1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
|
# Monero
Copyright (c) 2014-2022 The Monero Project.
Portions Copyright (c) 2012-2013 The Cryptonote developers.
## Table of Contents
- [Development resources](#development-resources)
- [Vulnerability response](#vulnerability-response)
- [Research](#research)
- [Announcements](#announcements)
- [Translations](#translations)
- [Coverage](#coverage)
- [Introduction](#introduction)
- [About this project](#about-this-project)
- [Supporting the project](#supporting-the-project)
- [License](#license)
- [Contributing](#contributing)
- [Scheduled software upgrades](#scheduled-software-upgrades)
- [Release staging schedule and protocol](#release-staging-schedule-and-protocol)
- [Compiling Monero from source](#compiling-monero-from-source)
- [Dependencies](#dependencies)
- [Internationalization](#Internationalization)
- [Using Tor](#using-tor)
- [Pruning](#Pruning)
- [Debugging](#Debugging)
- [Known issues](#known-issues)
## Development resources
- Web: [getmonero.org](https://getmonero.org)
- Forum: [forum.getmonero.org](https://forum.getmonero.org)
- Mail: [dev@getmonero.org](mailto:dev@getmonero.org)
- GitHub: [https://github.com/monero-project/monero](https://github.com/monero-project/monero)
- IRC: [#monero-dev on Libera](https://web.libera.chat/#monero-dev)
- It is HIGHLY recommended that you join the #monero-dev IRC channel if you are developing software that uses Monero. Due to the nature of this open source software project, joining this channel and idling is the best way to stay updated on best practices and new developments in the Monero ecosystem. All you need to do is join the IRC channel and idle to stay updated with the latest in Monero development. If you do not, you risk wasting resources on developing integrations that are not compatible with the Monero network. The Monero core team and community continuously make efforts to communicate updates, developments, and documentation via other platforms – but for the best information, you need to talk to other Monero developers, and they are on IRC. #monero-dev is about Monero development, not getting help about using Monero, or help about development of other software, including yours, unless it also pertains to Monero code itself. For these cases, checkout #monero.
## Vulnerability response
- Our [Vulnerability Response Process](https://github.com/monero-project/meta/blob/master/VULNERABILITY_RESPONSE_PROCESS.md) encourages responsible disclosure
- We are also available via [HackerOne](https://hackerone.com/monero)
## Research
The [Monero Research Lab](https://src.getmonero.org/resources/research-lab/) is an open forum where the community coordinates research into Monero cryptography, protocols, fungibility, analysis, and more. We welcome collaboration and contributions from outside researchers! Because not all Lab work and publications are distributed as traditional preprints or articles, they may be easy to miss if you are conducting literature reviews for your own Monero research. You are encouraged to get in touch with the Monero research community if you have questions, wish to collaborate, or would like guidance to help avoid unnecessarily duplicating earlier or known work.
The Monero research community is available on IRC in [#monero-research-lab on Libera](https://web.libera.chat/#monero-research-lab), which is also accessible via Matrix.
## Announcements
- You can subscribe to an [announcement listserv](https://lists.getmonero.org) to get critical announcements from the Monero core team. The announcement list can be very helpful for knowing when software updates are needed.
## Translations
The CLI wallet is available in different languages. If you want to help translate it, see our self-hosted localization platform, Weblate, on [translate.getmonero.org]( https://translate.getmonero.org/projects/monero/cli-wallet/). Every translation *must* be uploaded on the platform, pull requests directly editing the code in this repository will be closed. If you need help with Weblate, you can find a guide with screenshots [here](https://github.com/monero-ecosystem/monero-translations/blob/master/weblate.md).
If you need help/support/info about translations, contact the localization workgroup. You can find the complete list of contacts on the repository of the workgroup: [monero-translations](https://github.com/monero-ecosystem/monero-translations#contacts).
## Coverage
| Type | Status |
|-----------|--------|
| Coverity | [![Coverity Status](https://scan.coverity.com/projects/9657/badge.svg)](https://scan.coverity.com/projects/9657/)
| OSS Fuzz | [![Fuzzing Status](https://oss-fuzz-build-logs.storage.googleapis.com/badges/monero.svg)](https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-opened&can=1&q=proj:monero)
| Coveralls | [![Coveralls Status](https://coveralls.io/repos/github/monero-project/monero/badge.svg?branch=master)](https://coveralls.io/github/monero-project/monero?branch=master)
| License | [![License](https://img.shields.io/badge/license-BSD3-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)
## Introduction
Monero is a private, secure, untraceable, decentralised digital currency. You are your bank, you control your funds, and nobody can trace your transfers unless you allow them to do so.
**Privacy:** Monero uses a cryptographically sound system to allow you to send and receive funds without your transactions being easily revealed on the blockchain (the ledger of transactions that everyone has). This ensures that your purchases, receipts, and all transfers remain private by default.
**Security:** Using the power of a distributed peer-to-peer consensus network, every transaction on the network is cryptographically secured. Individual wallets have a 25-word mnemonic seed that is only displayed once and can be written down to backup the wallet. Wallet files should be encrypted with a strong passphrase to ensure they are useless if ever stolen.
**Untraceability:** By taking advantage of ring signatures, a special property of a certain type of cryptography, Monero is able to ensure that transactions are not only untraceable but have an optional measure of ambiguity that ensures that transactions cannot easily be tied back to an individual user or computer.
**Decentralization:** The utility of Monero depends on its decentralised peer-to-peer consensus network - anyone should be able to run the monero software, validate the integrity of the blockchain, and participate in all aspects of the monero network using consumer-grade commodity hardware. Decentralization of the monero network is maintained by software development that minimizes the costs of running the monero software and inhibits the proliferation of specialized, non-commodity hardware.
## About this project
This is the core implementation of Monero. It is open source and completely free to use without restrictions, except for those specified in the license agreement below. There are no restrictions on anyone creating an alternative implementation of Monero that uses the protocol and network in a compatible manner.
As with many development projects, the repository on GitHub is considered to be the "staging" area for the latest changes. Before changes are merged into that branch on the main repository, they are tested by individual developers in their own branches, submitted as a pull request, and then subsequently tested by contributors who focus on testing and code reviews. That having been said, the repository should be carefully considered before using it in a production environment, unless there is a patch in the repository for a particular show-stopping issue you are experiencing. It is generally a better idea to use a tagged release for stability.
**Anyone is welcome to contribute to Monero's codebase!** If you have a fix or code change, feel free to submit it as a pull request directly to the "master" branch. In cases where the change is relatively small or does not affect other parts of the codebase, it may be merged in immediately by any one of the collaborators. On the other hand, if the change is particularly large or complex, it is expected that it will be discussed at length either well in advance of the pull request being submitted, or even directly on the pull request.
## Supporting the project
Monero is a 100% community-sponsored endeavor. If you want to join our efforts, the easiest thing you can do is support the project financially. Both Monero and Bitcoin donations can be made to **donate.getmonero.org** if using a client that supports the [OpenAlias](https://openalias.org) standard. Alternatively, you can send XMR to the Monero donation address via the `donate` command (type `help` in the command-line wallet for details).
The Monero donation address is:
`888tNkZrPN6JsEgekjMnABU4TBzc2Dt29EPAvkRxbANsAnjyPbb3iQ1YBRk1UXcdRsiKc9dhwMVgN5S9cQUiyoogDavup3H`
Viewkey:
`f359631075708155cc3d92a32b75a7d02a5dcf27756707b47a2b31b21c389501`
Base address for restoring with address and viewkey:
`44AFFq5kSiGBoZ4NMDwYtN18obc8AemS33DBLWs3H7otXft3XjrpDtQGv7SqSsaBYBb98uNbr2VBBEt7f2wfn3RVGQBEP3A`
The Bitcoin donation address is:
`1KTexdemPdxSBcG55heUuTjDRYqbC5ZL8H`
Core development funding and/or some supporting services are also graciously provided by [sponsors](https://www.getmonero.org/community/sponsorships/):
[<img width="150" src="https://www.getmonero.org/img/sponsors/tarilabs.png"/>](https://tarilabs.com/)
[<img width="150" src="https://www.getmonero.org/img/sponsors/globee.png"/>](https://globee.com/)
[<img width="150" src="https://www.getmonero.org/img/sponsors/symas.png"/>](https://symas.com/)
[<img width="150" src="https://www.getmonero.org/img/sponsors/forked_logo.png"/>](http://www.forked.net/)
[<img width="150" src="https://www.getmonero.org/img/sponsors/macstadium.png"/>](https://www.macstadium.com/)
There are also several mining pools that kindly donate a portion of their fees, [a list of them can be found on our Bitcointalk post](https://bitcointalk.org/index.php?topic=583449.0).
## License
See [LICENSE](LICENSE).
## Contributing
If you want to help out, see [CONTRIBUTING](docs/CONTRIBUTING.md) for a set of guidelines.
## Scheduled software upgrades
Monero uses a fixed-schedule software upgrade (hard fork) mechanism to implement new features. This means that users of Monero (end users and service providers) should run current versions and upgrade their software on a regular schedule. Software upgrades occur during the months of April and October. The required software for these upgrades will be available prior to the scheduled date. Please check the repository prior to this date for the proper Monero software version. Below is the historical schedule and the projected schedule for the next upgrade.
Dates are provided in the format YYYY-MM-DD.
| Software upgrade block height | Date | Fork version | Minimum Monero version | Recommended Monero version | Details |
| ------------------------------ | -----------| ----------------- | ---------------------- | -------------------------- | ---------------------------------------------------------------------------------- |
| 1009827 | 2016-03-22 | v2 | v0.9.4 | v0.9.4 | Allow only >= ringsize 3, blocktime = 120 seconds, fee-free blocksize 60 kb |
| 1141317 | 2016-09-21 | v3 | v0.9.4 | v0.10.0 | Splits coinbase into denominations |
| 1220516 | 2017-01-05 | v4 | v0.10.1 | v0.10.2.1 | Allow normal and RingCT transactions |
| 1288616 | 2017-04-15 | v5 | v0.10.3.0 | v0.10.3.1 | Adjusted minimum blocksize and fee algorithm |
| 1400000 | 2017-09-16 | v6 | v0.11.0.0 | v0.11.0.0 | Allow only RingCT transactions, allow only >= ringsize 5 |
| 1546000 | 2018-04-06 | v7 | v0.12.0.0 | v0.12.3.0 | Cryptonight variant 1, ringsize >= 7, sorted inputs
| 1685555 | 2018-10-18 | v8 | v0.13.0.0 | v0.13.0.4 | max transaction size at half the penalty free block size, bulletproofs enabled, cryptonight variant 2, fixed ringsize [11](https://youtu.be/KOO5S4vxi0o)
| 1686275 | 2018-10-19 | v9 | v0.13.0.0 | v0.13.0.4 | bulletproofs required
| 1788000 | 2019-03-09 | v10 | v0.14.0.0 | v0.14.1.2 | New PoW based on Cryptonight-R, new block weight algorithm, slightly more efficient RingCT format
| 1788720 | 2019-03-10 | v11 | v0.14.0.0 | v0.14.1.2 | forbid old RingCT transaction format
| 1978433 | 2019-11-30 | v12 | v0.15.0.0 | v0.16.0.0 | New PoW based on RandomX, only allow >= 2 outputs, change to the block median used to calculate penalty, v1 coinbases are forbidden, rct sigs in coinbase forbidden, 10 block lock time for incoming outputs
| 2210000 | 2020-10-17 | v13 | v0.17.0.0 | v0.17.3.2 | New CLSAG transaction format
| 2210720 | 2020-10-18 | v14 | v0.17.1.1 | v0.17.3.2 | forbid old MLSAG transaction format
| 2688888 | 2022-08-13 | v15 | v0.18.0.0 | v0.18.0.0 | ringsize = 16, bulletproofs+, view tags, adjusted dynamic block weight algorithm
| 2689608 | 2022-08-14 | v16 | v0.18.0.0 | v0.18.0.0 | forbid old v14 transaction format
| XXXXXXX | XXX-XX-XX | XXX | vX.XX.X.X | vX.XX.X.X | XXX |
X's indicate that these details have not been determined as of commit date.
\* indicates estimate as of commit date
## Release staging schedule and protocol
Approximately three months prior to a scheduled software upgrade, a branch from master will be created with the new release version tag. Pull requests that address bugs should then be made to both master and the new release branch. Pull requests that require extensive review and testing (generally, optimizations and new features) should *not* be made to the release branch.
## Compiling Monero from source
### Dependencies
The following table summarizes the tools and libraries required to build. A
few of the libraries are also included in this repository (marked as
"Vendored"). By default, the build uses the library installed on the system
and ignores the vendored sources. However, if no library is found installed on
the system, then the vendored source will be built and used. The vendored
sources are also used for statically-linked builds because distribution
packages often include only shared library binaries (`.so`) but not static
library archives (`.a`).
| Dep | Min. version | Vendored | Debian/Ubuntu pkg | Arch pkg | Void pkg | Fedora pkg | Optional | Purpose |
| ------------ | ------------- | -------- | -------------------- | ------------ | ------------------ | ------------------- | -------- | --------------- |
| GCC | 5 | NO | `build-essential` | `base-devel` | `base-devel` | `gcc` | NO | |
| CMake | 3.5 | NO | `cmake` | `cmake` | `cmake` | `cmake` | NO | |
| pkg-config | any | NO | `pkg-config` | `base-devel` | `base-devel` | `pkgconf` | NO | |
| Boost | 1.58 | NO | `libboost-all-dev` | `boost` | `boost-devel` | `boost-devel` | NO | C++ libraries |
| OpenSSL | basically any | NO | `libssl-dev` | `openssl` | `libressl-devel` | `openssl-devel` | NO | sha256 sum |
| libzmq | 4.2.0 | NO | `libzmq3-dev` | `zeromq` | `zeromq-devel` | `zeromq-devel` | NO | ZeroMQ library |
| OpenPGM | ? | NO | `libpgm-dev` | `libpgm` | | `openpgm-devel` | NO | For ZeroMQ |
| libnorm[2] | ? | NO | `libnorm-dev` | | | | YES | For ZeroMQ |
| libunbound | 1.4.16 | YES | `libunbound-dev` | `unbound` | `unbound-devel` | `unbound-devel` | NO | DNS resolver |
| libsodium | ? | NO | `libsodium-dev` | `libsodium` | `libsodium-devel` | `libsodium-devel` | NO | cryptography |
| libunwind | any | NO | `libunwind8-dev` | `libunwind` | `libunwind-devel` | `libunwind-devel` | YES | Stack traces |
| liblzma | any | NO | `liblzma-dev` | `xz` | `liblzma-devel` | `xz-devel` | YES | For libunwind |
| libreadline | 6.3.0 | NO | `libreadline6-dev` | `readline` | `readline-devel` | `readline-devel` | YES | Input editing |
| ldns | 1.6.17 | NO | `libldns-dev` | `ldns` | `libldns-devel` | `ldns-devel` | YES | SSL toolkit |
| expat | 1.1 | NO | `libexpat1-dev` | `expat` | `expat-devel` | `expat-devel` | YES | XML parsing |
| GTest | 1.5 | YES | `libgtest-dev`[1] | `gtest` | `gtest-devel` | `gtest-devel` | YES | Test suite |
| ccache | any | NO | `ccache` | `ccache` | `ccache` | `ccache` | YES | Compil. cache |
| Doxygen | any | NO | `doxygen` | `doxygen` | `doxygen` | `doxygen` | YES | Documentation |
| Graphviz | any | NO | `graphviz` | `graphviz` | `graphviz` | `graphviz` | YES | Documentation |
| lrelease | ? | NO | `qttools5-dev-tools` | `qt5-tools` | `qt5-tools` | `qt5-linguist` | YES | Translations |
| libhidapi | ? | NO | `libhidapi-dev` | `hidapi` | `hidapi-devel` | `hidapi-devel` | YES | Hardware wallet |
| libusb | ? | NO | `libusb-1.0-0-dev` | `libusb` | `libusb-devel` | `libusbx-devel` | YES | Hardware wallet |
| libprotobuf | ? | NO | `libprotobuf-dev` | `protobuf` | `protobuf-devel` | `protobuf-devel` | YES | Hardware wallet |
| protoc | ? | NO | `protobuf-compiler` | `protobuf` | `protobuf` | `protobuf-compiler` | YES | Hardware wallet |
| libudev | ? | NO | `libudev-dev` | `systemd` | `eudev-libudev-devel` | `systemd-devel` | YES | Hardware wallet |
[1] On Debian/Ubuntu `libgtest-dev` only includes sources and headers. You must
build the library binary manually. This can be done with the following command `sudo apt-get install libgtest-dev && cd /usr/src/gtest && sudo cmake . && sudo make`
then:
* on Debian:
`sudo mv libg* /usr/lib/`
* on Ubuntu:
`sudo mv lib/libg* /usr/lib/`
[2] libnorm-dev is needed if your zmq library was built with libnorm, and not needed otherwise
Install all dependencies at once on Debian/Ubuntu:
```
sudo apt update && sudo apt install build-essential cmake pkg-config libssl-dev libzmq3-dev libunbound-dev libsodium-dev libunwind8-dev liblzma-dev libreadline6-dev libldns-dev libexpat1-dev libpgm-dev qttools5-dev-tools libhidapi-dev libusb-1.0-0-dev libprotobuf-dev protobuf-compiler libudev-dev libboost-chrono-dev libboost-date-time-dev libboost-filesystem-dev libboost-locale-dev libboost-program-options-dev libboost-regex-dev libboost-serialization-dev libboost-system-dev libboost-thread-dev python3 ccache doxygen graphviz
```
Install all dependencies at once on Arch:
```
sudo pacman -Syu --needed base-devel cmake boost openssl zeromq libpgm unbound libsodium libunwind xz readline ldns expat gtest python3 ccache doxygen graphviz qt5-tools hidapi libusb protobuf systemd
```
Install all dependencies at once on Fedora:
```
sudo dnf install gcc gcc-c++ cmake pkgconf boost-devel openssl-devel zeromq-devel openpgm-devel unbound-devel libsodium-devel libunwind-devel xz-devel readline-devel ldns-devel expat-devel gtest-devel ccache doxygen graphviz qt5-linguist hidapi-devel libusbx-devel protobuf-devel protobuf-compiler systemd-devel
```
Install all dependencies at once on openSUSE:
```
sudo zypper ref && sudo zypper in cppzmq-devel ldns-devel libboost_chrono-devel libboost_date_time-devel libboost_filesystem-devel libboost_locale-devel libboost_program_options-devel libboost_regex-devel libboost_serialization-devel libboost_system-devel libboost_thread-devel libexpat-devel libminiupnpc-devel libsodium-devel libunwind-devel unbound-devel cmake doxygen ccache fdupes gcc-c++ libevent-devel libopenssl-devel pkgconf-pkg-config readline-devel xz-devel libqt5-qttools-devel patterns-devel-C-C++-devel_C_C++
```
Install all dependencies at once on macOS with the provided Brewfile:
```
brew update && brew bundle --file=contrib/brew/Brewfile
```
FreeBSD 12.1 one-liner required to build dependencies:
```
pkg install git gmake cmake pkgconf boost-libs libzmq4 libsodium unbound
```
### Cloning the repository
Clone recursively to pull-in needed submodule(s):
```
git clone --recursive https://github.com/monero-project/monero
```
If you already have a repo cloned, initialize and update:
```
cd monero && git submodule init && git submodule update
```
*Note*: If there are submodule differences between branches, you may need
to use `git submodule sync && git submodule update` after changing branches
to build successfully.
### Build instructions
Monero uses the CMake build system and a top-level [Makefile](Makefile) that
invokes cmake commands as needed.
#### On Linux and macOS
* Install the dependencies
* Change to the root of the source code directory, change to the most recent release branch, and build:
```bash
cd monero
git checkout release-v0.18
make
```
*Optional*: If your machine has several cores and enough memory, enable
parallel build by running `make -j<number of threads>` instead of `make`. For
this to be worthwhile, the machine should have one core and about 2GB of RAM
available per thread.
*Note*: The instructions above will compile the most stable release of the
Monero software. If you would like to use and test the most recent software,
use `git checkout master`. The master branch may contain updates that are
both unstable and incompatible with release software, though testing is always
encouraged.
* The resulting executables can be found in `build/release/bin`
* Add `PATH="$PATH:$HOME/monero/build/release/bin"` to `.profile`
* Run Monero with `monerod --detach`
* **Optional**: build and run the test suite to verify the binaries:
```bash
make release-test
```
*NOTE*: `core_tests` test may take a few hours to complete.
* **Optional**: to build binaries suitable for debugging:
```bash
make debug
```
* **Optional**: to build statically-linked binaries:
```bash
make release-static
```
Dependencies need to be built with -fPIC. Static libraries usually aren't, so you may have to build them yourself with -fPIC. Refer to their documentation for how to build them.
* **Optional**: build documentation in `doc/html` (omit `HAVE_DOT=YES` if `graphviz` is not installed):
```bash
HAVE_DOT=YES doxygen Doxyfile
```
* **Optional**: use ccache not to rebuild translation units, that haven't really changed. Monero's CMakeLists.txt file automatically handles it
```bash
sudo apt install ccache
```
#### On the Raspberry Pi
Tested on a Raspberry Pi Zero with a clean install of minimal Raspbian Stretch (2017-09-07 or later) from https://www.raspberrypi.org/downloads/raspbian/. If you are using Raspian Jessie, [please see note in the following section](#note-for-raspbian-jessie-users).
* `apt-get update && apt-get upgrade` to install all of the latest software
* Install the dependencies for Monero from the 'Debian' column in the table above.
* Increase the system swap size:
```bash
sudo /etc/init.d/dphys-swapfile stop
sudo nano /etc/dphys-swapfile
CONF_SWAPSIZE=2048
sudo /etc/init.d/dphys-swapfile start
```
* If using an external hard disk without an external power supply, ensure it gets enough power to avoid hardware issues when syncing, by adding the line "max_usb_current=1" to /boot/config.txt
* Clone Monero and checkout the most recent release version:
```bash
git clone https://github.com/monero-project/monero.git
cd monero
git checkout v0.18.0.0
```
* Build:
```bash
USE_SINGLE_BUILDDIR=1 make release
```
* Wait 4-6 hours
* The resulting executables can be found in `build/release/bin`
* Add `export PATH="$PATH:$HOME/monero/build/release/bin"` to `$HOME/.profile`
* Run `source $HOME/.profile`
* Run Monero with `monerod --detach`
* You may wish to reduce the size of the swap file after the build has finished, and delete the boost directory from your home directory
#### *Note for Raspbian Jessie users:*
If you are using the older Raspbian Jessie image, compiling Monero is a bit more complicated. The version of Boost available in the Debian Jessie repositories is too old to use with Monero, and thus you must compile a newer version yourself. The following explains the extra steps and has been tested on a Raspberry Pi 2 with a clean install of minimal Raspbian Jessie.
* As before, `apt-get update && apt-get upgrade` to install all of the latest software, and increase the system swap size
```bash
sudo /etc/init.d/dphys-swapfile stop
sudo nano /etc/dphys-swapfile
CONF_SWAPSIZE=2048
sudo /etc/init.d/dphys-swapfile start
```
* Then, install the dependencies for Monero except for `libunwind` and `libboost-all-dev`
* Install the latest version of boost (this may first require invoking `apt-get remove --purge libboost*-dev` to remove a previous version if you're not using a clean install):
```bash
cd
wget https://sourceforge.net/projects/boost/files/boost/1.72.0/boost_1_72_0.tar.bz2
tar xvfo boost_1_72_0.tar.bz2
cd boost_1_72_0
./bootstrap.sh
sudo ./b2
```
* Wait ~8 hours
```bash
sudo ./bjam cxxflags=-fPIC cflags=-fPIC -a install
```
* Wait ~4 hours
* From here, follow the [general Raspberry Pi instructions](#on-the-raspberry-pi) from the "Clone Monero and checkout most recent release version" step.
#### On Windows:
Binaries for Windows are built on Windows using the MinGW toolchain within
[MSYS2 environment](https://www.msys2.org). The MSYS2 environment emulates a
POSIX system. The toolchain runs within the environment and *cross-compiles*
binaries that can run outside of the environment as a regular Windows
application.
**Preparing the build environment**
* Download and install the [MSYS2 installer](https://www.msys2.org), either the 64-bit or the 32-bit package, depending on your system.
* Open the MSYS shell via the `MSYS2 Shell` shortcut
* Update packages using pacman:
```bash
pacman -Syu
```
* Exit the MSYS shell using Alt+F4
* Edit the properties for the `MSYS2 Shell` shortcut changing "msys2_shell.bat" to "msys2_shell.cmd -mingw64" for 64-bit builds or "msys2_shell.cmd -mingw32" for 32-bit builds
* Restart MSYS shell via modified shortcut and update packages again using pacman:
```bash
pacman -Syu
```
* Install dependencies:
To build for 64-bit Windows:
```bash
pacman -S mingw-w64-x86_64-toolchain make mingw-w64-x86_64-cmake mingw-w64-x86_64-boost mingw-w64-x86_64-openssl mingw-w64-x86_64-zeromq mingw-w64-x86_64-libsodium mingw-w64-x86_64-hidapi mingw-w64-x86_64-unbound
```
To build for 32-bit Windows:
```bash
pacman -S mingw-w64-i686-toolchain make mingw-w64-i686-cmake mingw-w64-i686-boost mingw-w64-i686-openssl mingw-w64-i686-zeromq mingw-w64-i686-libsodium mingw-w64-i686-hidapi mingw-w64-i686-unbound
```
* Open the MingW shell via `MinGW-w64-Win64 Shell` shortcut on 64-bit Windows
or `MinGW-w64-Win64 Shell` shortcut on 32-bit Windows. Note that if you are
running 64-bit Windows, you will have both 64-bit and 32-bit MinGW shells.
**Cloning**
* To git clone, run:
```bash
git clone --recursive https://github.com/monero-project/monero.git
```
**Building**
* Change to the cloned directory, run:
```bash
cd monero
```
* If you would like a specific [version/tag](https://github.com/monero-project/monero/tags), do a git checkout for that version. eg. 'v0.18.0.0'. If you don't care about the version and just want binaries from master, skip this step:
```bash
git checkout v0.18.0.0
```
* If you are on a 64-bit system, run:
```bash
make release-static-win64
```
* If you are on a 32-bit system, run:
```bash
make release-static-win32
```
* The resulting executables can be found in `build/release/bin`
* **Optional**: to build Windows binaries suitable for debugging on a 64-bit system, run:
```bash
make debug-static-win64
```
* **Optional**: to build Windows binaries suitable for debugging on a 32-bit system, run:
```bash
make debug-static-win32
```
* The resulting executables can be found in `build/debug/bin`
### On FreeBSD:
The project can be built from scratch by following instructions for Linux above(but use `gmake` instead of `make`).
If you are running Monero in a jail, you need to add `sysvsem="new"` to your jail configuration, otherwise lmdb will throw the error message: `Failed to open lmdb environment: Function not implemented`.
Monero is also available as a port or package as `monero-cli`.
### On OpenBSD:
You will need to add a few packages to your system. `pkg_add cmake gmake zeromq libiconv boost`.
The `doxygen` and `graphviz` packages are optional and require the xbase set.
Running the test suite also requires `py-requests` package.
Build monero: `env DEVELOPER_LOCAL_TOOLS=1 BOOST_ROOT=/usr/local gmake release-static`
Note: you may encounter the following error when compiling the latest version of Monero as a normal user:
```
LLVM ERROR: out of memory
c++: error: unable to execute command: Abort trap (core dumped)
```
Then you need to increase the data ulimit size to 2GB and try again: `ulimit -d 2000000`
### On NetBSD:
Check that the dependencies are present: `pkg_info -c libexecinfo boost-headers boost-libs protobuf readline libusb1 zeromq git-base pkgconf gmake cmake | more`, and install any that are reported missing, using `pkg_add` or from your pkgsrc tree. Readline is optional but worth having.
Third-party dependencies are usually under `/usr/pkg/`, but if you have a custom setup, adjust the "/usr/pkg" (below) accordingly.
Clone the monero repository recursively and checkout the most recent release as described above. Then build monero: `gmake BOOST_ROOT=/usr/pkg LDFLAGS="-Wl,-R/usr/pkg/lib" release`. The resulting executables can be found in `build/NetBSD/[Release version]/Release/bin/`.
### On Solaris:
The default Solaris linker can't be used, you have to install GNU ld, then run cmake manually with the path to your copy of GNU ld:
```bash
mkdir -p build/release
cd build/release
cmake -DCMAKE_LINKER=/path/to/ld -D CMAKE_BUILD_TYPE=Release ../..
cd ../..
```
Then you can run make as usual.
### Building portable statically linked binaries
By default, in either dynamically or statically linked builds, binaries target the specific host processor on which the build happens and are not portable to other processors. Portable binaries can be built using the following targets:
* ```make release-static-linux-x86_64``` builds binaries on Linux on x86_64 portable across POSIX systems on x86_64 processors
* ```make release-static-linux-i686``` builds binaries on Linux on x86_64 or i686 portable across POSIX systems on i686 processors
* ```make release-static-linux-armv8``` builds binaries on Linux portable across POSIX systems on armv8 processors
* ```make release-static-linux-armv7``` builds binaries on Linux portable across POSIX systems on armv7 processors
* ```make release-static-linux-armv6``` builds binaries on Linux portable across POSIX systems on armv6 processors
* ```make release-static-win64``` builds binaries on 64-bit Windows portable across 64-bit Windows systems
* ```make release-static-win32``` builds binaries on 64-bit or 32-bit Windows portable across 32-bit Windows systems
### Cross Compiling
You can also cross-compile static binaries on Linux for Windows and macOS with the `depends` system.
* ```make depends target=x86_64-linux-gnu``` for 64-bit linux binaries.
* ```make depends target=x86_64-w64-mingw32``` for 64-bit windows binaries.
* Requires: `python3 g++-mingw-w64-x86-64 wine1.6 bc`
* ```make depends target=x86_64-apple-darwin11``` for macOS binaries.
* Requires: `cmake imagemagick libcap-dev librsvg2-bin libz-dev libbz2-dev libtiff-tools python-dev`
* ```make depends target=i686-linux-gnu``` for 32-bit linux binaries.
* Requires: `g++-multilib bc`
* ```make depends target=i686-w64-mingw32``` for 32-bit windows binaries.
* Requires: `python3 g++-mingw-w64-i686`
* ```make depends target=arm-linux-gnueabihf``` for armv7 binaries.
* Requires: `g++-arm-linux-gnueabihf`
* ```make depends target=aarch64-linux-gnu``` for armv8 binaries.
* Requires: `g++-aarch64-linux-gnu`
* ```make depends target=riscv64-linux-gnu``` for RISC V 64 bit binaries.
* Requires: `g++-riscv64-linux-gnu`
* ```make depends target=x86_64-unknown-freebsd``` for freebsd binaries.
* Requires: `clang-8`
* ```make depends target=arm-linux-android``` for 32bit android binaries
* ```make depends target=aarch64-linux-android``` for 64bit android binaries
The required packages are the names for each toolchain on apt. Depending on your distro, they may have different names.
Using `depends` might also be easier to compile Monero on Windows than using MSYS. Activate Windows Subsystem for Linux (WSL) with a distro (for example Ubuntu), install the apt build-essentials and follow the `depends` steps as depicted above.
The produced binaries still link libc dynamically. If the binary is compiled on a current distribution, it might not run on an older distribution with an older installation of libc. Passing `-DBACKCOMPAT=ON` to cmake will make sure that the binary will run on systems having at least libc version 2.17.
## Installing Monero from a package
**DISCLAIMER: These packages are not part of this repository or maintained by this project's contributors, and as such, do not go through the same review process to ensure their trustworthiness and security.**
Packages are available for
* Debian Buster
See the [instructions in the whonix/monero-gui repository](https://gitlab.com/whonix/monero-gui#how-to-install-monero-using-apt-get)
* Debian Bullseye and Sid
```bash
sudo apt install monero
```
More info and versions in the [Debian package tracker](https://tracker.debian.org/pkg/monero).
* Arch Linux [(via Community packages)](https://www.archlinux.org/packages/community/x86_64/monero/):
```bash
sudo pacman -S monero
```
* Void Linux:
```bash
xbps-install -S monero
```
* GuixSD
```bash
guix package -i monero
```
* Gentoo [Monero overlay](https://github.com/gentoo-monero/gentoo-monero)
```bash
emerge --noreplace eselect-repository
eselect repository enable monero
emaint sync -r monero
echo '*/*::monero ~amd64' >> /etc/portage/package.accept_keywords
emerge net-p2p/monero
```
* macOS [(homebrew)](https://brew.sh/)
```bash
brew install monero
```
* Docker
```bash
# Build using all available cores
docker build -t monero .
# or build using a specific number of cores (reduce RAM requirement)
docker build --build-arg NPROC=1 -t monero .
# either run in foreground
docker run -it -v /monero/chain:/home/monero/.bitmonero -v /monero/wallet:/wallet -p 18080:18080 monero
# or in background
docker run -it -d -v /monero/chain:/home/monero/.bitmonero -v /monero/wallet:/wallet -p 18080:18080 monero
```
* The build needs 3 GB space.
* Wait one hour or more
Packaging for your favorite distribution would be a welcome contribution!
## Running monerod
The build places the binary in `bin/` sub-directory within the build directory
from which cmake was invoked (repository root by default). To run in the
foreground:
```bash
./bin/monerod
```
To list all available options, run `./bin/monerod --help`. Options can be
specified either on the command line or in a configuration file passed by the
`--config-file` argument. To specify an option in the configuration file, add
a line with the syntax `argumentname=value`, where `argumentname` is the name
of the argument without the leading dashes, for example, `log-level=1`.
To run in background:
```bash
./bin/monerod --log-file monerod.log --detach
```
To run as a systemd service, copy
[monerod.service](utils/systemd/monerod.service) to `/etc/systemd/system/` and
[monerod.conf](utils/conf/monerod.conf) to `/etc/`. The [example
service](utils/systemd/monerod.service) assumes that the user `monero` exists
and its home is the data directory specified in the [example
config](utils/conf/monerod.conf).
If you're on Mac, you may need to add the `--max-concurrency 1` option to
monero-wallet-cli, and possibly monerod, if you get crashes refreshing.
## Internationalization
See [README.i18n.md](docs/README.i18n.md).
## Using Tor
> There is a new, still experimental, [integration with Tor](docs/ANONYMITY_NETWORKS.md). The
> feature allows connecting over IPv4 and Tor simultaneously - IPv4 is used for
> relaying blocks and relaying transactions received by peers whereas Tor is
> used solely for relaying transactions received over local RPC. This provides
> privacy and better protection against surrounding node (sybil) attacks.
While Monero isn't made to integrate with Tor, it can be used wrapped with torsocks, by
setting the following configuration parameters and environment variables:
* `--p2p-bind-ip 127.0.0.1` on the command line or `p2p-bind-ip=127.0.0.1` in
monerod.conf to disable listening for connections on external interfaces.
* `--no-igd` on the command line or `no-igd=1` in monerod.conf to disable IGD
(UPnP port forwarding negotiation), which is pointless with Tor.
* `DNS_PUBLIC=tcp` or `DNS_PUBLIC=tcp://x.x.x.x` where x.x.x.x is the IP of the
desired DNS server, for DNS requests to go over TCP, so that they are routed
through Tor. When IP is not specified, monerod uses the default list of
servers defined in [src/common/dns_utils.cpp](src/common/dns_utils.cpp).
* `TORSOCKS_ALLOW_INBOUND=1` to tell torsocks to allow monerod to bind to interfaces
to accept connections from the wallet. On some Linux systems, torsocks
allows binding to localhost by default, so setting this variable is only
necessary to allow binding to local LAN/VPN interfaces to allow wallets to
connect from remote hosts. On other systems, it may be needed for local wallets
as well.
* Do NOT pass `--detach` when running through torsocks with systemd, (see
[utils/systemd/monerod.service](utils/systemd/monerod.service) for details).
* If you use the wallet with a Tor daemon via the loopback IP (eg, 127.0.0.1:9050),
then use `--untrusted-daemon` unless it is your own hidden service.
Example command line to start monerod through Tor:
```bash
DNS_PUBLIC=tcp torsocks monerod --p2p-bind-ip 127.0.0.1 --no-igd
```
A helper script is in contrib/tor/monero-over-tor.sh. It assumes Tor is installed
already, and runs Tor and Monero with the right configuration.
### Using Tor on Tails
TAILS ships with a very restrictive set of firewall rules. Therefore, you need
to add a rule to allow this connection too, in addition to telling torsocks to
allow inbound connections. Full example:
```bash
sudo iptables -I OUTPUT 2 -p tcp -d 127.0.0.1 -m tcp --dport 18081 -j ACCEPT
DNS_PUBLIC=tcp torsocks ./monerod --p2p-bind-ip 127.0.0.1 --no-igd --rpc-bind-ip 127.0.0.1 \
--data-dir /home/amnesia/Persistent/your/directory/to/the/blockchain
```
## Pruning
As of April 2022, the full Monero blockchain file is about 130 GB. One can store a pruned blockchain, which is about 45 GB.
A pruned blockchain can only serve part of the historical chain data to other peers, but is otherwise identical in
functionality to the full blockchain.
To use a pruned blockchain, it is best to start the initial sync with `--prune-blockchain`. However, it is also possible
to prune an existing blockchain using the `monero-blockchain-prune` tool or using the `--prune-blockchain` `monerod` option
with an existing chain. If an existing chain exists, pruning will temporarily require disk space to store both the full
and pruned blockchains.
For more detailed information see the ['Pruning' entry in the Moneropedia](https://www.getmonero.org/resources/moneropedia/pruning.html)
## Debugging
This section contains general instructions for debugging failed installs or problems encountered with Monero. First, ensure you are running the latest version built from the GitHub repo.
### Obtaining stack traces and core dumps on Unix systems
We generally use the tool `gdb` (GNU debugger) to provide stack trace functionality, and `ulimit` to provide core dumps in builds which crash or segfault.
* To use `gdb` in order to obtain a stack trace for a build that has stalled:
Run the build.
Once it stalls, enter the following command:
```bash
gdb /path/to/monerod `pidof monerod`
```
Type `thread apply all bt` within gdb in order to obtain the stack trace
* If however the core dumps or segfaults:
Enter `ulimit -c unlimited` on the command line to enable unlimited filesizes for core dumps
Enter `echo core | sudo tee /proc/sys/kernel/core_pattern` to stop cores from being hijacked by other tools
Run the build.
When it terminates with an output along the lines of "Segmentation fault (core dumped)", there should be a core dump file in the same directory as monerod. It may be named just `core`, or `core.xxxx` with numbers appended.
You can now analyse this core dump with `gdb` as follows:
```bash
gdb /path/to/monerod /path/to/dumpfile`
```
Print the stack trace with `bt`
* If a program crashed and cores are managed by systemd, the following can also get a stack trace for that crash:
```bash
coredumpctl -1 gdb
```
#### To run Monero within gdb:
Type `gdb /path/to/monerod`
Pass command-line options with `--args` followed by the relevant arguments
Type `run` to run monerod
### Analysing memory corruption
There are two tools available:
#### ASAN
Configure Monero with the -D SANITIZE=ON cmake flag, eg:
```bash
cd build/debug && cmake -D SANITIZE=ON -D CMAKE_BUILD_TYPE=Debug ../..
```
You can then run the monero tools normally. Performance will typically halve.
#### valgrind
Install valgrind and run as `valgrind /path/to/monerod`. It will be very slow.
### LMDB
Instructions for debugging suspected blockchain corruption as per @HYC
There is an `mdb_stat` command in the LMDB source that can print statistics about the database but it's not routinely built. This can be built with the following command:
```bash
cd ~/monero/external/db_drivers/liblmdb && make
```
The output of `mdb_stat -ea <path to blockchain dir>` will indicate inconsistencies in the blocks, block_heights and block_info table.
The output of `mdb_dump -s blocks <path to blockchain dir>` and `mdb_dump -s block_info <path to blockchain dir>` is useful for indicating whether blocks and block_info contain the same keys.
These records are dumped as hex data, where the first line is the key and the second line is the data.
# Known Issues
## Protocols
### Socket-based
Because of the nature of the socket-based protocols that drive monero, certain protocol weaknesses are somewhat unavoidable at this time. While these weaknesses can theoretically be fully mitigated, the effort required (the means) may not justify the ends. As such, please consider taking the following precautions if you are a monero node operator:
- Run `monerod` on a "secured" machine. If operational security is not your forte, at a very minimum, have a dedicated a computer running `monerod` and **do not** browse the web, use email clients, or use any other potentially harmful apps on your `monerod` machine. **Do not click links or load URL/MUA content on the same machine**. Doing so may potentially exploit weaknesses in commands which accept "localhost" and "127.0.0.1".
- If you plan on hosting a public "remote" node, start `monerod` with `--restricted-rpc`. This is a must.
### Blockchain-based
Certain blockchain "features" can be considered "bugs" if misused correctly. Consequently, please consider the following:
- When receiving monero, be aware that it may be locked for an arbitrary time if the sender elected to, preventing you from spending that monero until the lock time expires. You may want to hold off acting upon such a transaction until the unlock time lapses. To get a sense of that time, you can consider the remaining blocktime until unlock as seen in the `show_transfers` command.
|