        {
            pre_aes();
            _c = _mm_aesenc_si128(_c, _a);
            post_aes();
        }
    }
    else
    {
        for(i = 0; i < ITER / 2; i++)
        {
            pre_aes();
            aesb_single_round((uint8_t *) &_c, (uint8_t *) &_c, (uint8_t *) &_a);
            post_aes();
        }
    }

    /* CryptoNight Step 4:  Sequentially pass through the mixing buffer and use 10 rounds
     * of AES encryption to mix the random data back into the 'text' buffer.  'text'
     * was originally created with the output of Keccak1600. */

    memcpy(text, state.init, INIT_SIZE_BYTE);
    if(useAes)
    {
        aes_expand_key(&state.hs.b[32], expandedKey);
        for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
        {
            // add the xor to the pseudo round
            aes_pseudo_round_xor(text, text, expandedKey, &hp_state[i * INIT_SIZE_BYTE], INIT_SIZE_BLK);
        }
    }
    else
    {
        oaes_key_import_data(aes_ctx, &state.hs.b[32], AES_KEY_SIZE);
        for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
        {
            for(j = 0; j < INIT_SIZE_BLK; j++)
            {
                xor_blocks(&text[j * AES_BLOCK_SIZE], &hp_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
                aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);
            }
        }
        oaes_free((OAES_CTX **) &aes_ctx);
    }

    /* CryptoNight Step 5:  Apply Keccak to the state again, and then
     * use the resulting data to select which of four finalizer
     * hash functions to apply to the data (Blake, Groestl, JH, or Skein).
     * Use this hash to squeeze the state array down
     * to the final 256 bit hash output.
     */

    memcpy(state.init, text, INIT_SIZE_BYTE);
    hash_permutation(&state.hs);
    extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
}