1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
// dnstap: flexible, structured event replication format for DNS software
//
// This file contains the protobuf schemas for the "dnstap" structured event
// replication format for DNS software.
// Written in 2013-2014 by Farsight Security, Inc.
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this file to the public
// domain worldwide. This file is distributed without any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication along
// with this file. If not, see:
//
// <http://creativecommons.org/publicdomain/zero/1.0/>.
package dnstap;
// "Dnstap": this is the top-level dnstap type, which is a "union" type that
// contains other kinds of dnstap payloads, although currently only one type
// of dnstap payload is defined.
// See: https://developers.google.com/protocol-buffers/docs/techniques#union
message Dnstap {
// DNS server identity.
// If enabled, this is the identity string of the DNS server which generated
// this message. Typically this would be the same string as returned by an
// "NSID" (RFC 5001) query.
optional bytes identity = 1;
// DNS server version.
// If enabled, this is the version string of the DNS server which generated
// this message. Typically this would be the same string as returned by a
// "version.bind" query.
optional bytes version = 2;
// Extra data for this payload.
// This field can be used for adding an arbitrary byte-string annotation to
// the payload. No encoding or interpretation is applied or enforced.
optional bytes extra = 3;
// Identifies which field below is filled in.
enum Type {
MESSAGE = 1;
}
required Type type = 15;
// One of the following will be filled in.
optional Message message = 14;
}
// SocketFamily: the network protocol family of a socket. This specifies how
// to interpret "network address" fields.
enum SocketFamily {
INET = 1; // IPv4 (RFC 791)
INET6 = 2; // IPv6 (RFC 2460)
}
// SocketProtocol: the transport protocol of a socket. This specifies how to
// interpret "transport port" fields.
enum SocketProtocol {
UDP = 1; // User Datagram Protocol (RFC 768)
TCP = 2; // Transmission Control Protocol (RFC 793)
}
// Message: a wire-format (RFC 1035 section 4) DNS message and associated
// metadata. Applications generating "Message" payloads should follow
// certain requirements based on the MessageType, see below.
message Message {
// There are eight types of "Message" defined that correspond to the
// four arrows in the following diagram, slightly modified from RFC 1035
// section 2:
// +---------+ +----------+ +--------+
// | | query | | query | |
// | Stub |-SQ--------CQ->| Recursive|-RQ----AQ->| Auth. |
// | Resolver| | Server | | Name |
// | |<-SR--------CR-| |<-RR----AR-| Server |
// +---------+ response | | response | |
// +----------+ +--------+
// Each arrow has two Type values each, one for each "end" of each arrow,
// because these are considered to be distinct events. Each end of each
// arrow on the diagram above has been marked with a two-letter Type
// mnemonic. Clockwise from upper left, these mnemonic values are:
//
// SQ: STUB_QUERY
// CQ: CLIENT_QUERY
// RQ: RESOLVER_QUERY
// AQ: AUTH_QUERY
// AR: AUTH_RESPONSE
// RR: RESOLVER_RESPONSE
// CR: CLIENT_RESPONSE
// SR: STUB_RESPONSE
// Two additional types of "Message" have been defined for the
// "forwarding" case where an upstream DNS server is responsible for
// further recursion. These are not shown on the diagram above, but have
// the following mnemonic values:
// FQ: FORWARDER_QUERY
// FR: FORWARDER_RESPONSE
// The "Message" Type values are defined below.
enum Type {
// AUTH_QUERY is a DNS query message received from a resolver by an
// authoritative name server, from the perspective of the authoritative
// name server.
AUTH_QUERY = 1;
// AUTH_RESPONSE is a DNS response message sent from an authoritative
// name server to a resolver, from the perspective of the authoritative
// name server.
AUTH_RESPONSE = 2;
// RESOLVER_QUERY is a DNS query message sent from a resolver to an
// authoritative name server, from the perspective of the resolver.
// Resolvers typically clear the RD (recursion desired) bit when
// sending queries.
RESOLVER_QUERY = 3;
// RESOLVER_RESPONSE is a DNS response message received from an
// authoritative name server by a resolver, from the perspective of
// the resolver.
RESOLVER_RESPONSE = 4;
// CLIENT_QUERY is a DNS query message sent from a client to a DNS
// server which is expected to perform further recursion, from the
// perspective of the DNS server. The client may be a stub resolver or
// forwarder or some other type of software which typically sets the RD
// (recursion desired) bit when querying the DNS server. The DNS server
// may be a simple forwarding proxy or it may be a full recursive
// resolver.
CLIENT_QUERY = 5;
// CLIENT_RESPONSE is a DNS response message sent from a DNS server to
// a client, from the perspective of the DNS server. The DNS server
// typically sets the RA (recursion available) bit when responding.
CLIENT_RESPONSE = 6;
// FORWARDER_QUERY is a DNS query message sent from a downstream DNS
// server to an upstream DNS server which is expected to perform
// further recursion, from the perspective of the downstream DNS
// server.
FORWARDER_QUERY = 7;
// FORWARDER_RESPONSE is a DNS response message sent from an upstream
// DNS server performing recursion to a downstream DNS server, from the
// perspective of the downstream DNS server.
FORWARDER_RESPONSE = 8;
// STUB_QUERY is a DNS query message sent from a stub resolver to a DNS
// server, from the perspective of the stub resolver.
STUB_QUERY = 9;
// STUB_RESPONSE is a DNS response message sent from a DNS server to a
// stub resolver, from the perspective of the stub resolver.
STUB_RESPONSE = 10;
}
// One of the Type values described above.
required Type type = 1;
// One of the SocketFamily values described above.
optional SocketFamily socket_family = 2;
// One of the SocketProtocol values described above.
optional SocketProtocol socket_protocol = 3;
// The network address of the message initiator.
// For SocketFamily INET, this field is 4 octets (IPv4 address).
// For SocketFamily INET6, this field is 16 octets (IPv6 address).
optional bytes query_address = 4;
// The network address of the message responder.
// For SocketFamily INET, this field is 4 octets (IPv4 address).
// For SocketFamily INET6, this field is 16 octets (IPv6 address).
optional bytes response_address = 5;
// The transport port of the message initiator.
// This is a 16-bit UDP or TCP port number, depending on SocketProtocol.
optional uint32 query_port = 6;
// The transport port of the message responder.
// This is a 16-bit UDP or TCP port number, depending on SocketProtocol.
optional uint32 response_port = 7;
// The time at which the DNS query message was sent or received, depending
// on whether this is an AUTH_QUERY, RESOLVER_QUERY, or CLIENT_QUERY.
// This is the number of seconds since the UNIX epoch.
optional uint64 query_time_sec = 8;
// The time at which the DNS query message was sent or received.
// This is the seconds fraction, expressed as a count of nanoseconds.
optional fixed32 query_time_nsec = 9;
// The initiator's original wire-format DNS query message, verbatim.
optional bytes query_message = 10;
// The "zone" or "bailiwick" pertaining to the DNS query message.
// This is a wire-format DNS domain name.
optional bytes query_zone = 11;
// The time at which the DNS response message was sent or received,
// depending on whether this is an AUTH_RESPONSE, RESOLVER_RESPONSE, or
// CLIENT_RESPONSE.
// This is the number of seconds since the UNIX epoch.
optional uint64 response_time_sec = 12;
// The time at which the DNS response message was sent or received.
// This is the seconds fraction, expressed as a count of nanoseconds.
optional fixed32 response_time_nsec = 13;
// The responder's original wire-format DNS response message, verbatim.
optional bytes response_message = 14;
}
// All fields except for 'type' in the Message schema are optional.
// It is recommended that at least the following fields be filled in for
// particular types of Messages.
// AUTH_QUERY:
// socket_family, socket_protocol
// query_address, query_port
// query_message
// query_time_sec, query_time_nsec
// AUTH_RESPONSE:
// socket_family, socket_protocol
// query_address, query_port
// query_time_sec, query_time_nsec
// response_message
// response_time_sec, response_time_nsec
// RESOLVER_QUERY:
// socket_family, socket_protocol
// query_name, query_type, query_class
// query_message
// query_time_sec, query_time_nsec
// query_zone
// response_address, response_port
// RESOLVER_RESPONSE:
// socket_family, socket_protocol
// query_name, query_type, query_class
// query_time_sec, query_time_nsec
// query_zone
// response_address, response_port
// response_message
// response_time_sec, response_time_nsec
// CLIENT_QUERY:
// socket_family, socket_protocol
// query_message
// query_time_sec, query_time_nsec
// CLIENT_RESPONSE:
// socket_family, socket_protocol
// query_time_sec, query_time_nsec
// response_message
// response_time_sec, response_time_nsec
|