aboutsummaryrefslogtreecommitdiff
path: root/contrib/epee/src/byte_slice.cpp
blob: 453b63a4c034e27f6eb1502e62abe4a239f69e8f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
// Copyright (c) 2019-2020, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <atomic>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <stdexcept>
#include <utility>

#include "byte_slice.h"
#include "byte_stream.h"

namespace
{
  const std::size_t page_size = 4096;
}

namespace epee
{
  struct byte_slice_data
  {
    byte_slice_data() noexcept
      : ref_count(1)
    {}

    virtual ~byte_slice_data() noexcept
    {}

    std::atomic<std::size_t> ref_count;
  };

  void release_byte_slice::call(void*, void* ptr) noexcept
  {
    if (ptr)
    {
      byte_slice_data* self = static_cast<byte_slice_data*>(ptr);
      if (--(self->ref_count) == 0)
      {
        self->~byte_slice_data();
        free(self);
      }
    }
  }

  namespace
  {
    template<typename T>
    struct adapted_byte_slice final : byte_slice_data
    {
      explicit adapted_byte_slice(T&& buffer)
        : byte_slice_data(), buffer(std::move(buffer))
      {}

      virtual ~adapted_byte_slice() noexcept final override
      {}

      const T buffer;
    };

    // bytes "follow" this structure in memory slab
    struct raw_byte_slice final : byte_slice_data
    {
      raw_byte_slice() noexcept
        : byte_slice_data()
      {}

      virtual ~raw_byte_slice() noexcept final override
      {}
    };

    /* This technique is not-standard, but allows for the reference count and
       memory for the bytes (when given a list of spans) to be allocated in a
       single call. In that situation, the dynamic sized bytes are after/behind
       the raw_byte_slice class. The C runtime has to track the number of bytes
       allocated regardless, so free'ing is relatively easy. */

    template<typename T, typename... U>
    std::unique_ptr<T, release_byte_slice> allocate_slice(std::size_t extra_bytes, U&&... args)
    {
      if (std::numeric_limits<std::size_t>::max() - sizeof(T) < extra_bytes)
        throw std::bad_alloc{};

      void* const ptr = malloc(sizeof(T) + extra_bytes);
      if (ptr == nullptr)
        throw std::bad_alloc{};

      try
      {
        new (ptr) T{std::forward<U>(args)...};
      }
      catch (...)
      {
        free(ptr);
        throw;
      }
      return std::unique_ptr<T, release_byte_slice>{reinterpret_cast<T*>(ptr)};
    }
  } // anonymous

  void release_byte_buffer::operator()(std::uint8_t* buf) const noexcept
  {
    if (buf)
      std::free(buf - sizeof(raw_byte_slice));
  }

  byte_slice::byte_slice(byte_slice_data* storage, span<const std::uint8_t> portion) noexcept
    : storage_(storage), portion_(portion)
  {
    if (storage_)
      ++(storage_->ref_count);
  }

  template<typename T>
  byte_slice::byte_slice(const adapt_buffer, T&& buffer)
    : storage_(nullptr), portion_(nullptr)
  {
    if (!buffer.empty())
    {
      storage_ = allocate_slice<adapted_byte_slice<T>>(0, std::move(buffer));
      portion_ = to_byte_span(to_span(static_cast<adapted_byte_slice<T> *>(storage_.get())->buffer));
    }
  }

  byte_slice::byte_slice(std::initializer_list<span<const std::uint8_t>> sources)
    : byte_slice()
  {
    std::size_t space_needed = 0;
    for (const auto source : sources)
      space_needed += source.size();

    if (space_needed)
    {
      auto storage = allocate_slice<raw_byte_slice>(space_needed);
      span<std::uint8_t> out{reinterpret_cast<std::uint8_t*>(storage.get() + 1), space_needed};
      portion_ = {out.data(), out.size()};

      for (const auto source : sources)
      {
        std::memcpy(out.data(), source.data(), source.size());
        if (out.remove_prefix(source.size()) < source.size())
          throw std::bad_alloc{}; // size_t overflow on space_needed
      }
      storage_ = std::move(storage);
    }
  }

  byte_slice::byte_slice(std::string&& buffer)
    : byte_slice(adapt_buffer{}, std::move(buffer))
  {}

  byte_slice::byte_slice(std::vector<std::uint8_t>&& buffer)
    : byte_slice(adapt_buffer{}, std::move(buffer))
  {}

  byte_slice::byte_slice(byte_stream&& stream, const bool shrink)
    : storage_(nullptr), portion_(stream.data(), stream.size())
  {
    if (portion_.size())
    {
      byte_buffer buf;
      if (shrink && page_size <= stream.available())
      {
          buf = byte_buffer_resize(stream.take_buffer(), portion_.size());
          if (!buf)
            throw std::bad_alloc{};
          portion_ = {buf.get(), portion_.size()};
      }
      else // no need to shrink buffer
        buf = stream.take_buffer();

      std::uint8_t* const data = buf.release() - sizeof(raw_byte_slice);
      new (data) raw_byte_slice{};
      storage_.reset(reinterpret_cast<raw_byte_slice*>(data));
    }
    else // empty stream
      portion_ = nullptr;
  }

  byte_slice::byte_slice(byte_slice&& source) noexcept
    : storage_(std::move(source.storage_)), portion_(source.portion_)
  {
    source.portion_ = epee::span<const std::uint8_t>{};
  }

  byte_slice& byte_slice::operator=(byte_slice&& source) noexcept
  {
    storage_ = std::move(source.storage_);
    portion_ = source.portion_;
    if (source.storage_ == nullptr)
      source.portion_ = epee::span<const std::uint8_t>{};

    return *this;
  }

  std::size_t byte_slice::remove_prefix(std::size_t max_bytes) noexcept
  {
    max_bytes = portion_.remove_prefix(max_bytes);
    if (portion_.empty())
      storage_ = nullptr;
    return max_bytes;
  }

  byte_slice byte_slice::take_slice(const std::size_t max_bytes) noexcept
  {
    byte_slice out{};

    if (max_bytes)
    {
      std::uint8_t const* const ptr = data();
      out.portion_ = {ptr, portion_.remove_prefix(max_bytes)};

      if (portion_.empty())
        out.storage_ = std::move(storage_); // no atomic inc/dec
      else
        out = {storage_.get(), out.portion_};
    }
    return out;
  }

  byte_slice byte_slice::get_slice(const std::size_t begin, const std::size_t end) const
  {
    if (end < begin || portion_.size() < end)
      throw std::out_of_range{"bad slice range"};

    if (begin == end)
      return {};
    return {storage_.get(), {portion_.begin() + begin, end - begin}};
  }

  std::unique_ptr<byte_slice_data, release_byte_slice> byte_slice::take_buffer() noexcept
  {
    std::unique_ptr<byte_slice_data, release_byte_slice> out{std::move(storage_)};
    portion_ = nullptr;
    return out;
  }

  byte_buffer byte_buffer_resize(byte_buffer buf, const std::size_t length) noexcept
  {
    if (std::numeric_limits<std::size_t>::max() - sizeof(raw_byte_slice) < length)
      return nullptr;

    std::uint8_t* data = buf.get();
    if (data != nullptr)
      data -= sizeof(raw_byte_slice);

    data = static_cast<std::uint8_t*>(std::realloc(data, sizeof(raw_byte_slice) + length));
    if (data == nullptr)
      return nullptr;

    buf.release();
    buf.reset(data + sizeof(raw_byte_slice));
    return buf;
  }

  byte_buffer byte_buffer_increase(byte_buffer buf, const std::size_t current, const std::size_t more)
  {
    if (std::numeric_limits<std::size_t>::max() - current < more)
      throw std::range_error{"byte_buffer_increase size_t overflow"};
    return byte_buffer_resize(std::move(buf), current + more);
  }
} // epee