// Copyright (c) 2018-2023, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "crypto/crypto.h" #include "net/dandelionpp.h" #include "net/error.h" #include "net/i2p_address.h" #include "net/net_utils_base.h" #include "net/socks.h" #include "net/socks_connect.h" #include "net/parse.h" #include "net/tor_address.h" #include "net/zmq.h" #include "p2p/net_peerlist_boost_serialization.h" #include "serialization/keyvalue_serialization.h" #include "storages/portable_storage.h" namespace { static constexpr const char v2_onion[] = "xmrto2bturnore26.onion"; static constexpr const char v3_onion[] = "vww6ybal4bd7szmgncyruucpgfkqahzddi37ktceo3ah7ngmcopnpyyd.onion"; static constexpr const char v3_onion_2[] = "zpv4fa3szgel7vf6jdjeugizdclq2vzkelscs2bhbgnlldzzggcen3ad.onion"; } TEST(tor_address, constants) { static_assert(!net::tor_address::is_local(), "bad is_local() response"); static_assert(!net::tor_address::is_loopback(), "bad is_loopback() response"); static_assert(net::tor_address::get_type_id() == epee::net_utils::address_type::tor, "bad get_type_id() response"); EXPECT_FALSE(net::tor_address::is_local()); EXPECT_FALSE(net::tor_address::is_loopback()); EXPECT_EQ(epee::net_utils::address_type::tor, net::tor_address::get_type_id()); EXPECT_EQ(epee::net_utils::address_type::tor, net::tor_address::get_type_id()); } TEST(tor_address, invalid) { EXPECT_TRUE(net::tor_address::make("").has_error()); EXPECT_TRUE(net::tor_address::make(":").has_error()); EXPECT_TRUE(net::tor_address::make(".onion").has_error()); EXPECT_TRUE(net::tor_address::make(".onion:").has_error()); EXPECT_TRUE(net::tor_address::make(v3_onion + 1).has_error()); EXPECT_TRUE(net::tor_address::make(boost::string_ref{v3_onion, sizeof(v3_onion) - 2}).has_error()); EXPECT_TRUE(net::tor_address::make(std::string{v3_onion} + ":-").has_error()); EXPECT_TRUE(net::tor_address::make(std::string{v3_onion} + ":900a").has_error()); EXPECT_TRUE(net::tor_address::make(std::string{v3_onion} + ":65536").has_error()); EXPECT_TRUE(net::tor_address::make(std::string{v3_onion} + ":-1").has_error()); std::string onion{v3_onion}; onion.at(10) = 1; EXPECT_TRUE(net::tor_address::make(onion).has_error()); } TEST(tor_address, unblockable_types) { net::tor_address tor{}; ASSERT_NE(nullptr, tor.host_str()); EXPECT_STREQ("", tor.host_str()); EXPECT_STREQ("", tor.str().c_str()); EXPECT_EQ(0u, tor.port()); EXPECT_TRUE(tor.is_unknown()); EXPECT_FALSE(tor.is_local()); EXPECT_FALSE(tor.is_loopback()); EXPECT_EQ(epee::net_utils::address_type::tor, tor.get_type_id()); EXPECT_EQ(epee::net_utils::zone::tor, tor.get_zone()); tor = net::tor_address::unknown(); ASSERT_NE(nullptr, tor.host_str()); EXPECT_STREQ("", tor.host_str()); EXPECT_STREQ("", tor.str().c_str()); EXPECT_EQ(0u, tor.port()); EXPECT_TRUE(tor.is_unknown()); EXPECT_FALSE(tor.is_local()); EXPECT_FALSE(tor.is_loopback()); EXPECT_EQ(epee::net_utils::address_type::tor, tor.get_type_id()); EXPECT_EQ(epee::net_utils::zone::tor, tor.get_zone()); EXPECT_EQ(net::tor_address{}, net::tor_address::unknown()); } TEST(tor_address, valid) { const auto address1 = net::tor_address::make(v3_onion); ASSERT_TRUE(address1.has_value()); EXPECT_EQ(0u, address1->port()); EXPECT_STREQ(v3_onion, address1->host_str()); EXPECT_STREQ(v3_onion, address1->str().c_str()); EXPECT_TRUE(address1->is_blockable()); net::tor_address address2{*address1}; EXPECT_EQ(0u, address2.port()); EXPECT_STREQ(v3_onion, address2.host_str()); EXPECT_STREQ(v3_onion, address2.str().c_str()); EXPECT_TRUE(address2.is_blockable()); EXPECT_TRUE(address2.equal(*address1)); EXPECT_TRUE(address1->equal(address2)); EXPECT_TRUE(address2 == *address1); EXPECT_TRUE(*address1 == address2); EXPECT_FALSE(address2 != *address1); EXPECT_FALSE(*address1 != address2); EXPECT_TRUE(address2.is_same_host(*address1)); EXPECT_TRUE(address1->is_same_host(address2)); EXPECT_FALSE(address2.less(*address1)); EXPECT_FALSE(address1->less(address2)); address2 = MONERO_UNWRAP(net::tor_address::make(std::string{v3_onion_2} + ":6545")); EXPECT_EQ(6545, address2.port()); EXPECT_STREQ(v3_onion_2, address2.host_str()); EXPECT_EQ(std::string{v3_onion_2} + ":6545", address2.str().c_str()); EXPECT_TRUE(address2.is_blockable()); EXPECT_FALSE(address2.equal(*address1)); EXPECT_FALSE(address1->equal(address2)); EXPECT_FALSE(address2 == *address1); EXPECT_FALSE(*address1 == address2); EXPECT_TRUE(address2 != *address1); EXPECT_TRUE(*address1 != address2); EXPECT_FALSE(address2.is_same_host(*address1)); EXPECT_FALSE(address1->is_same_host(address2)); EXPECT_FALSE(address2.less(*address1)); EXPECT_TRUE(address1->less(address2)); net::tor_address address3 = MONERO_UNWRAP(net::tor_address::make(std::string{v3_onion} + ":", 65535)); EXPECT_EQ(65535, address3.port()); EXPECT_STREQ(v3_onion, address3.host_str()); EXPECT_EQ(std::string{v3_onion} + ":65535", address3.str().c_str()); EXPECT_TRUE(address3.is_blockable()); EXPECT_FALSE(address3.equal(*address1)); EXPECT_FALSE(address1->equal(address3)); EXPECT_FALSE(address3 == *address1); EXPECT_FALSE(*address1 == address3); EXPECT_TRUE(address3 != *address1); EXPECT_TRUE(*address1 != address3); EXPECT_TRUE(address3.is_same_host(*address1)); EXPECT_TRUE(address1->is_same_host(address3)); EXPECT_FALSE(address3.less(*address1)); EXPECT_TRUE(address1->less(address3)); EXPECT_FALSE(address3.equal(address2)); EXPECT_FALSE(address2.equal(address3)); EXPECT_FALSE(address3 == address2); EXPECT_FALSE(address2 == address3); EXPECT_TRUE(address3 != address2); EXPECT_TRUE(address2 != address3); EXPECT_FALSE(address3.is_same_host(address2)); EXPECT_FALSE(address2.is_same_host(address3)); EXPECT_TRUE(address3.less(address2)); EXPECT_FALSE(address2.less(address3)); } TEST(tor_address, generic_network_address) { const epee::net_utils::network_address tor1{MONERO_UNWRAP(net::tor_address::make(v3_onion, 8080))}; const epee::net_utils::network_address tor2{MONERO_UNWRAP(net::tor_address::make(v3_onion, 8080))}; const epee::net_utils::network_address ip{epee::net_utils::ipv4_network_address{100, 200}}; EXPECT_EQ(tor1, tor2); EXPECT_NE(ip, tor1); EXPECT_LT(ip, tor1); EXPECT_STREQ(v3_onion, tor1.host_str().c_str()); EXPECT_EQ(std::string{v3_onion} + ":8080", tor1.str()); EXPECT_EQ(epee::net_utils::address_type::tor, tor1.get_type_id()); EXPECT_EQ(epee::net_utils::address_type::tor, tor2.get_type_id()); EXPECT_EQ(epee::net_utils::address_type::ipv4, ip.get_type_id()); EXPECT_EQ(epee::net_utils::zone::tor, tor1.get_zone()); EXPECT_EQ(epee::net_utils::zone::tor, tor2.get_zone()); EXPECT_EQ(epee::net_utils::zone::public_, ip.get_zone()); EXPECT_TRUE(tor1.is_blockable()); EXPECT_TRUE(tor2.is_blockable()); EXPECT_TRUE(ip.is_blockable()); } namespace { struct test_command_tor { net::tor_address tor; BEGIN_KV_SERIALIZE_MAP() KV_SERIALIZE(tor); END_KV_SERIALIZE_MAP() }; } TEST(tor_address, epee_serializev_v3) { epee::byte_slice buffer{}; { test_command_tor command{MONERO_UNWRAP(net::tor_address::make(v3_onion, 10))}; EXPECT_FALSE(command.tor.is_unknown()); EXPECT_NE(net::tor_address{}, command.tor); EXPECT_STREQ(v3_onion, command.tor.host_str()); EXPECT_EQ(10u, command.tor.port()); epee::serialization::portable_storage stg{}; EXPECT_TRUE(command.store(stg)); EXPECT_TRUE(stg.store_to_binary(buffer)); } test_command_tor command{}; { EXPECT_TRUE(command.tor.is_unknown()); EXPECT_EQ(net::tor_address{}, command.tor); EXPECT_STREQ(net::tor_address::unknown_str(), command.tor.host_str()); EXPECT_EQ(0u, command.tor.port()); epee::serialization::portable_storage stg{}; EXPECT_TRUE(stg.load_from_binary(epee::to_span(buffer))); EXPECT_TRUE(command.load(stg)); } EXPECT_FALSE(command.tor.is_unknown()); EXPECT_NE(net::tor_address{}, command.tor); EXPECT_STREQ(v3_onion, command.tor.host_str()); EXPECT_EQ(10u, command.tor.port()); // make sure that exceeding max buffer doesn't destroy tor_address::_load { epee::serialization::portable_storage stg{}; stg.load_from_binary(epee::to_span(buffer)); std::string host{}; ASSERT_TRUE(stg.get_value("host", host, stg.open_section("tor", nullptr, false))); EXPECT_EQ(std::strlen(v3_onion), host.size()); host.push_back('k'); EXPECT_TRUE(stg.set_value("host", std::move(host), stg.open_section("tor", nullptr, false))); EXPECT_TRUE(command.load(stg)); // poor error reporting from `KV_SERIALIZE` } EXPECT_TRUE(command.tor.is_unknown()); EXPECT_EQ(net::tor_address{}, command.tor); EXPECT_STRNE(v3_onion, command.tor.host_str()); EXPECT_EQ(0u, command.tor.port()); } TEST(tor_address, epee_serialize_unknown) { epee::byte_slice buffer{}; { test_command_tor command{net::tor_address::unknown()}; EXPECT_TRUE(command.tor.is_unknown()); EXPECT_EQ(net::tor_address{}, command.tor); EXPECT_STREQ(net::tor_address::unknown_str(), command.tor.host_str()); EXPECT_EQ(0u, command.tor.port()); epee::serialization::portable_storage stg{}; EXPECT_TRUE(command.store(stg)); EXPECT_TRUE(stg.store_to_binary(buffer)); } test_command_tor command{}; { EXPECT_TRUE(command.tor.is_unknown()); EXPECT_EQ(net::tor_address{}, command.tor); EXPECT_STRNE(v3_onion, command.tor.host_str()); EXPECT_EQ(0u, command.tor.port()); epee::serialization::portable_storage stg{}; EXPECT_TRUE(stg.load_from_binary(epee::to_span(buffer))); EXPECT_TRUE(command.load(stg)); } EXPECT_TRUE(command.tor.is_unknown()); EXPECT_EQ(net::tor_address{}, command.tor); EXPECT_STREQ(net::tor_address::unknown_str(), command.tor.host_str()); EXPECT_EQ(0u, command.tor.port()); // make sure that exceeding max buffer doesn't destroy tor_address::_load { epee::serialization::portable_storage stg{}; stg.load_from_binary(epee::to_span(buffer)); std::string host{}; ASSERT_TRUE(stg.get_value("host", host, stg.open_section("tor", nullptr, false))); EXPECT_EQ(std::strlen(net::tor_address::unknown_str()), host.size()); host.push_back('k'); EXPECT_TRUE(stg.set_value("host", std::move(host), stg.open_section("tor", nullptr, false))); EXPECT_TRUE(command.load(stg)); // poor error reporting from `KV_SERIALIZE` } EXPECT_TRUE(command.tor.is_unknown()); EXPECT_EQ(net::tor_address{}, command.tor); EXPECT_STRNE(v3_onion, command.tor.host_str()); EXPECT_EQ(0u, command.tor.port()); } TEST(tor_address, boost_serialize_v3) { std::string buffer{}; { const net::tor_address tor = MONERO_UNWRAP(net::tor_address::make(v3_onion, 10)); EXPECT_FALSE(tor.is_unknown()); EXPECT_NE(net::tor_address{}, tor); EXPECT_STREQ(v3_onion, tor.host_str()); EXPECT_EQ(10u, tor.port()); std::ostringstream stream{}; { boost::archive::portable_binary_oarchive archive{stream}; archive << tor; } buffer = stream.str(); } net::tor_address tor{}; { EXPECT_TRUE(tor.is_unknown()); EXPECT_EQ(net::tor_address{}, tor); EXPECT_STREQ(net::tor_address::unknown_str(), tor.host_str()); EXPECT_EQ(0u, tor.port()); std::istringstream stream{buffer}; boost::archive::portable_binary_iarchive archive{stream}; archive >> tor; } EXPECT_FALSE(tor.is_unknown()); EXPECT_NE(net::tor_address{}, tor); EXPECT_STREQ(v3_onion, tor.host_str()); EXPECT_EQ(10u, tor.port()); } TEST(tor_address, boost_serialize_unknown) { std::string buffer{}; { const net::tor_address tor{}; EXPECT_TRUE(tor.is_unknown()); EXPECT_EQ(net::tor_address::unknown(), tor); EXPECT_STREQ(net::tor_address::unknown_str(), tor.host_str()); EXPECT_EQ(0u, tor.port()); std::ostringstream stream{}; { boost::archive::portable_binary_oarchive archive{stream}; archive << tor; } buffer = stream.str(); } net::tor_address tor{}; { EXPECT_TRUE(tor.is_unknown()); EXPECT_EQ(net::tor_address{}, tor); EXPECT_STREQ(net::tor_address::unknown_str(), tor.host_str()); EXPECT_EQ(0u, tor.port()); std::istringstream stream{buffer}; boost::archive::portable_binary_iarchive archive{stream}; archive >> tor; } EXPECT_TRUE(tor.is_unknown()); EXPECT_EQ(net::tor_address::unknown(), tor); EXPECT_STREQ(net::tor_address::unknown_str(), tor.host_str()); EXPECT_EQ(0u, tor.port()); } TEST(get_network_address, onion) { expect address = net::get_network_address("onion", 0); EXPECT_EQ(net::error::unsupported_address, address); address = net::get_network_address(".onion", 0); EXPECT_EQ(net::error::invalid_tor_address, address); address = net::get_network_address(v2_onion, 1000); EXPECT_EQ(net::error::invalid_tor_address, address); address = net::get_network_address(v3_onion, 1000); ASSERT_TRUE(bool(address)); EXPECT_EQ(epee::net_utils::address_type::tor, address->get_type_id()); EXPECT_STREQ(v3_onion, address->host_str().c_str()); EXPECT_EQ(std::string{v3_onion} + ":1000", address->str()); address = net::get_network_address(std::string{v3_onion} + ":2000", 1000); ASSERT_TRUE(bool(address)); EXPECT_EQ(epee::net_utils::address_type::tor, address->get_type_id()); EXPECT_STREQ(v3_onion, address->host_str().c_str()); EXPECT_EQ(std::string{v3_onion} + ":2000", address->str()); address = net::get_network_address(std::string{v3_onion} + ":65536", 1000); EXPECT_EQ(net::error::invalid_port, address); } namespace { static constexpr const char b32_i2p[] = "vww6ybal4bd7szmgncyruucpgfkqahzddi37ktceo3ah7ngmcopn.b32.i2p"; static constexpr const char b32_i2p_2[] = "xmrto2bturnore26xmrto2bturnore26xmrto2bturnore26xmr2.b32.i2p"; } TEST(i2p_address, constants) { static_assert(!net::i2p_address::is_local(), "bad is_local() response"); static_assert(!net::i2p_address::is_loopback(), "bad is_loopback() response"); static_assert(net::i2p_address::get_type_id() == epee::net_utils::address_type::i2p, "bad get_type_id() response"); EXPECT_FALSE(net::i2p_address::is_local()); EXPECT_FALSE(net::i2p_address::is_loopback()); EXPECT_EQ(epee::net_utils::address_type::i2p, net::i2p_address::get_type_id()); EXPECT_EQ(epee::net_utils::address_type::i2p, net::i2p_address::get_type_id()); } TEST(i2p_address, invalid) { EXPECT_TRUE(net::i2p_address::make("").has_error()); EXPECT_TRUE(net::i2p_address::make(":").has_error()); EXPECT_TRUE(net::i2p_address::make(".b32.i2p").has_error()); EXPECT_TRUE(net::i2p_address::make(".b32.i2p:").has_error()); EXPECT_TRUE(net::i2p_address::make(b32_i2p + 1).has_error()); EXPECT_TRUE(net::i2p_address::make(boost::string_ref{b32_i2p, sizeof(b32_i2p) - 2}).has_error()); EXPECT_TRUE(net::i2p_address::make(std::string{b32_i2p} + ":65536").has_error()); EXPECT_TRUE(net::i2p_address::make(std::string{b32_i2p} + ":-1").has_error()); std::string i2p{b32_i2p}; i2p.at(10) = 1; EXPECT_TRUE(net::i2p_address::make(i2p).has_error()); } TEST(i2p_address, unblockable_types) { net::i2p_address i2p{}; ASSERT_NE(nullptr, i2p.host_str()); EXPECT_STREQ("", i2p.host_str()); EXPECT_STREQ("", i2p.str().c_str()); EXPECT_EQ(0u, i2p.port()); EXPECT_TRUE(i2p.is_unknown()); EXPECT_FALSE(i2p.is_local()); EXPECT_FALSE(i2p.is_loopback()); EXPECT_EQ(epee::net_utils::address_type::i2p, i2p.get_type_id()); EXPECT_EQ(epee::net_utils::zone::i2p, i2p.get_zone()); i2p = net::i2p_address::unknown(); ASSERT_NE(nullptr, i2p.host_str()); EXPECT_STREQ("", i2p.host_str()); EXPECT_STREQ("", i2p.str().c_str()); EXPECT_EQ(0u, i2p.port()); EXPECT_TRUE(i2p.is_unknown()); EXPECT_FALSE(i2p.is_local()); EXPECT_FALSE(i2p.is_loopback()); EXPECT_EQ(epee::net_utils::address_type::i2p, i2p.get_type_id()); EXPECT_EQ(epee::net_utils::zone::i2p, i2p.get_zone()); EXPECT_EQ(net::i2p_address{}, net::i2p_address::unknown()); } TEST(i2p_address, valid) { const auto address1 = net::i2p_address::make(b32_i2p); ASSERT_TRUE(address1.has_value()); EXPECT_EQ(0u, address1->port()); EXPECT_STREQ(b32_i2p, address1->host_str()); EXPECT_STREQ(b32_i2p, address1->str().c_str()); EXPECT_TRUE(address1->is_blockable()); net::i2p_address address2{*address1}; EXPECT_EQ(0u, address2.port()); EXPECT_STREQ(b32_i2p, address2.host_str()); EXPECT_STREQ(b32_i2p, address2.str().c_str()); EXPECT_TRUE(address2.is_blockable()); EXPECT_TRUE(address2.equal(*address1)); EXPECT_TRUE(address1->equal(address2)); EXPECT_TRUE(address2 == *address1); EXPECT_TRUE(*address1 == address2); EXPECT_FALSE(address2 != *address1); EXPECT_FALSE(*address1 != address2); EXPECT_TRUE(address2.is_same_host(*address1)); EXPECT_TRUE(address1->is_same_host(address2)); EXPECT_FALSE(address2.less(*address1)); EXPECT_FALSE(address1->less(address2)); address2 = MONERO_UNWRAP(net::i2p_address::make(std::string{b32_i2p_2} + ":6545")); EXPECT_EQ(6545, address2.port()); EXPECT_STREQ(b32_i2p_2, address2.host_str()); EXPECT_EQ(std::string{b32_i2p_2} + ":6545", address2.str().c_str()); EXPECT_TRUE(address2.is_blockable()); EXPECT_FALSE(address2.equal(*address1)); EXPECT_FALSE(address1->equal(address2)); EXPECT_FALSE(address2 == *address1); EXPECT_FALSE(*address1 == address2); EXPECT_TRUE(address2 != *address1); EXPECT_TRUE(*address1 != address2); EXPECT_FALSE(address2.is_same_host(*address1)); EXPECT_FALSE(address1->is_same_host(address2)); EXPECT_FALSE(address2.less(*address1)); EXPECT_TRUE(address1->less(address2)); net::i2p_address address3 = MONERO_UNWRAP(net::i2p_address::make(std::string{b32_i2p} + ":", 65535)); EXPECT_EQ(65535, address3.port()); EXPECT_STREQ(b32_i2p, address3.host_str()); EXPECT_EQ(std::string{b32_i2p} + ":65535", address3.str().c_str()); EXPECT_TRUE(address3.is_blockable()); EXPECT_FALSE(address3.equal(*address1)); EXPECT_FALSE(address1->equal(address3)); EXPECT_FALSE(address3 == *address1); EXPECT_FALSE(*address1 == address3); EXPECT_TRUE(address3 != *address1); EXPECT_TRUE(*address1 != address3); EXPECT_TRUE(address3.is_same_host(*address1)); EXPECT_TRUE(address1->is_same_host(address3)); EXPECT_FALSE(address3.less(*address1)); EXPECT_TRUE(address1->less(address3)); EXPECT_FALSE(address3.equal(address2)); EXPECT_FALSE(address2.equal(address3)); EXPECT_FALSE(address3 == address2); EXPECT_FALSE(address2 == address3); EXPECT_TRUE(address3 != address2); EXPECT_TRUE(address2 != address3); EXPECT_FALSE(address3.is_same_host(address2)); EXPECT_FALSE(address2.is_same_host(address3)); EXPECT_TRUE(address3.less(address2)); EXPECT_FALSE(address2.less(address3)); } TEST(i2p_address, generic_network_address) { const epee::net_utils::network_address i2p1{MONERO_UNWRAP(net::i2p_address::make(b32_i2p, 8080))}; const epee::net_utils::network_address i2p2{MONERO_UNWRAP(net::i2p_address::make(b32_i2p, 8080))}; const epee::net_utils::network_address ip{epee::net_utils::ipv4_network_address{100, 200}}; EXPECT_EQ(i2p1, i2p2); EXPECT_NE(ip, i2p1); EXPECT_LT(ip, i2p1); EXPECT_STREQ(b32_i2p, i2p1.host_str().c_str()); EXPECT_EQ(std::string{b32_i2p} + ":8080", i2p1.str()); EXPECT_EQ(epee::net_utils::address_type::i2p, i2p1.get_type_id()); EXPECT_EQ(epee::net_utils::address_type::i2p, i2p2.get_type_id()); EXPECT_EQ(epee::net_utils::address_type::ipv4, ip.get_type_id()); EXPECT_EQ(epee::net_utils::zone::i2p, i2p1.get_zone()); EXPECT_EQ(epee::net_utils::zone::i2p, i2p2.get_zone()); EXPECT_EQ(epee::net_utils::zone::public_, ip.get_zone()); EXPECT_TRUE(i2p1.is_blockable()); EXPECT_TRUE(i2p2.is_blockable()); EXPECT_TRUE(ip.is_blockable()); } namespace { struct test_command_i2p { net::i2p_address i2p; BEGIN_KV_SERIALIZE_MAP() KV_SERIALIZE(i2p); END_KV_SERIALIZE_MAP() }; } TEST(i2p_address, epee_serializev_b32) { epee::byte_slice buffer{}; { test_command_i2p command{MONERO_UNWRAP(net::i2p_address::make(b32_i2p, 10))}; EXPECT_FALSE(command.i2p.is_unknown()); EXPECT_NE(net::i2p_address{}, command.i2p); EXPECT_STREQ(b32_i2p, command.i2p.host_str()); EXPECT_EQ(10u, command.i2p.port()); epee::serialization::portable_storage stg{}; EXPECT_TRUE(command.store(stg)); EXPECT_TRUE(stg.store_to_binary(buffer)); } test_command_i2p command{}; { EXPECT_TRUE(command.i2p.is_unknown()); EXPECT_EQ(net::i2p_address{}, command.i2p); EXPECT_STREQ(net::i2p_address::unknown_str(), command.i2p.host_str()); EXPECT_EQ(0u, command.i2p.port()); epee::serialization::portable_storage stg{}; EXPECT_TRUE(stg.load_from_binary(epee::to_span(buffer))); EXPECT_TRUE(command.load(stg)); } EXPECT_FALSE(command.i2p.is_unknown()); EXPECT_NE(net::i2p_address{}, command.i2p); EXPECT_STREQ(b32_i2p, command.i2p.host_str()); EXPECT_EQ(10u, command.i2p.port()); // make sure that exceeding max buffer doesn't destroy i2p_address::_load { epee::serialization::portable_storage stg{}; stg.load_from_binary(epee::to_span(buffer)); std::string host{}; ASSERT_TRUE(stg.get_value("host", host, stg.open_section("i2p", nullptr, false))); EXPECT_EQ(std::strlen(b32_i2p), host.size()); host.push_back('k'); EXPECT_TRUE(stg.set_value("host", std::string{host}, stg.open_section("i2p", nullptr, false))); EXPECT_TRUE(command.load(stg)); // poor error reporting from `KV_SERIALIZE` } EXPECT_TRUE(command.i2p.is_unknown()); EXPECT_EQ(net::i2p_address{}, command.i2p); EXPECT_STRNE(b32_i2p, command.i2p.host_str()); EXPECT_EQ(0u, command.i2p.port()); } TEST(i2p_address, epee_serialize_unknown) { epee::byte_slice buffer{}; { test_command_i2p command{net::i2p_address::unknown()}; EXPECT_TRUE(command.i2p.is_unknown()); EXPECT_EQ(net::i2p_address{}, command.i2p); EXPECT_STREQ(net::i2p_address::unknown_str(), command.i2p.host_str()); EXPECT_EQ(0u, command.i2p.port()); epee::serialization::portable_storage stg{}; EXPECT_TRUE(command.store(stg)); EXPECT_TRUE(stg.store_to_binary(buffer)); } test_command_i2p command{}; { EXPECT_TRUE(command.i2p.is_unknown()); EXPECT_EQ(net::i2p_address{}, command.i2p); EXPECT_STRNE(b32_i2p, command.i2p.host_str()); EXPECT_EQ(0u, command.i2p.port()); epee::serialization::portable_storage stg{}; EXPECT_TRUE(stg.load_from_binary(epee::to_span(buffer))); EXPECT_TRUE(command.load(stg)); } EXPECT_TRUE(command.i2p.is_unknown()); EXPECT_EQ(net::i2p_address{}, command.i2p); EXPECT_STREQ(net::i2p_address::unknown_str(), command.i2p.host_str()); EXPECT_EQ(0u, command.i2p.port()); // make sure that exceeding max buffer doesn't destroy i2p_address::_load { epee::serialization::portable_storage stg{}; stg.load_from_binary(epee::to_span(buffer)); std::string host{}; ASSERT_TRUE(stg.get_value("host", host, stg.open_section("i2p", nullptr, false))); EXPECT_EQ(std::strlen(net::i2p_address::unknown_str()), host.size()); host.push_back('k'); EXPECT_TRUE(stg.set_value("host", std::string{host}, stg.open_section("i2p", nullptr, false))); EXPECT_TRUE(command.load(stg)); // poor error reporting from `KV_SERIALIZE` } EXPECT_TRUE(command.i2p.is_unknown()); EXPECT_EQ(net::i2p_address{}, command.i2p); EXPECT_STRNE(b32_i2p, command.i2p.host_str()); EXPECT_EQ(0u, command.i2p.port()); } TEST(i2p_address, boost_serialize_b32) { std::string buffer{}; { const net::i2p_address i2p = MONERO_UNWRAP(net::i2p_address::make(b32_i2p, 10)); EXPECT_FALSE(i2p.is_unknown()); EXPECT_NE(net::i2p_address{}, i2p); EXPECT_STREQ(b32_i2p, i2p.host_str()); EXPECT_EQ(10u, i2p.port()); std::ostringstream stream{}; { boost::archive::portable_binary_oarchive archive{stream}; archive << i2p; } buffer = stream.str(); } net::i2p_address i2p{}; { EXPECT_TRUE(i2p.is_unknown()); EXPECT_EQ(net::i2p_address{}, i2p); EXPECT_STREQ(net::i2p_address::unknown_str(), i2p.host_str()); EXPECT_EQ(0u, i2p.port()); std::istringstream stream{buffer}; boost::archive::portable_binary_iarchive archive{stream}; archive >> i2p; } EXPECT_FALSE(i2p.is_unknown()); EXPECT_NE(net::i2p_address{}, i2p); EXPECT_STREQ(b32_i2p, i2p.host_str()); EXPECT_EQ(10u, i2p.port()); } TEST(i2p_address, boost_serialize_unknown) { std::string buffer{}; { const net::i2p_address i2p{}; EXPECT_TRUE(i2p.is_unknown()); EXPECT_EQ(net::i2p_address::unknown(), i2p); EXPECT_STREQ(net::i2p_address::unknown_str(), i2p.host_str()); EXPECT_EQ(0u, i2p.port()); std::ostringstream stream{}; { boost::archive::portable_binary_oarchive archive{stream}; archive << i2p; } buffer = stream.str(); } net::i2p_address i2p{}; { EXPECT_TRUE(i2p.is_unknown()); EXPECT_EQ(net::i2p_address{}, i2p); EXPECT_STREQ(net::i2p_address::unknown_str(), i2p.host_str()); EXPECT_EQ(0u, i2p.port()); std::istringstream stream{buffer}; boost::archive::portable_binary_iarchive archive{stream}; archive >> i2p; } EXPECT_TRUE(i2p.is_unknown()); EXPECT_EQ(net::i2p_address::unknown(), i2p); EXPECT_STREQ(net::i2p_address::unknown_str(), i2p.host_str()); EXPECT_EQ(0u, i2p.port()); } TEST(get_network_address, i2p) { expect address = net::get_network_address("i2p", 0); EXPECT_EQ(net::error::unsupported_address, address); address = net::get_network_address(".b32.i2p", 0); EXPECT_EQ(net::error::invalid_i2p_address, address); address = net::get_network_address(b32_i2p, 1000); ASSERT_TRUE(bool(address)); EXPECT_EQ(epee::net_utils::address_type::i2p, address->get_type_id()); EXPECT_STREQ(b32_i2p, address->host_str().c_str()); EXPECT_EQ(std::string{b32_i2p} + ":1000", address->str()); address = net::get_network_address(std::string{b32_i2p} + ":2000", 1000); ASSERT_TRUE(bool(address)); EXPECT_EQ(epee::net_utils::address_type::i2p, address->get_type_id()); EXPECT_STREQ(b32_i2p, address->host_str().c_str()); EXPECT_EQ(std::string{b32_i2p} + ":2000", address->str()); address = net::get_network_address(std::string{b32_i2p} + ":65536", 1000); EXPECT_EQ(net::error::invalid_port, address); } TEST(get_network_address, ipv4) { expect address = net::get_network_address("0.0.0.", 0); EXPECT_EQ(net::error::unsupported_address, address); address = net::get_network_address("0.0.0.257", 0); EXPECT_EQ(net::error::unsupported_address, address); address = net::get_network_address("0.0.0.254", 1000); ASSERT_TRUE(bool(address)); EXPECT_EQ(epee::net_utils::address_type::ipv4, address->get_type_id()); EXPECT_STREQ("0.0.0.254", address->host_str().c_str()); EXPECT_STREQ("0.0.0.254:1000", address->str().c_str()); address = net::get_network_address("23.0.0.254:2000", 1000); ASSERT_TRUE(bool(address)); EXPECT_EQ(epee::net_utils::address_type::ipv4, address->get_type_id()); EXPECT_STREQ("23.0.0.254", address->host_str().c_str()); EXPECT_STREQ("23.0.0.254:2000", address->str().c_str()); } TEST(get_network_address, ipv4subnet) { expect address = net::get_ipv4_subnet_address("0.0.0.0", true); EXPECT_STREQ("0.0.0.0/32", address->str().c_str()); address = net::get_ipv4_subnet_address("0.0.0.0"); EXPECT_TRUE(!address); address = net::get_ipv4_subnet_address("0.0.0.0/32"); EXPECT_STREQ("0.0.0.0/32", address->str().c_str()); address = net::get_ipv4_subnet_address("0.0.0.0/0"); EXPECT_STREQ("0.0.0.0/0", address->str().c_str()); address = net::get_ipv4_subnet_address("12.34.56.78/16"); EXPECT_STREQ("12.34.0.0/16", address->str().c_str()); } namespace { void na_host_and_port_test(std::string addr, std::string exp_host, std::string exp_port) { std::string host{"xxxxx"}; std::string port{"xxxxx"}; net::get_network_address_host_and_port(addr, host, port); EXPECT_EQ(exp_host, host); EXPECT_EQ(exp_port, port); } } // anonymous namespace TEST(get_network_address_host_and_port, ipv4) { na_host_and_port_test("9.9.9.9", "9.9.9.9", "xxxxx"); na_host_and_port_test("9.9.9.9:18081", "9.9.9.9", "18081"); } TEST(get_network_address_host_and_port, ipv6) { na_host_and_port_test("::ffff", "::ffff", "xxxxx"); na_host_and_port_test("[::ffff]", "::ffff", "xxxxx"); na_host_and_port_test("[::ffff]:00231", "::ffff", "00231"); na_host_and_port_test("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff", "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff", "xxxxx"); na_host_and_port_test("[7777:7777:7777:7777:7777:7777:7777:7777]", "7777:7777:7777:7777:7777:7777:7777:7777", "xxxxx"); na_host_and_port_test("[7777:7777:7777:7777:7777:7777:7777:7777]:48080", "7777:7777:7777:7777:7777:7777:7777:7777", "48080"); } TEST(get_network_address_host_and_port, hostname) { na_host_and_port_test("localhost", "localhost", "xxxxx"); na_host_and_port_test("bar:29080", "bar", "29080"); // Issue https://github.com/monero-project/monero/issues/8633 na_host_and_port_test("xmrchain.net:18081", "xmrchain.net", "18081"); } namespace { using stream_type = boost::asio::ip::tcp; struct io_thread { boost::asio::io_service io_service; boost::asio::io_service::work work; stream_type::socket server; stream_type::acceptor acceptor; boost::thread io; std::atomic connected; io_thread() : io_service(), work(io_service), server(io_service), acceptor(io_service), io([this] () { try { this->io_service.run(); } catch (const std::exception& e) { MERROR(e.what()); }}), connected(false) { acceptor.open(boost::asio::ip::tcp::v4()); acceptor.bind(stream_type::endpoint{boost::asio::ip::address_v4::loopback(), 0}); acceptor.listen(); acceptor.async_accept(server, [this] (boost::system::error_code error) { this->connected = true; if (error) throw boost::system::system_error{error}; }); } ~io_thread() noexcept { io_service.stop(); if (io.joinable()) io.join(); } }; struct checked_client { std::atomic* called_; bool expected_; void operator()(boost::system::error_code error, net::socks::client::stream_type::socket&&) const { EXPECT_EQ(expected_, bool(error)) << "Socks server: " << error.message(); ASSERT_TRUE(called_ != nullptr); (*called_) = true; } }; } TEST(socks_client, unsupported_command) { boost::asio::io_service io_service{}; stream_type::socket client{io_service}; auto test_client = net::socks::make_connect_client( std::move(client), net::socks::version::v4, std::bind( [] {} ) ); ASSERT_TRUE(bool(test_client)); EXPECT_TRUE(test_client->buffer().empty()); EXPECT_FALSE(test_client->set_connect_command("example.com", 8080)); EXPECT_TRUE(test_client->buffer().empty()); EXPECT_FALSE(test_client->set_resolve_command("example.com")); EXPECT_TRUE(test_client->buffer().empty()); } TEST(socks_client, no_command) { boost::asio::io_service io_service{}; stream_type::socket client{io_service}; auto test_client = net::socks::make_connect_client( std::move(client), net::socks::version::v4a, std::bind( [] {} ) ); ASSERT_TRUE(bool(test_client)); EXPECT_FALSE(net::socks::client::send(std::move(test_client))); } TEST(socks_client, connect_command) { io_thread io{}; stream_type::socket client{io.io_service}; std::atomic called{false}; auto test_client = net::socks::make_connect_client( std::move(client), net::socks::version::v4a, checked_client{std::addressof(called), false} ); ASSERT_TRUE(bool(test_client)); ASSERT_TRUE(test_client->set_connect_command("example.com", 8080)); EXPECT_FALSE(test_client->buffer().empty()); ASSERT_TRUE(net::socks::client::connect_and_send(std::move(test_client), io.acceptor.local_endpoint())); while (!io.connected) ASSERT_FALSE(called); const std::uint8_t expected_bytes[] = { 4, 1, 0x1f, 0x90, 0x00, 0x00, 0x00, 0x01, 0x00, 'e', 'x', 'a', 'm', 'p', 'l', 'e', '.', 'c', 'o', 'm', 0x00 }; std::uint8_t actual_bytes[sizeof(expected_bytes)]; boost::asio::read(io.server, boost::asio::buffer(actual_bytes)); EXPECT_TRUE(std::memcmp(expected_bytes, actual_bytes, sizeof(actual_bytes)) == 0); const std::uint8_t reply_bytes[] = {0, 90, 0, 0, 0, 0, 0, 0}; boost::asio::write(io.server, boost::asio::buffer(reply_bytes)); // yikes! while (!called); } TEST(socks_client, connect_command_failed) { io_thread io{}; stream_type::socket client{io.io_service}; std::atomic called{false}; auto test_client = net::socks::make_connect_client( std::move(client), net::socks::version::v4, checked_client{std::addressof(called), true} ); ASSERT_TRUE(bool(test_client)); ASSERT_TRUE( test_client->set_connect_command( epee::net_utils::ipv4_network_address{boost::endian::native_to_big(std::uint32_t(5000)), 3000} ) ); EXPECT_FALSE(test_client->buffer().empty()); ASSERT_TRUE(net::socks::client::connect_and_send(std::move(test_client), io.acceptor.local_endpoint())); while (!io.connected) ASSERT_FALSE(called); const std::uint8_t expected_bytes[] = { 4, 1, 0x0b, 0xb8, 0x00, 0x00, 0x13, 0x88, 0x00 }; std::uint8_t actual_bytes[sizeof(expected_bytes)]; boost::asio::read(io.server, boost::asio::buffer(actual_bytes)); EXPECT_TRUE(std::memcmp(expected_bytes, actual_bytes, sizeof(actual_bytes)) == 0); const std::uint8_t reply_bytes[] = {0, 91, 0, 0, 0, 0, 0, 0}; boost::asio::write(io.server, boost::asio::buffer(reply_bytes)); // yikes! while (!called); } TEST(socks_client, resolve_command) { static std::uint8_t reply_bytes[] = {0, 90, 0, 0, 0xff, 0, 0xad, 0}; struct resolve_client : net::socks::client { std::atomic called_; bool expected_; resolve_client(stream_type::socket&& proxy) : net::socks::client(std::move(proxy), net::socks::version::v4a_tor) , called_(0) , expected_(false) {}; virtual void done(boost::system::error_code error, std::shared_ptr self) override { EXPECT_EQ(this, self.get()); EXPECT_EQ(expected_, bool(error)) << "Resolve failure: " << error.message(); if (!error) { ASSERT_EQ(sizeof(reply_bytes), buffer().size()); EXPECT_EQ(0u, std::memcmp(buffer().data(), reply_bytes, sizeof(reply_bytes))); } ++called_; } }; io_thread io{}; stream_type::socket client{io.io_service}; auto test_client = std::make_shared(std::move(client)); ASSERT_TRUE(bool(test_client)); ASSERT_TRUE(test_client->set_resolve_command("example.com")); EXPECT_FALSE(test_client->buffer().empty()); ASSERT_TRUE(net::socks::client::connect_and_send(test_client, io.acceptor.local_endpoint())); while (!io.connected) ASSERT_EQ(0u, test_client->called_); const std::uint8_t expected_bytes[] = { 4, 0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 'e', 'x', 'a', 'm', 'p', 'l', 'e', '.', 'c', 'o', 'm', 0x00 }; std::uint8_t actual_bytes[sizeof(expected_bytes)]; boost::asio::read(io.server, boost::asio::buffer(actual_bytes)); EXPECT_TRUE(std::memcmp(expected_bytes, actual_bytes, sizeof(actual_bytes)) == 0); boost::asio::write(io.server, boost::asio::buffer(reply_bytes)); // yikes! while (test_client->called_ == 0); test_client->expected_ = true; ASSERT_TRUE(test_client->set_resolve_command("example.com")); EXPECT_FALSE(test_client->buffer().empty()); ASSERT_TRUE(net::socks::client::send(test_client)); boost::asio::read(io.server, boost::asio::buffer(actual_bytes)); EXPECT_TRUE(std::memcmp(expected_bytes, actual_bytes, sizeof(actual_bytes)) == 0); reply_bytes[1] = 91; boost::asio::write(io.server, boost::asio::buffer(reply_bytes)); // yikes! while (test_client->called_ == 1); } TEST(socks_connector, host) { io_thread io{}; boost::asio::steady_timer timeout{io.io_service}; timeout.expires_from_now(std::chrono::seconds{5}); boost::unique_future sock = net::socks::connector{io.acceptor.local_endpoint()}("example.com", "8080", timeout); while (!io.connected) ASSERT_FALSE(sock.is_ready()); const std::uint8_t expected_bytes[] = { 4, 1, 0x1f, 0x90, 0x00, 0x00, 0x00, 0x01, 0x00, 'e', 'x', 'a', 'm', 'p', 'l', 'e', '.', 'c', 'o', 'm', 0x00 }; std::uint8_t actual_bytes[sizeof(expected_bytes)]; boost::asio::read(io.server, boost::asio::buffer(actual_bytes)); EXPECT_TRUE(std::memcmp(expected_bytes, actual_bytes, sizeof(actual_bytes)) == 0); const std::uint8_t reply_bytes[] = {0, 90, 0, 0, 0, 0, 0, 0}; boost::asio::write(io.server, boost::asio::buffer(reply_bytes)); ASSERT_EQ(boost::future_status::ready, sock.wait_for(boost::chrono::seconds{3})); EXPECT_TRUE(sock.get().is_open()); } TEST(socks_connector, ipv4) { io_thread io{}; boost::asio::steady_timer timeout{io.io_service}; timeout.expires_from_now(std::chrono::seconds{5}); boost::unique_future sock = net::socks::connector{io.acceptor.local_endpoint()}("250.88.125.99", "8080", timeout); while (!io.connected) ASSERT_FALSE(sock.is_ready()); const std::uint8_t expected_bytes[] = { 4, 1, 0x1f, 0x90, 0xfa, 0x58, 0x7d, 0x63, 0x00 }; std::uint8_t actual_bytes[sizeof(expected_bytes)]; boost::asio::read(io.server, boost::asio::buffer(actual_bytes)); EXPECT_TRUE(std::memcmp(expected_bytes, actual_bytes, sizeof(actual_bytes)) == 0); const std::uint8_t reply_bytes[] = {0, 90, 0, 0, 0, 0, 0, 0}; boost::asio::write(io.server, boost::asio::buffer(reply_bytes)); ASSERT_EQ(boost::future_status::ready, sock.wait_for(boost::chrono::seconds{3})); EXPECT_TRUE(sock.get().is_open()); } TEST(socks_connector, error) { io_thread io{}; boost::asio::steady_timer timeout{io.io_service}; timeout.expires_from_now(std::chrono::seconds{5}); boost::unique_future sock = net::socks::connector{io.acceptor.local_endpoint()}("250.88.125.99", "8080", timeout); while (!io.connected) ASSERT_FALSE(sock.is_ready()); const std::uint8_t expected_bytes[] = { 4, 1, 0x1f, 0x90, 0xfa, 0x58, 0x7d, 0x63, 0x00 }; std::uint8_t actual_bytes[sizeof(expected_bytes)]; boost::asio::read(io.server, boost::asio::buffer(actual_bytes)); EXPECT_TRUE(std::memcmp(expected_bytes, actual_bytes, sizeof(actual_bytes)) == 0); const std::uint8_t reply_bytes[] = {0, 91, 0, 0, 0, 0, 0, 0}; boost::asio::write(io.server, boost::asio::buffer(reply_bytes)); ASSERT_EQ(boost::future_status::ready, sock.wait_for(boost::chrono::seconds{3})); EXPECT_THROW(sock.get().is_open(), boost::system::system_error); } TEST(socks_connector, timeout) { io_thread io{}; boost::asio::steady_timer timeout{io.io_service}; timeout.expires_from_now(std::chrono::milliseconds{10}); boost::unique_future sock = net::socks::connector{io.acceptor.local_endpoint()}("250.88.125.99", "8080", timeout); ASSERT_EQ(boost::future_status::ready, sock.wait_for(boost::chrono::seconds{3})); EXPECT_THROW(sock.get().is_open(), boost::system::system_error); } TEST(dandelionpp_map, traits) { EXPECT_TRUE(std::is_default_constructible()); EXPECT_TRUE(std::is_move_constructible()); EXPECT_TRUE(std::is_move_assignable()); EXPECT_FALSE(std::is_copy_constructible()); EXPECT_FALSE(std::is_copy_assignable()); } TEST(dandelionpp_map, empty) { const net::dandelionpp::connection_map mapper{}; EXPECT_EQ(mapper.begin(), mapper.end()); EXPECT_EQ(0u, mapper.size()); const net::dandelionpp::connection_map cloned = mapper.clone(); EXPECT_EQ(cloned.begin(), cloned.end()); EXPECT_EQ(0u, cloned.size()); } TEST(dandelionpp_map, zero_stems) { std::vector connections{6}; for (auto &c: connections) c = boost::uuids::random_generator{}(); net::dandelionpp::connection_map mapper{connections, 0}; EXPECT_EQ(mapper.begin(), mapper.end()); EXPECT_EQ(0u, mapper.size()); for (const boost::uuids::uuid& connection : connections) EXPECT_TRUE(mapper.get_stem(connection).is_nil()); EXPECT_FALSE(mapper.update(connections)); EXPECT_EQ(mapper.begin(), mapper.end()); EXPECT_EQ(0u, mapper.size()); for (const boost::uuids::uuid& connection : connections) EXPECT_TRUE(mapper.get_stem(connection).is_nil()); const net::dandelionpp::connection_map cloned = mapper.clone(); EXPECT_EQ(cloned.end(), cloned.begin()); EXPECT_EQ(0u, cloned.size()); } TEST(dandelionpp_map, dropped_connection) { std::vector connections{6}; for (auto &c: connections) c = boost::uuids::random_generator{}(); std::sort(connections.begin(), connections.end()); // select 3 of 6 outgoing connections net::dandelionpp::connection_map mapper{connections, 3}; EXPECT_EQ(3u, mapper.size()); EXPECT_EQ(3, mapper.end() - mapper.begin()); { std::set used; for (const boost::uuids::uuid& connection : mapper) { EXPECT_TRUE(used.insert(connection).second); EXPECT_TRUE(std::binary_search(connections.begin(), connections.end(), connection)); } } { const net::dandelionpp::connection_map cloned = mapper.clone(); EXPECT_EQ(3u, cloned.size()); ASSERT_EQ(mapper.end() - mapper.begin(), cloned.end() - cloned.begin()); for (auto elem : boost::combine(mapper, cloned)) EXPECT_EQ(boost::get<0>(elem), boost::get<1>(elem)); } EXPECT_FALSE(mapper.update(connections)); EXPECT_EQ(3u, mapper.size()); ASSERT_EQ(3, mapper.end() - mapper.begin()); { std::set used; for (const boost::uuids::uuid& connection : mapper) { EXPECT_FALSE(connection.is_nil()); EXPECT_TRUE(used.insert(connection).second); EXPECT_TRUE(std::binary_search(connections.begin(), connections.end(), connection)); } } std::map mapping; std::vector in_connections{9}; for (auto &c: in_connections) c = boost::uuids::random_generator{}(); { std::map used; std::multimap inverse_mapping; for (const boost::uuids::uuid& connection : in_connections) { const boost::uuids::uuid out = mapper.get_stem(connection); EXPECT_FALSE(out.is_nil()); EXPECT_TRUE(mapping.emplace(connection, out).second); inverse_mapping.emplace(out, connection); used[out]++; } EXPECT_EQ(3u, used.size()); for (const std::pair& entry : used) EXPECT_EQ(3u, entry.second); for (const boost::uuids::uuid& connection : in_connections) EXPECT_EQ(mapping[connection], mapper.get_stem(connection)); // drop 1 connection, and select replacement from 1 of unused 3. const boost::uuids::uuid lost_connection = *(++mapper.begin()); const auto elem = std::lower_bound(connections.begin(), connections.end(), lost_connection); ASSERT_NE(connections.end(), elem); ASSERT_EQ(lost_connection, *elem); connections.erase(elem); EXPECT_TRUE(mapper.update(connections)); EXPECT_EQ(3u, mapper.size()); ASSERT_EQ(3, mapper.end() - mapper.begin()); for (const boost::uuids::uuid& connection : mapper) { EXPECT_FALSE(connection.is_nil()); EXPECT_NE(lost_connection, connection); } const boost::uuids::uuid newly_mapped = *(++mapper.begin()); EXPECT_FALSE(newly_mapped.is_nil()); EXPECT_NE(lost_connection, newly_mapped); for (auto elems = inverse_mapping.equal_range(lost_connection); elems.first != elems.second; ++elems.first) mapping[elems.first->second] = newly_mapped; } { const net::dandelionpp::connection_map cloned = mapper.clone(); EXPECT_EQ(3u, cloned.size()); ASSERT_EQ(mapper.end() - mapper.begin(), cloned.end() - cloned.begin()); for (auto elem : boost::combine(mapper, cloned)) EXPECT_EQ(boost::get<0>(elem), boost::get<1>(elem)); } // mappings should remain evenly distributed amongst 2, with 3 sitting in waiting { std::set used; for (const boost::uuids::uuid& connection : mapper) { EXPECT_FALSE(connection.is_nil()); EXPECT_TRUE(used.insert(connection).second); EXPECT_TRUE(std::binary_search(connections.begin(), connections.end(), connection)); } } { std::map used; for (const boost::uuids::uuid& connection : in_connections) { const boost::uuids::uuid& out = mapper.get_stem(connection); EXPECT_FALSE(out.is_nil()); EXPECT_EQ(mapping[connection], out); used[out]++; } EXPECT_EQ(3u, used.size()); for (const std::pair& entry : used) EXPECT_EQ(3u, entry.second); } { const net::dandelionpp::connection_map cloned = mapper.clone(); EXPECT_EQ(3u, cloned.size()); ASSERT_EQ(mapper.end() - mapper.begin(), cloned.end() - cloned.begin()); for (auto elem : boost::combine(mapper, cloned)) EXPECT_EQ(boost::get<0>(elem), boost::get<1>(elem)); } } TEST(dandelionpp_map, dropped_connection_remapped) { boost::uuids::random_generator random_uuid{}; std::vector connections{3}; for (auto &e: connections) e = random_uuid(); std::sort(connections.begin(), connections.end()); // select 3 of 3 outgoing connections net::dandelionpp::connection_map mapper{connections, 3}; EXPECT_EQ(3u, mapper.size()); EXPECT_EQ(3, mapper.end() - mapper.begin()); { std::set used; for (const boost::uuids::uuid& connection : mapper) { EXPECT_FALSE(connection.is_nil()); EXPECT_TRUE(used.insert(connection).second); EXPECT_TRUE(std::binary_search(connections.begin(), connections.end(), connection)); } } EXPECT_FALSE(mapper.update(connections)); EXPECT_EQ(3u, mapper.size()); ASSERT_EQ(3, mapper.end() - mapper.begin()); { std::set used; for (const boost::uuids::uuid& connection : mapper) { EXPECT_FALSE(connection.is_nil()); EXPECT_TRUE(used.insert(connection).second); EXPECT_TRUE(std::binary_search(connections.begin(), connections.end(), connection)); } } std::map mapping; std::vector in_connections{9}; for (auto &e: in_connections) e = random_uuid(); { std::map used; std::multimap inverse_mapping; for (const boost::uuids::uuid& connection : in_connections) { const boost::uuids::uuid out = mapper.get_stem(connection); EXPECT_FALSE(out.is_nil()); EXPECT_TRUE(mapping.emplace(connection, out).second); inverse_mapping.emplace(out, connection); used[out]++; } EXPECT_EQ(3u, used.size()); for (const std::pair& entry : used) EXPECT_EQ(3u, entry.second); for (const boost::uuids::uuid& connection : in_connections) EXPECT_EQ(mapping[connection], mapper.get_stem(connection)); // drop 1 connection leaving "hole" const boost::uuids::uuid lost_connection = *(++mapper.begin()); const auto elem = std::lower_bound(connections.begin(), connections.end(), lost_connection); ASSERT_NE(connections.end(), elem); ASSERT_EQ(lost_connection, *elem); connections.erase(elem); EXPECT_TRUE(mapper.update(connections)); EXPECT_EQ(2u, mapper.size()); EXPECT_EQ(3, mapper.end() - mapper.begin()); for (auto elems = inverse_mapping.equal_range(lost_connection); elems.first != elems.second; ++elems.first) mapping[elems.first->second] = boost::uuids::nil_uuid(); } // remap 3 connections and map 1 new connection to 2 remaining out connections in_connections.resize(10); in_connections[9] = random_uuid(); { std::map used; for (const boost::uuids::uuid& connection : in_connections) { const boost::uuids::uuid& out = mapper.get_stem(connection); EXPECT_FALSE(out.is_nil()); used[out]++; boost::uuids::uuid& expected = mapping[connection]; if (!expected.is_nil()) EXPECT_EQ(expected, out); else expected = out; } EXPECT_EQ(2u, used.size()); for (const std::pair& entry : used) EXPECT_EQ(5u, entry.second); } // select 3 of 3 connections but do not remap existing links connections.resize(3); connections[2] = random_uuid(); EXPECT_TRUE(mapper.update(connections)); EXPECT_EQ(3u, mapper.size()); EXPECT_EQ(3, mapper.end() - mapper.begin()); { std::map used; for (const boost::uuids::uuid& connection : in_connections) { const boost::uuids::uuid& out = mapper.get_stem(connection); EXPECT_FALSE(out.is_nil()); used[out]++; EXPECT_EQ(mapping[connection], out); } EXPECT_EQ(2u, used.size()); for (const std::pair& entry : used) EXPECT_EQ(5u, entry.second); } // map 8 new incoming connections across 3 outgoing links in_connections.resize(18); for (size_t i = 10; i < in_connections.size(); ++i) in_connections[i] = random_uuid(); { std::map used; for (const boost::uuids::uuid& connection : in_connections) { const boost::uuids::uuid& out = mapper.get_stem(connection); EXPECT_FALSE(out.is_nil()); used[out]++; boost::uuids::uuid& expected = mapping[connection]; if (!expected.is_nil()) EXPECT_EQ(expected, out); else expected = out; } EXPECT_EQ(3u, used.size()); for (const std::pair& entry : used) EXPECT_EQ(6u, entry.second); } } TEST(dandelionpp_map, dropped_all_connections) { boost::uuids::random_generator random_uuid{}; std::vector connections{8}; for (auto &e: connections) e = random_uuid(); std::sort(connections.begin(), connections.end()); // select 3 of 8 outgoing connections net::dandelionpp::connection_map mapper{connections, 3}; EXPECT_EQ(3u, mapper.size()); EXPECT_EQ(3, mapper.end() - mapper.begin()); { std::set used; for (const boost::uuids::uuid& connection : mapper) { EXPECT_FALSE(connection.is_nil()); EXPECT_TRUE(used.insert(connection).second); EXPECT_TRUE(std::binary_search(connections.begin(), connections.end(), connection)); } } EXPECT_FALSE(mapper.update(connections)); EXPECT_EQ(3u, mapper.size()); ASSERT_EQ(3, mapper.end() - mapper.begin()); { std::set used; for (const boost::uuids::uuid& connection : mapper) { EXPECT_FALSE(connection.is_nil()); EXPECT_TRUE(used.insert(connection).second); EXPECT_TRUE(std::binary_search(connections.begin(), connections.end(), connection)); } } std::vector in_connections{9}; for (auto &e: in_connections) e = random_uuid(); { std::map used; std::map mapping; for (const boost::uuids::uuid& connection : in_connections) { const boost::uuids::uuid out = mapper.get_stem(connection); EXPECT_FALSE(out.is_nil()); EXPECT_TRUE(mapping.emplace(connection, out).second); used[out]++; } EXPECT_EQ(3u, used.size()); for (const std::pair& entry : used) EXPECT_EQ(3u, entry.second); for (const boost::uuids::uuid& connection : in_connections) EXPECT_EQ(mapping[connection], mapper.get_stem(connection)); // drop all connections connections.clear(); EXPECT_TRUE(mapper.update(connections)); EXPECT_EQ(0u, mapper.size()); EXPECT_EQ(3, mapper.end() - mapper.begin()); } // remap 7 connections to nothing for (const boost::uuids::uuid& connection : boost::adaptors::slice(in_connections, 0, 7)) EXPECT_TRUE(mapper.get_stem(connection).is_nil()); // select 3 of 30 connections, only 7 should be remapped to new indexes (but all to new uuids) connections.resize(30); for (auto &e: connections) e = random_uuid(); EXPECT_TRUE(mapper.update(connections)); { std::map used; for (const boost::uuids::uuid& connection : in_connections) { const boost::uuids::uuid& out = mapper.get_stem(connection); EXPECT_FALSE(out.is_nil()); used[out]++; } EXPECT_EQ(3u, used.size()); for (const std::pair& entry : used) EXPECT_EQ(3u, entry.second); } } TEST(zmq, error_codes) { EXPECT_EQ( std::addressof(net::zmq::error_category()), std::addressof(net::zmq::make_error_code(0).category()) ); EXPECT_EQ( std::make_error_condition(std::errc::not_a_socket), net::zmq::make_error_code(ENOTSOCK) ); EXPECT_TRUE( []() -> expect { MONERO_ZMQ_CHECK(zmq_msg_send(nullptr, nullptr, 0)); return success(); }().matches(std::errc::not_a_socket) ); bool thrown = false; try { MONERO_ZMQ_THROW("stuff"); } catch (const std::system_error& e) { thrown = true; EXPECT_EQ(std::make_error_condition(std::errc::not_a_socket), e.code()); } EXPECT_TRUE(thrown); } TEST(zmq, read_write) { net::zmq::context context{zmq_init(1)}; ASSERT_NE(nullptr, context); net::zmq::socket send_socket{zmq_socket(context.get(), ZMQ_REQ)}; net::zmq::socket recv_socket{zmq_socket(context.get(), ZMQ_REP)}; ASSERT_NE(nullptr, send_socket); ASSERT_NE(nullptr, recv_socket); ASSERT_EQ(0u, zmq_bind(recv_socket.get(), "inproc://testing")); ASSERT_EQ(0u, zmq_connect(send_socket.get(), "inproc://testing")); std::string message; message.resize(1024); crypto::rand(message.size(), reinterpret_cast(std::addressof(message[0]))); ASSERT_TRUE(bool(net::zmq::send(epee::strspan(message), send_socket.get()))); const expect received = net::zmq::receive(recv_socket.get()); ASSERT_TRUE(bool(received)); EXPECT_EQ(message, *received); } TEST(zmq, read_write_slice) { net::zmq::context context{zmq_init(1)}; ASSERT_NE(nullptr, context); net::zmq::socket send_socket{zmq_socket(context.get(), ZMQ_REQ)}; net::zmq::socket recv_socket{zmq_socket(context.get(), ZMQ_REP)}; ASSERT_NE(nullptr, send_socket); ASSERT_NE(nullptr, recv_socket); ASSERT_EQ(0u, zmq_bind(recv_socket.get(), "inproc://testing")); ASSERT_EQ(0u, zmq_connect(send_socket.get(), "inproc://testing")); std::string message; message.resize(1024); crypto::rand(message.size(), reinterpret_cast(std::addressof(message[0]))); { epee::byte_slice slice_message{{epee::strspan(message)}}; ASSERT_TRUE(bool(net::zmq::send(std::move(slice_message), send_socket.get()))); EXPECT_TRUE(slice_message.empty()); } const expect received = net::zmq::receive(recv_socket.get()); ASSERT_TRUE(bool(received)); EXPECT_EQ(message, *received); } TEST(zmq, write_slice_fail) { std::string message; message.resize(1024); crypto::rand(message.size(), reinterpret_cast(std::addressof(message[0]))); epee::byte_slice slice_message{std::move(message)}; EXPECT_FALSE(bool(net::zmq::send(std::move(slice_message), nullptr))); EXPECT_TRUE(slice_message.empty()); } TEST(zmq, read_write_multipart) { net::zmq::context context{zmq_init(1)}; ASSERT_NE(nullptr, context); net::zmq::socket send_socket{zmq_socket(context.get(), ZMQ_REQ)}; net::zmq::socket recv_socket{zmq_socket(context.get(), ZMQ_REP)}; ASSERT_NE(nullptr, send_socket); ASSERT_NE(nullptr, recv_socket); ASSERT_EQ(0u, zmq_bind(recv_socket.get(), "inproc://testing")); ASSERT_EQ(0u, zmq_connect(send_socket.get(), "inproc://testing")); std::string message; message.resize(999); crypto::rand(message.size(), reinterpret_cast(std::addressof(message[0]))); for (unsigned i = 0; i < 3; ++i) { const expect received = net::zmq::receive(recv_socket.get(), ZMQ_DONTWAIT); ASSERT_FALSE(bool(received)); EXPECT_EQ(net::zmq::make_error_code(EAGAIN), received.error()); const epee::span bytes{ reinterpret_cast(std::addressof(message[0])) + (i * 333), 333 }; ASSERT_TRUE(bool(net::zmq::send(bytes, send_socket.get(), (i == 2 ? 0 : ZMQ_SNDMORE)))); } const expect received = net::zmq::receive(recv_socket.get(), ZMQ_DONTWAIT); ASSERT_TRUE(bool(received)); EXPECT_EQ(message, *received); } TEST(zmq, read_write_termination) { net::zmq::context context{zmq_init(1)}; ASSERT_NE(nullptr, context); // must be declared before sockets and after context boost::scoped_thread<> thread{}; net::zmq::socket send_socket{zmq_socket(context.get(), ZMQ_REQ)}; net::zmq::socket recv_socket{zmq_socket(context.get(), ZMQ_REP)}; ASSERT_NE(nullptr, send_socket); ASSERT_NE(nullptr, recv_socket); ASSERT_EQ(0u, zmq_bind(recv_socket.get(), "inproc://testing")); ASSERT_EQ(0u, zmq_connect(send_socket.get(), "inproc://testing")); std::string message; message.resize(1024); crypto::rand(message.size(), reinterpret_cast(std::addressof(message[0]))); ASSERT_TRUE(bool(net::zmq::send(epee::strspan(message), send_socket.get(), ZMQ_SNDMORE))); expect received = net::zmq::receive(recv_socket.get(), ZMQ_DONTWAIT); ASSERT_FALSE(bool(received)); EXPECT_EQ(net::zmq::make_error_code(EAGAIN), received.error()); thread = boost::scoped_thread<>{ boost::thread{ [&context] () { context.reset(); } } }; received = net::zmq::receive(recv_socket.get()); ASSERT_FALSE(bool(received)); EXPECT_EQ(net::zmq::make_error_code(ETERM), received.error()); }