aboutsummaryrefslogtreecommitdiff
path: root/src/crypto/crypto_ops_builder/ietf.txt
blob: 0736f71ec0678ae04fc2affc2594f3736351884b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
                                                                        

[Docs] [txt|pdf] [Tracker] [Email] [Diff1] [Diff2] [Nits]               
                                                                        
Versions: 00 01 02                                                      
                                                                        
Network Working Group                                       S. Josefsson
Internet-Draft                                                    SJD AB
Intended status: Informational                                N. Moeller
Expires: August 26, 2015
                                                       February 22, 2015


                           EdDSA and Ed25519

                    draft-josefsson-eddsa-ed25519-02


Abstract

   The elliptic curve signature scheme EdDSA and one instance of it
   called Ed25519 is described.  An example implementation and test
   vectors are provided.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 26, 2015.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Josefsson & Moeller      Expires August 26, 2015                [Page 1]

 
Internet-Draft               EdDSA & Ed25519               February 2015


Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Notation  . . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Background  . . . . . . . . . . . . . . . . . . . . . . . . .   3
   4.  EdDSA . . . . . . . . . . . . . . . . . . . . . . . . . . . .   4
     4.1.  Encoding  . . . . . . . . . . . . . . . . . . . . . . . .   4
     4.2.  Keys  . . . . . . . . . . . . . . . . . . . . . . . . . .   5
     4.3.  Sign  . . . . . . . . . . . . . . . . . . . . . . . . . .   5
     4.4.  Verify  . . . . . . . . . . . . . . . . . . . . . . . . .   5
   5.  Ed25519 . . . . . . . . . . . . . . . . . . . . . . . . . . .   5
     5.1.  Modular arithmetic  . . . . . . . . . . . . . . . . . . .   6
     5.2.  Encoding  . . . . . . . . . . . . . . . . . . . . . . . .   6
     5.3.  Decoding  . . . . . . . . . . . . . . . . . . . . . . . .   6
     5.4.  Point addition  . . . . . . . . . . . . . . . . . . . . .   7
     5.5.  Key Generation  . . . . . . . . . . . . . . . . . . . . .   8
     5.6.  Sign  . . . . . . . . . . . . . . . . . . . . . . . . . .   8
     5.7.  Verify  . . . . . . . . . . . . . . . . . . . . . . . . .   9
     5.8.  Python illustration . . . . . . . . . . . . . . . . . . .   9
   6.  Test Vectors for Ed25519  . . . . . . . . . . . . . . . . . .  14
   7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  17
   8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  18
   9.  Security Considerations . . . . . . . . . . . . . . . . . . .  18
     9.1.  Side-channel leaks  . . . . . . . . . . . . . . . . . . .  18
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  18
     10.1.  Normative References . . . . . . . . . . . . . . . . . .  18
     10.2.  Informative References . . . . . . . . . . . . . . . . .  18
   Appendix A.  Ed25519 Python Library . . . . . . . . . . . . . . .  19
   Appendix B.  Library driver . . . . . . . . . . . . . . . . . . .  23
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  24

1.  Introduction


   The Edwards-curve Digital Signature Algorithm (EdDSA) is a variant of
   Schnorr's signature system with Twisted Edwards curves.  EdDSA needs
   to be instantiated with certain parameters and this document describe
   Ed25519 - an instantiation of EdDSA in a curve over GF(2^255-19).  To
   facilitate adoption in the Internet community of Ed25519, this
   document describe the signature scheme in an implementation-oriented
   way, and we provide sample code and test vectors.

   The advantages with EdDSA and Ed25519 include:

   1.  High-performance on a variety of platforms.

   2.  Does not require the use of a unique random number for each
       signature.




Josefsson & Moeller      Expires August 26, 2015                [Page 2]

 
Internet-Draft               EdDSA & Ed25519               February 2015


   3.  More resilient to side-channel attacks.

   4.  Small public keys (32 bytes) and signatures (64 bytes).

   5.  The formulas are "strongly unified", i.e., they are valid for all
       points on the curve, with no exceptions.  This obviates the need
       for EdDSA to perform expensive point validation on untrusted
       public values.

   6.  Collision resilience, meaning that hash-function collisions do
       not break this system.

   For further background, see the original EdDSA paper [EDDSA].

2.  Notation


   The following notation is used throughout the document:

   GF(p) finite field with p elements

   x^y x multiplied by itself y times

   B generator of the group or subgroup of interest

   n B B added to itself n times.

   h_i the i'th bit of h

   a || b (bit-)string a concatenated with (bit-)string b

3.  Background


   EdDSA is defined using an elliptic curve over GF(p) of the form

   -x^2 + y^2 = 1 + d x^2 y^2

   In general, p could be a prime power, but it is usually chosen as a
   prime number.  It is required that p = 1 modulo 4 (which implies that
   -1 is a square modulo p) and that d is a non-square modulo p.  For
   Ed25519, the curve used is equivalent to Curve25519 [CURVE25519],
   under a change of coordinates, which means that the difficulty of the
   discrete logarithm problem is the same as for Curve25519.

   Points on this curve form a group under addition, (x3, y3) = (x1, y1)
   + (x2, y2), with the formulas






Josefsson & Moeller      Expires August 26, 2015                [Page 3]

 
Internet-Draft               EdDSA & Ed25519               February 2015


           x1 y2 + x2 y1              y1 y2 + x1 x2
   x3 = -------------------,  y3 = -------------------
         1 + d x1 x2 y1 y2          1 - d x1 x2 y1 y2

   The neutral element in the group is (0, 1).

   Unlike manyy other curves used for cryptographic applications, these
   formulas are "strongly unified": they are valid for all points on the
   curve, with no exceptions.  In particular, the denominators are non-
   zero for all input points.

   There are more efficient formulas, which are still strongly unified,
   which use homogeneous coordinates to avoid the expensive modulo p
   inversions.  See [Faster-ECC] and [Edwards-revisited].

4.  EdDSA


   EdDSA is a digital signature system with several parameters.  The
   generic EdDSA digital signature system is normally not implemented
   directly, but instead a particular instance of EdDSA (like Ed25519)
   is implemented.  A precise explanation of the generic EdDSA is thus
   not particulary useful for implementers, but for background and
   completeness, a succint description of the generic EdDSA algorithm is
   given here.

   EdDSA has seven parameters:

   1.  an integer b >= 10.

   2.  a cryptographic hash function H producing 2b-bit outputs.

   3.  a prime power p congruent to 1 modulo 4.

   4.  a (b-1)-bit encoding of elements of the finite field GF(p).

   5.  a non-square element d of GF(p)

   6.  an element B != (0,1) of the set E = { (x,y) is a member of GF(p)
       x GF(p) such that -x^2 + y^2 = 1 + dx^2y^2 }.

   7.  a prime q, of size b-3 bits, such that qB = (0, 1), i.e., q is
       the order of B or a multiple thereof.

4.1.  Encoding


   An element (x,y) of E is encoded as a b-bit string called ENC(x,y)
   which is the (b-1)-bit encoding of y concatenated with one bit that
   is 1 if x is negative and 0 if x is not negative.  Negative elements



Josefsson & Moeller      Expires August 26, 2015                [Page 4]

 
Internet-Draft               EdDSA & Ed25519               February 2015


   of GF(q) are those x which the (b-1)-bit encoding of x is
   lexicographically larger than the (b-1)-bit encoding of -x.

4.2.  Keys


   An EdDSA secret key is a b-bit string k.  Let the hash H(k) = (h_0,
   h_1, ..., h_(2b-1)) determine an integer a which is 2^(b-2) plus the
   sum of m = 2^i * h_i for all i equal or larger than 3 and equal to or
   less than b-3 such that m is a member of the set { 2^(b-2), 2^(b-2) +
   8, ..., 2^(b-1) - 8 }.  The EdDSA public key is ENC(A) = ENC(aB).
   The bits h_b, ..., h_(2b-1) is used below during signing.

4.3.  Sign


   The signature of a message M under a secret key k is the 2b-bit
   string ENC(R) || ENC'(S), where ENC'(S) is defined as the b-bit
   little-endian encoding of S.  R and S are derived as follows.  First
   define r = H(h_b, ... h_(2b-1)), M) interpreting 2b-bit strings in
   little-endian form as integers in {0, 1, ..., 2^(2b)-1}.  Let R=rB
   and S=(r+H(ENC(R) || ENC(A) || M)a) mod l.

4.4.  Verify


   To verify a signature ENC(R) || ENC'(S) on a message M under a public
   key ENC(A), proceed as follows.  Parse the inputs so that A and R is
   an element of E, and S is a member of the set {0, 1, ..., l-1 }.
   Compute H' = H(ENC(R) || ENC(A) || M) and check the group equation
   8SB = 8R + 8H'A in E.  Verification is rejected if parsing fails or
   the group equation does not hold.

5.  Ed25519


   Theoretically, Ed25519 is EdDSA instantiated with b=256, H being
   SHA-512 [RFC4634], p is the prime 2^255-19, the 255-bit encoding of
   GF(2^255-19) being the little-endian encoding of {0, 1, ...,
   2^255-20}, q is the prime 2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed,
   d = -121665/121666 which is a member of GF(p), and B is the unique
   point (x, 4/5) in E for which x is "positive", which with the
   encoding used simply means that the least significant bit of x is 0.
   The curve p, prime q, d and B follows from [I-D.irtf-cfrg-curves].

   Written out explicitly, B is the point (15112221349535400772501151409
   588531511454012693041857206046113283949847762202, 4631683569492647816
   9428394003475163141307993866256225615783033603165251855960).







Josefsson & Moeller      Expires August 26, 2015                [Page 5]

 
Internet-Draft               EdDSA & Ed25519               February 2015


5.1.  Modular arithmetic


   For advise on how to implement arithmetic modulo p = 2^255 - 1
   efficiently and securely, see Curve25519 [CURVE25519].  For inversion
   modulo p, it is recommended to use the identity x^-1 = x^(p-2) (mod
   p).

   For point decoding or "decompression", square roots modulo p are
   needed.  They can be computed using the Tonelli-Shanks algorithm, or
   the special case for p = 5 (mod 8).  To find a square root of a,
   first compute the candidate root x = a^((p+3)/8) (mod p).  Then there
   are three cases:

      x^2 = a (mod p).  Then x is a square root.

      x^2 = -a (mod p).  Then 2^((p-1)/4) x is a square root.

      a is not a square modulo p.

5.2.  Encoding


   All values are coded as octet strings, and integers are coded using
   little endian convention.  I.e., a 32-octet string h h[0],...h[31]
   represents the integer h[0] + 2^8 h[1] + ... + 2^248 h[31].

   A curve point (x,y), with coordiantes in the range 0 <= x,y < p, is
   coded as follows.  First encode the y-coordinate as a little-endian
   string of 32 octets.  The most significant bit of the final octet is
   always zero.  To form the encoding of the point, copy the least
   significant bit of the x-coordinate to the most significant bit of
   the final octet.

5.3.  Decoding


   Decoding a point, given as a 32-octet string, is a little more
   complicated.

   1.  First interpret the string as an integer in little-endian
       representation.  Bit 255 of this number is the least significant
       bit of the x-coordinate, and denote this value x_0.  The
       y-coordinate is recovered simply by clearing this bit.  If the
       resulting value is >= p, decoding fails.

   2.  To recover the x coordinate, the curve equation implies x^2 =
       (y^2 - 1) / (d y^2 + 1) (mod p).  Since d is a non-square and -1
       is a square, the numerator, (d y^2 + 1), is always invertible
       modulo p.  Let u = y^2 - 1 and v = d y^2 + 1.  To compute the
       square root of (u/v), the first step is to compute the candidate



Josefsson & Moeller      Expires August 26, 2015                [Page 6]

 
Internet-Draft               EdDSA & Ed25519               February 2015


       root x = (u/v)^((p+3)/8).  This can be done using the following
       trick, to use a single modular powering for both the inversion of
       v and the square root:

                      (p+3)/8      3        (p-5)/8
             x = (u/v)        = u v  (u v^7)         (mod p)

   3.  Again, there are three cases:

       1.  If v x^2 = u (mod p), x is a square root.

       2.  If v x^2 = -u (mod p), set x <-- x 2^((p-1)/4), which is a
           square root.

       3.  Otherwise, no square root exists modulo p, and decoding
           fails.

   4.  Finally, use the x_0 bit to select the right square root.  If x =
       0, and x_0 = 1, decoding fails.  Otherwise, if x_0 != x mod 2,
       set x <-- p - x.  Return the decoded point (x,y).

5.4.  Point addition


   For point addition, the following method is recommended.  A point
   (x,y) is represented in extended homogeneous coordinates (X, Y, Z,
   T), with x = X/Z, y = Y/Z, x y = T/Z.

   The following formulas for adding two points, (x3,y3) =
   (x1,y1)+(x2,y2) are described in [Edwards-revisited], section 3.1.
   They are strongly unified, i.e., they work for any pair of valid
   input points.

           A = (Y1-X1)*(Y2-X2)
           B = (Y1+X1)*(Y2+X2)
           C = T1*2*d*T2
           D = Z1*2*Z2
           E = B-A
           F = D-C
           G = D+C
           H = B+A
           X3 = E*F
           Y3 = G*H
           T3 = E*H
           Z3 = F*G







Josefsson & Moeller      Expires August 26, 2015                [Page 7]

 
Internet-Draft               EdDSA & Ed25519               February 2015


5.5.  Key Generation


   The secret is 32 octets (256 bits, corresponding to b) of
   cryptographically-secure random data.  See [RFC4086] for a discussion
   about randomness.

   The 32-byte public key is generated by the following steps.

   1.  Hash the 32-byte secret using SHA-512, storing the digest in a
       64-octet large buffer, denoted h.  Only the lower 32 bytes are
       used for generating the public key.

   2.  Prune the buffer.  In C terminology:

             h[0] &= ~0x07;
             h[31] &= 0x7F;
             h[31] |= 0x40;

   3.  Interpret the buffer as the little-endian integer, forming a
       secret scalar a.  Perform a known-base-point scalar
       multiplication a B.

   4.  The public key A is the encoding of the point aB.  First encode
       the y coordinate (in the range 0 <= y < p) as a little-endian
       string of 32 octets.  The most significant bit of the final octet
       is always zero.  To form the encoding of the point aB, copy the
       least significant bit of the x coordinate to the most significant
       bit of the final octet.  The result is the public key.

5.6.  Sign


   The imputs to the signing procedure is the secret key, a 32-octet
   string, and a message M of arbitrary size.

   1.  Hash the secret key, 32-octets, using SHA-512.  Let h denote the
       resulting digest.  Construct the secret scalar a from the first
       half of the digest, and the corresponding public key A, as
       described in the previous section.  Let prefix denote the second
       half of the hash digest, h[32],...,h[63].

   2.  Compute SHA-512(prefix || M), where M is the message to be
       signed.  Interpret the 64-octet digest as a little-endian integer
       r.

   3.  Compute the point rB.  For efficiency, do this by first reducing
       r modulo q, the group order of B.  Let the string R be the
       encoding of this point.




Josefsson & Moeller      Expires August 26, 2015                [Page 8]

 
Internet-Draft               EdDSA & Ed25519               February 2015


   4.  Compute SHA512(R || A || M), and interpret the 64-octet digest as
       a little-endian integer k.

   5.  Compute s = (r + k a) mod q.  For efficiency, again reduce k
       modulo q first.

   6.  Form the signature of the concatenation of R (32 octets) and the
       little-endian encoding of s (32 octets, three most significant
       bits of the final octets always zero).

5.7.  Verify


   1.  To verify a signature on a message M, first split the signature
       into two 32-octet halves.  Decode the first half as a point R,
       and the second half as an integer s, in the range 0 <= s < q.  If
       the decoding fails, the signature is invalid.

   2.  Compute SHA512(R || A || M), and interpret the 64-octet digest as
       a little-endian integer k.

   3.  Check the group equation 8s B = 8 R + 8k A.  It's sufficient, but
       not required, to instead check s B = R + k A.

5.8.  Python illustration


   The rest of this section describes how Ed25519 can be implemented in
   Python (version 3.2 or later) for illustration.  See appendix A for
   the complete implementation and appendix B for a test-driver to run
   it through some test vectors.

   First some preliminaries that will be needed.




















Josefsson & Moeller      Expires August 26, 2015                [Page 9]

 
Internet-Draft               EdDSA & Ed25519               February 2015


   import hashlib

   def sha512(s):
       return hashlib.sha512(s).digest()

   # Base field Z_p
   p = 2**255 - 19

   def modp_inv(x):
       return pow(x, p-2, p)

   # Curve constant
   d = -121665 * modp_inv(121666) % p

   # Group order
   q = 2**252 + 27742317777372353535851937790883648493

   def sha512_modq(s):
       return int.from_bytes(sha512(s), "little") % q

   Then follows functions to perform point operations.






























Josefsson & Moeller      Expires August 26, 2015               [Page 10]

 
Internet-Draft               EdDSA & Ed25519               February 2015


# Points are represented as tuples (X, Y, Z, T) of extended coordinates,
# with x = X/Z, y = Y/Z, x*y = T/Z

def point_add(P, Q):
    A = (P[1]-P[0])*(Q[1]-Q[0]) % p
    B = (P[1]+P[0])*(Q[1]+Q[0]) % p
    C = 2 * P[3] * Q[3] * d % p
    D = 2 * P[2] * Q[2] % p
    E = B-A
    F = D-C
    G = D+C
    H = B+A
    return (E*F, G*H, F*G, E*H)

# Computes Q = s * Q
def point_mul(s, P):
    Q = (0, 1, 1, 0)  # Neutral element
    while s > 0:
        # Is there any bit-set predicate?
        if s & 1:
            Q = point_add(Q, P)
        P = point_add(P, P)
        s >>= 1
    return Q

def point_equal(P, Q):
    # x1 / z1 == x2 / z2  <==>  x1 * z2 == x2 * z1
    if (P[0] * Q[2] - Q[0] * P[2]) % p != 0:
        return False
    if (P[1] * Q[2] - Q[1] * P[2]) % p != 0:
        return False
    return True

   Now follows functions for point compression.

















Josefsson & Moeller      Expires August 26, 2015               [Page 11]

 
Internet-Draft               EdDSA & Ed25519               February 2015


# Square root of -1
modp_sqrt_m1 = pow(2, (p-1) // 4, p)

# Compute corresponding x coordinate, with low bit corresponding to sign,
# or return None on failure
def recover_x(y, sign):
    x2 = (y*y-1) * modp_inv(d*y*y+1)
    if x2 == 0:
        if sign:
            return None
        else:
            return 0

    # Compute square root of x2
    x = pow(x2, (p+3) // 8, p)
    if (x*x - x2) % p != 0:
        x = x * modp_sqrt_m1 % p
    if (x*x - x2) % p != 0:
        return None

    if (x & 1) != sign:
        x = p - x
    return x

# Base point
g_y = 4 * modp_inv(5) % p
g_x = recover_x(g_y, 0)
G = (g_x, g_y, 1, g_x * g_y % p)

def point_compress(P):
    zinv = modp_inv(P[2])
    x = P[0] * zinv % p
    y = P[1] * zinv % p
    return int.to_bytes(y | ((x & 1) << 255), 32, "little")

def point_decompress(s):
    if len(s) != 32:
        raise Exception("Invalid input length for decompression")
    y = int.from_bytes(s, "little")
    sign = y >> 255
    y &= (1 << 255) - 1

    x = recover_x(y, sign)
    if x is None:
        return None
    else:
        return (x, y, 1, x*y % p)




Josefsson & Moeller      Expires August 26, 2015               [Page 12]

 
Internet-Draft               EdDSA & Ed25519               February 2015


   These are functions for manipulating the secret.

   def secret_expand(secret):
       if len(secret) != 32:
           raise Exception("Bad size of private key")
       h = sha512(secret)
       a = int.from_bytes(h[:32], "little")
       a &= (1 << 254) - 8
       a |= (1 << 254)
       return (a, h[32:])

   def secret_to_public(secret):
       (a, dummy) = secret_expand(secret)
       return point_compress(point_mul(a, G))

   The signature function works as below.

   def sign(secret, msg):
       a, prefix = secret_expand(secret)
       A = point_compress(point_mul(a, G))
       r = sha512_modq(prefix + msg)
       R = point_mul(r, G)
       Rs = point_compress(R)
       h = sha512_modq(Rs + A + msg)
       s = (r + h * a) % q
       return Rs + int.to_bytes(s, 32, "little")

   And finally the verification function.

   def verify(public, msg, signature):
       if len(public) != 32:
           raise Exception("Bad public-key length")
       if len(signature) != 64:
           Exception("Bad signature length")
       A = point_decompress(public)
       if not A:
           return False
       Rs = signature[:32]
       R = point_decompress(Rs)
       if not R:
           return False
       s = int.from_bytes(signature[32:], "little")
       h = sha512_modq(Rs + public + msg)
       sB = point_mul(s, G)
       hA = point_mul(h, A)
       return point_equal(sB, point_add(R, hA))





Josefsson & Moeller      Expires August 26, 2015               [Page 13]

 
Internet-Draft               EdDSA & Ed25519               February 2015


6.  Test Vectors for Ed25519


   Below is a sequence of octets with test vectors for the the Ed25519
   signature algorithm.  The octets are hex encoded and whitespace is
   inserted for readability.  Private keys are 64 bytes, public keys 32
   bytes, message of arbitrary length, and signatures are 64 bytes.  The
   test vectors are taken from [ED25519-TEST-VECTORS] (but we removed
   the public key as a suffix of the secret key, and removed the message
   from the signature) and [ED25519-LIBGCRYPT-TEST-VECTORS].

   -----TEST 1
   SECRET KEY:
   9d61b19deffd5a60ba844af492ec2cc4
   4449c5697b326919703bac031cae7f60

   PUBLIC KEY:
   d75a980182b10ab7d54bfed3c964073a
   0ee172f3daa62325af021a68f707511a

   MESSAGE (length 0 bytes):

   SIGNATURE:
   e5564300c360ac729086e2cc806e828a
   84877f1eb8e5d974d873e06522490155
   5fb8821590a33bacc61e39701cf9b46b
   d25bf5f0595bbe24655141438e7a100b

   -----TEST 2
   SECRET KEY:
   4ccd089b28ff96da9db6c346ec114e0f
   5b8a319f35aba624da8cf6ed4fb8a6fb

   PUBLIC KEY:
   3d4017c3e843895a92b70aa74d1b7ebc
   9c982ccf2ec4968cc0cd55f12af4660c

   MESSAGE (length 1 byte):
   72

   SIGNATURE:
   92a009a9f0d4cab8720e820b5f642540
   a2b27b5416503f8fb3762223ebdb69da
   085ac1e43e15996e458f3613d0f11d8c
   387b2eaeb4302aeeb00d291612bb0c00

   -----TEST 3
   SECRET KEY:
   c5aa8df43f9f837bedb7442f31dcb7b1



Josefsson & Moeller      Expires August 26, 2015               [Page 14]

 
Internet-Draft               EdDSA & Ed25519               February 2015


   66d38535076f094b85ce3a2e0b4458f7

   PUBLIC KEY:
   fc51cd8e6218a1a38da47ed00230f058
   0816ed13ba3303ac5deb911548908025

   MESSAGE (length 2 bytes):
   af82

   SIGNATURE:
   6291d657deec24024827e69c3abe01a3
   0ce548a284743a445e3680d7db5ac3ac
   18ff9b538d16f290ae67f760984dc659
   4a7c15e9716ed28dc027beceea1ec40a

   -----TEST 1024
   SECRET KEY:
   f5e5767cf153319517630f226876b86c
   8160cc583bc013744c6bf255f5cc0ee5

   PUBLIC KEY:
   278117fc144c72340f67d0f2316e8386
   ceffbf2b2428c9c51fef7c597f1d426e

   MESSAGE:
   08b8b2b733424243760fe426a4b54908
   632110a66c2f6591eabd3345e3e4eb98
   fa6e264bf09efe12ee50f8f54e9f77b1
   e355f6c50544e23fb1433ddf73be84d8
   79de7c0046dc4996d9e773f4bc9efe57
   38829adb26c81b37c93a1b270b20329d
   658675fc6ea534e0810a4432826bf58c
   941efb65d57a338bbd2e26640f89ffbc
   1a858efcb8550ee3a5e1998bd177e93a
   7363c344fe6b199ee5d02e82d522c4fe
   ba15452f80288a821a579116ec6dad2b
   3b310da903401aa62100ab5d1a36553e
   06203b33890cc9b832f79ef80560ccb9
   a39ce767967ed628c6ad573cb116dbef
   efd75499da96bd68a8a97b928a8bbc10
   3b6621fcde2beca1231d206be6cd9ec7
   aff6f6c94fcd7204ed3455c68c83f4a4
   1da4af2b74ef5c53f1d8ac70bdcb7ed1
   85ce81bd84359d44254d95629e9855a9
   4a7c1958d1f8ada5d0532ed8a5aa3fb2
   d17ba70eb6248e594e1a2297acbbb39d
   502f1a8c6eb6f1ce22b3de1a1f40cc24
   554119a831a9aad6079cad88425de6bd



Josefsson & Moeller      Expires August 26, 2015               [Page 15]

 
Internet-Draft               EdDSA & Ed25519               February 2015


   e1a9187ebb6092cf67bf2b13fd65f270
   88d78b7e883c8759d2c4f5c65adb7553
   878ad575f9fad878e80a0c9ba63bcbcc
   2732e69485bbc9c90bfbd62481d9089b
   eccf80cfe2df16a2cf65bd92dd597b07
   07e0917af48bbb75fed413d238f5555a
   7a569d80c3414a8d0859dc65a46128ba
   b27af87a71314f318c782b23ebfe808b
   82b0ce26401d2e22f04d83d1255dc51a
   ddd3b75a2b1ae0784504df543af8969b
   e3ea7082ff7fc9888c144da2af58429e
   c96031dbcad3dad9af0dcbaaaf268cb8
   fcffead94f3c7ca495e056a9b47acdb7
   51fb73e666c6c655ade8297297d07ad1
   ba5e43f1bca32301651339e22904cc8c
   42f58c30c04aafdb038dda0847dd988d
   cda6f3bfd15c4b4c4525004aa06eeff8
   ca61783aacec57fb3d1f92b0fe2fd1a8
   5f6724517b65e614ad6808d6f6ee34df
   f7310fdc82aebfd904b01e1dc54b2927
   094b2db68d6f903b68401adebf5a7e08
   d78ff4ef5d63653a65040cf9bfd4aca7
   984a74d37145986780fc0b16ac451649
   de6188a7dbdf191f64b5fc5e2ab47b57
   f7f7276cd419c17a3ca8e1b939ae49e4
   88acba6b965610b5480109c8b17b80e1
   b7b750dfc7598d5d5011fd2dcc5600a3
   2ef5b52a1ecc820e308aa342721aac09
   43bf6686b64b2579376504ccc493d97e
   6aed3fb0f9cd71a43dd497f01f17c0e2
   cb3797aa2a2f256656168e6c496afc5f
   b93246f6b1116398a346f1a641f3b041
   e989f7914f90cc2c7fff357876e506b5
   0d334ba77c225bc307ba537152f3f161
   0e4eafe595f6d9d90d11faa933a15ef1
   369546868a7f3a45a96768d40fd9d034
   12c091c6315cf4fde7cb68606937380d
   b2eaaa707b4c4185c32eddcdd306705e
   4dc1ffc872eeee475a64dfac86aba41c
   0618983f8741c5ef68d3a101e8a3b8ca
   c60c905c15fc910840b94c00a0b9d0

   SIGNATURE:
   0aab4c900501b3e24d7cdf4663326a3a
   87df5e4843b2cbdb67cbf6e460fec350
   aa5371b1508f9f4528ecea23c436d94b
   5e8fcd4f681e30a6ac00a9704a188a03




Josefsson & Moeller      Expires August 26, 2015               [Page 16]

 
Internet-Draft               EdDSA & Ed25519               February 2015


   -----TEST 1A
   -----An additional test with the data from test 1 but using an
   -----uncompressed public key.
   SECRET KEY:
   9d61b19deffd5a60ba844af492ec2cc4
   4449c5697b326919703bac031cae7f60

   PUBLIC KEY:
   0455d0e09a2b9d34292297e08d60d0f6
   20c513d47253187c24b12786bd777645
   ce1a5107f7681a02af2523a6daf372e1
   0e3a0764c9d3fe4bd5b70ab18201985a
   d7

   MSG (length 0 bytes):

   SIGNATURE:
   e5564300c360ac729086e2cc806e828a
   84877f1eb8e5d974d873e06522490155
   5fb8821590a33bacc61e39701cf9b46b
   d25bf5f0595bbe24655141438e7a100b

   -----TEST 1B
   -----An additional test with the data from test 1 but using an
   -----compressed prefix.
   SECRET KEY:
   9d61b19deffd5a60ba844af492ec2cc4
   4449c5697b326919703bac031cae7f60

   PUBLIC KEY:
   40d75a980182b10ab7d54bfed3c96407
   3a0ee172f3daa62325af021a68f70751
   1a

   MESSAGE (length 0 bytes):

   SIGNATURE:
   e5564300c360ac729086e2cc806e828a
   84877f1eb8e5d974d873e06522490155
   5fb8821590a33bacc61e39701cf9b46b
   d25bf5f0595bbe24655141438e7a100b
   -----

7.  Acknowledgements


   Feedback on this document was received from Werner Koch and Damien
   Miller.




Josefsson & Moeller      Expires August 26, 2015               [Page 17]

 
Internet-Draft               EdDSA & Ed25519               February 2015


8.  IANA Considerations


   None.

9.  Security Considerations


9.1.  Side-channel leaks


   For implementations performing signatures, secrecy of the key is
   fundamental.  It is possible to protect against some side-channel
   attacks by ensuring that the implementation executes exactly the same
   sequence of instructions and performs exactly the same memory
   accesses, for any value of the secret key.

   To make an implementation side-channel silent in this way, the modulo
   p arithmetic must not use any data-dependent branches, e.g., related
   to carry propagation.  Side channel-silent point addition is
   straight-forward, thanks to the unified formulas.

   Scalar multiplication, multiplying a point by an integer, needs some
   additional effort to implement in a side-channel silent manner.  One
   simple approach is to implement a side-channel silent conditional
   assignment, and use together with the binary algorithm to examine one
   bit of the integer at a time.

   Note that the example implementation in this document does not
   attempt to be side-channel silent.

10.  References


10.1.  Normative References


   [RFC4634]  Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
              (SHA and HMAC-SHA)", RFC 4634, July 2006.

   [I-D.irtf-cfrg-curves]
              Langley, A., Salz, R., and S. Turner, "Elliptic Curves for
              Security", draft-irtf-cfrg-curves-01 (work in progress),
              January 2015.

10.2.  Informative References


   [RFC4086]  Eastlake, D., Schiller, J., and S. Crocker, "Randomness
              Requirements for Security", BCP 106, RFC 4086, June 2005.







Josefsson & Moeller      Expires August 26, 2015               [Page 18]

 
Internet-Draft               EdDSA & Ed25519               February 2015


   [EDDSA]    Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B.
              Yang, "High-speed high-security signatures", WWW
              http://ed25519.cr.yp.to/ed25519-20110926.pdf, September
              2011.

   [Faster-ECC]
              Bernstein, D. and T. Lange, "Faster addition and doubling
              on elliptic curves", WWW http://eprint.iacr.org/2007/286,
              July 2007.

   [Edwards-revisited]
              Hisil, H., Wong, K., Carter, G., and E. Dawson, "Twisted
              Edwards Curves Revisited", WWW
              http://eprint.iacr.org/2008/522, December 2008.

   [CURVE25519]
              Bernstein, D., "Curve25519: new Diffie-Hellman speed
              records", WWW http://cr.yp.to/ecdh.html, February 2006.

   [ED25519-TEST-VECTORS]
              Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B.
              Yang, "Ed25519 test vectors", WWW
              http://ed25519.cr.yp.to/python/sign.input, July 2011.

   [ED25519-LIBGCRYPT-TEST-VECTORS]
              Koch, W., "Ed25519 Libgcrypt test vectors", WWW
              http://git.gnupg.org/cgi-
              bin/gitweb.cgi?p=libgcrypt.git;a=blob;f=tests/t-ed25519.in
              p;h=e13566f826321eece65e02c593bc7d885b3dbe23;hb=refs/
              heads/master, July 2014.

Appendix A.  Ed25519 Python Library


   Below is an example implementation of Ed25519 written in Python,
   version 3.2 or higher is required.

# Loosely based on the public domain code at
# http://ed25519.cr.yp.to/software.html
#
# Needs python-3.2

import hashlib


def sha512(s):
    return hashlib.sha512(s).digest()

# Base field Z_p



Josefsson & Moeller      Expires August 26, 2015               [Page 19]

 
Internet-Draft               EdDSA & Ed25519               February 2015


p = 2**255 - 19


def modp_inv(x):
    return pow(x, p-2, p)

# Curve constant
d = -121665 * modp_inv(121666) % p

# Group order
q = 2**252 + 27742317777372353535851937790883648493


def sha512_modq(s):
    return int.from_bytes(sha512(s), "little") % q

# Points are represented as tuples (X, Y, Z, T) of extended coordinates,
# with x = X/Z, y = Y/Z, x*y = T/Z


def point_add(P, Q):
    A = (P[1]-P[0])*(Q[1]-Q[0]) % p
    B = (P[1]+P[0])*(Q[1]+Q[0]) % p
    C = 2 * P[3] * Q[3] * d % p
    D = 2 * P[2] * Q[2] % p
    E = B-A
    F = D-C
    G = D+C
    H = B+A
    return (E*F, G*H, F*G, E*H)


# Computes Q = s * Q
def point_mul(s, P):
    Q = (0, 1, 1, 0)  # Neutral element
    while s > 0:
        # Is there any bit-set predicate?
        if s & 1:
            Q = point_add(Q, P)
        P = point_add(P, P)
        s >>= 1
    return Q


def point_equal(P, Q):
    # x1 / z1 == x2 / z2  <==>  x1 * z2 == x2 * z1
    if (P[0] * Q[2] - Q[0] * P[2]) % p != 0:
        return False



Josefsson & Moeller      Expires August 26, 2015               [Page 20]

 
Internet-Draft               EdDSA & Ed25519               February 2015


    if (P[1] * Q[2] - Q[1] * P[2]) % p != 0:
        return False
    return True

# Square root of -1
modp_sqrt_m1 = pow(2, (p-1) // 4, p)


# Compute corresponding x coordinate, with low bit corresponding to sign,
# or return None on failure
def recover_x(y, sign):
    x2 = (y*y-1) * modp_inv(d*y*y+1)
    if x2 == 0:
        if sign:
            return None
        else:
            return 0

    # Compute square root of x2
    x = pow(x2, (p+3) // 8, p)
    if (x*x - x2) % p != 0:
        x = x * modp_sqrt_m1 % p
    if (x*x - x2) % p != 0:
        return None

    if (x & 1) != sign:
        x = p - x
    return x

# Base point
g_y = 4 * modp_inv(5) % p
g_x = recover_x(g_y, 0)
G = (g_x, g_y, 1, g_x * g_y % p)


def point_compress(P):
    zinv = modp_inv(P[2])
    x = P[0] * zinv % p
    y = P[1] * zinv % p
    return int.to_bytes(y | ((x & 1) << 255), 32, "little")


def point_decompress(s):
    if len(s) != 32:
        raise Exception("Invalid input length for decompression")
    y = int.from_bytes(s, "little")
    sign = y >> 255
    y &= (1 << 255) - 1



Josefsson & Moeller      Expires August 26, 2015               [Page 21]

 
Internet-Draft               EdDSA & Ed25519               February 2015


    x = recover_x(y, sign)
    if x is None:
        return None
    else:
        return (x, y, 1, x*y % p)


def secret_expand(secret):
    if len(secret) != 32:
        raise Exception("Bad size of private key")
    h = sha512(secret)
    a = int.from_bytes(h[:32], "little")
    a &= (1 << 254) - 8
    a |= (1 << 254)
    return (a, h[32:])


def secret_to_public(secret):
    (a, dummy) = secret_expand(secret)
    return point_compress(point_mul(a, G))


def sign(secret, msg):
    a, prefix = secret_expand(secret)
    A = point_compress(point_mul(a, G))
    r = sha512_modq(prefix + msg)
    R = point_mul(r, G)
    Rs = point_compress(R)
    h = sha512_modq(Rs + A + msg)
    s = (r + h * a) % q
    return Rs + int.to_bytes(s, 32, "little")


def verify(public, msg, signature):
    if len(public) != 32:
        raise Exception("Bad public-key length")
    if len(signature) != 64:
        Exception("Bad signature length")
    A = point_decompress(public)
    if not A:
        return False
    Rs = signature[:32]
    R = point_decompress(Rs)
    if not R:
        return False
    s = int.from_bytes(signature[32:], "little")
    h = sha512_modq(Rs + public + msg)
    sB = point_mul(s, G)



Josefsson & Moeller      Expires August 26, 2015               [Page 22]

 
Internet-Draft               EdDSA & Ed25519               February 2015


    hA = point_mul(h, A)
    return point_equal(sB, point_add(R, hA))

Appendix B.  Library driver


   Below is a command-line tool that uses the library above to perform
   computations, for interactive use or for self-checking.

   import sys
   import binascii

   from ed25519 import *

   def point_valid(P):
       zinv = modp_inv(P[2])
       x = P[0] * zinv % p
       y = P[1] * zinv % p
       assert (x*y - P[3]*zinv) % p == 0
       return (-x*x + y*y - 1 - d*x*x*y*y) % p == 0

   assert point_valid(G)
   Z = (0, 1, 1, 0)
   assert point_valid(Z)

   assert point_equal(Z, point_add(Z, Z))
   assert point_equal(G, point_add(Z, G))
   assert point_equal(Z, point_mul(0, G))
   assert point_equal(G, point_mul(1, G))
   assert point_equal(point_add(G, G), point_mul(2, G))
   for i in range(0, 100):
       assert point_valid(point_mul(i, G))
   assert point_equal(Z, point_mul(q, G))

   def munge_string(s, pos, change):
       return (s[:pos] +
               int.to_bytes(s[pos] ^ change, 1, "little") +
               s[pos+1:])

   # Read a file in the format of
   # http://ed25519.cr.yp.to/python/sign.input
   lineno = 0
   while True:
       line = sys.stdin.readline()
       if not line:
           break
       lineno = lineno + 1
       print(lineno)
       fields = line.split(":")



Josefsson & Moeller      Expires August 26, 2015               [Page 23]

 
Internet-Draft               EdDSA & Ed25519               February 2015


       secret = (binascii.unhexlify(fields[0]))[:32]
       public = binascii.unhexlify(fields[1])
       msg = binascii.unhexlify(fields[2])
       signature = binascii.unhexlify(fields[3])[:64]

       assert public == secret_to_public(secret)
       assert signature == sign(secret, msg)
       assert verify(public, msg, signature)
       if len(msg) == 0:
           bad_msg = b"x"
       else:
           bad_msg = munge_string(msg, len(msg) // 3, 4)
       assert not verify(public, bad_msg, signature)
       bad_signature = munge_string(signature, 20, 8)
       assert not verify(public, msg, bad_signature)
       bad_signature = munge_string(signature, 40, 16)
       assert not verify(public, msg, bad_signature)

Authors' Addresses

   Simon Josefsson
   SJD AB

   Email: simon@josefsson.org
   URI:   http://josefsson.org/


   Niels Moeller

   Email: nisse@lysator.liu.se





















Josefsson & Moeller      Expires August 26, 2015               [Page 24]



Html markup produced by rfcmarkup 1.113, available from https://tools.ietf.org/tools/rfcmarkup/