aboutsummaryrefslogtreecommitdiff
path: root/contrib/epee/include/rolling_median.h
blob: 8965a8268be4e4c96e39a5c4c6a43d9583e8b4e7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
// Copyright (c) 2019-2022, The Monero Project
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
// 
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
// 
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
// 
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Adapted from source by AShelly:
// Copyright (c) 2011 ashelly.myopenid.com, licenced under the MIT licence
// https://stackoverflow.com/questions/5527437/rolling-median-in-c-turlach-implementation
// https://stackoverflow.com/questions/1309263/rolling-median-algorithm-in-c
// https://ideone.com/XPbl6

#pragma once

#include "misc_language.h"

#include <stdlib.h>
#include <stdint.h>

namespace epee
{
namespace misc_utils
{

template<typename Item>
struct rolling_median_t
{
private:
  Item* data;  //circular queue of values
  int*  pos;   //index into `heap` for each value
  int*  heap;  //max/median/min heap holding indexes into `data`.
  int   N;     //allocated size.
  int   idx;   //position in circular queue
  int   minCt; //count of items in min heap
  int   maxCt; //count of items in max heap
  int   sz;    //count of items in heap

private:

  //returns true if heap[i] < heap[j]
  bool mmless(int i, int j) const
  {
    return data[heap[i]] < data[heap[j]];
  }

  //swaps items i&j in heap, maintains indexes
  bool mmexchange(int i, int j)
  {
    const int t = heap[i];
    heap[i] = heap[j];
    heap[j] = t;
    pos[heap[i]] = i;
    pos[heap[j]] = j;
    return 1;
  }

  //swaps items i&j if i<j;  returns true if swapped
  bool mmCmpExch(int i, int j)
  {
     return mmless(i, j) && mmexchange(i, j);
  }

  //maintains minheap property for all items below i.
  void minSortDown(int i)
  {
    for (i *= 2; i <= minCt; i *= 2)
    {
       if (i < minCt && mmless(i + 1, i))
         ++i;
       if (!mmCmpExch(i, i / 2))
         break;
    }
  }

  //maintains maxheap property for all items below i. (negative indexes)
  void maxSortDown(int i)
  {
    for (i *= 2; i >= -maxCt; i *= 2)
    {
      if (i > -maxCt && mmless(i, i - 1))
        --i;
      if (!mmCmpExch(i / 2, i))
        break;
    }
  }

  //maintains minheap property for all items above i, including median
  //returns true if median changed
  bool minSortUp(int i)
  {
    while (i > 0 && mmCmpExch(i, i / 2))
      i /= 2;
    return i == 0;
  }

  //maintains maxheap property for all items above i, including median
  //returns true if median changed
  bool maxSortUp(int i)
  {
     while (i < 0 && mmCmpExch(i / 2, i))
       i /= 2;
     return i == 0;
  }

protected:
  rolling_median_t &operator=(const rolling_median_t&) = delete;
  rolling_median_t(const rolling_median_t&) = delete;

public:
  //creates new rolling_median_t: to calculate `nItems` running median. 
  rolling_median_t(size_t N): N(N)
  {
    int size = N * (sizeof(Item) + sizeof(int) * 2);
    data = (Item*)malloc(size);
    pos = (int*) (data + N);
    heap = pos + N + (N / 2); //points to middle of storage.
    clear();
  }

  rolling_median_t(rolling_median_t &&m)
  {
    memcpy(this, &m, sizeof(rolling_median_t));
    m.data = NULL;
  }
  rolling_median_t &operator=(rolling_median_t &&m)
  {
    free(data);
    memcpy(this, &m, sizeof(rolling_median_t));
    m.data = NULL;
    return *this;
  }

  ~rolling_median_t()
  {
    free(data);
  }

  void clear()
  {
    idx = 0;
    minCt = 0;
    maxCt = 0;
    sz = 0;
    int nItems = N;
    while (nItems--)  //set up initial heap fill pattern: median,max,min,max,...
    {
      pos[nItems] = ((nItems + 1) / 2) * ((nItems & 1) ? -1 : 1);
      heap[pos[nItems]] = nItems;
    }
  }

  int size() const
  {
    return sz;
  }

  //Inserts item, maintains median in O(lg nItems)
  void insert(Item v)
  {
    int p = pos[idx];
    Item old = data[idx];
    data[idx] = v;
    idx = (idx + 1) % N;
    sz = std::min<int>(sz + 1, N);
    if (p > 0)         //new item is in minHeap
    {
      if (minCt < (N - 1) / 2)
      {
        ++minCt;
      }
      else if (v > old)
      {
        minSortDown(p);
        return;
      }
      if (minSortUp(p) && mmCmpExch(0, -1))
        maxSortDown(-1);
    }
    else if (p < 0)   //new item is in maxheap
    {
      if (maxCt < N / 2)
      {
        ++maxCt;
      }
      else if (v < old)
      {
        maxSortDown(p);
        return;
      }
      if (maxSortUp(p) && minCt && mmCmpExch(1, 0))
        minSortDown(1);
    }
    else //new item is at median
    {
      if (maxCt && maxSortUp(-1))
        maxSortDown(-1);
      if (minCt && minSortUp(1))
        minSortDown(1);
    }
  }

  //returns median item (or average of 2 when item count is even)
  Item median() const
  {
    Item v = data[heap[0]];
    if (minCt < maxCt)
    {
      v = get_mid<Item>(v, data[heap[-1]]);
    }
    return v;
  }
};

}
}