// Copyright (c) 2017-2023, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include #include #include #include extern "C" { #include "crypto/crypto-ops.h" } #include "crypto/generators.h" #include "cryptonote_basic/cryptonote_basic_impl.h" #include "cryptonote_basic/merge_mining.h" #include "ringct/rctOps.h" #include "ringct/rctTypes.h" namespace { static constexpr const std::uint8_t source[] = { 0x8b, 0x65, 0x59, 0x70, 0x15, 0x37, 0x99, 0xaf, 0x2a, 0xea, 0xdc, 0x9f, 0xf1, 0xad, 0xd0, 0xea, 0x6c, 0x72, 0x51, 0xd5, 0x41, 0x54, 0xcf, 0xa9, 0x2c, 0x17, 0x3a, 0x0d, 0xd3, 0x9c, 0x1f, 0x94, 0x6c, 0x72, 0x51, 0xd5, 0x41, 0x54, 0xcf, 0xa9, 0x2c, 0x17, 0x3a, 0x0d, 0xd3, 0x9c, 0x1f, 0x94, 0x8b, 0x65, 0x59, 0x70, 0x15, 0x37, 0x99, 0xaf, 0x2a, 0xea, 0xdc, 0x9f, 0xf1, 0xad, 0xd0, 0xea }; static constexpr const char expected[] = "8b655970153799af2aeadc9ff1add0ea6c7251d54154cfa92c173a0dd39c1f94" "6c7251d54154cfa92c173a0dd39c1f948b655970153799af2aeadc9ff1add0ea"; template void *addressof(T &t) { return &t; } template<> void *addressof(crypto::secret_key &k) { return addressof(unwrap(unwrap(k))); } template bool is_formatted() { T value{}; static_assert(alignof(T) == 1, "T must have 1 byte alignment"); static_assert(sizeof(T) <= sizeof(source), "T is too large for source"); static_assert(sizeof(T) * 2 <= sizeof(expected), "T is too large for destination"); std::memcpy(addressof(value), source, sizeof(T)); std::stringstream out; out << "BEGIN" << value << "END"; return out.str() == "BEGIN<" + std::string{expected, sizeof(T) * 2} + ">END"; } } TEST(Crypto, Ostream) { EXPECT_TRUE(is_formatted()); EXPECT_TRUE(is_formatted()); EXPECT_TRUE(is_formatted()); EXPECT_TRUE(is_formatted()); EXPECT_TRUE(is_formatted()); EXPECT_TRUE(is_formatted()); EXPECT_TRUE(is_formatted()); } TEST(Crypto, null_keys) { char zero[32]; memset(zero, 0, 32); ASSERT_EQ(memcmp(crypto::null_skey.data, zero, 32), 0); ASSERT_EQ(memcmp(crypto::null_pkey.data, zero, 32), 0); } TEST(Crypto, verify_32) { // all bytes are treated the same, so we can brute force just one byte unsigned char k0[32] = {0}, k1[32] = {0}; for (unsigned int i0 = 0; i0 < 256; ++i0) { k0[0] = i0; for (unsigned int i1 = 0; i1 < 256; ++i1) { k1[0] = i1; ASSERT_EQ(!crypto_verify_32(k0, k1), i0 == i1); } } } TEST(Crypto, tree_branch) { crypto::hash inputs[6]; crypto::hash branch[8]; crypto::hash branch_1[8 + 1]; crypto::hash root, root2; size_t depth; uint32_t path, path2; auto hasher = [](const crypto::hash &h0, const crypto::hash &h1) -> crypto::hash { char buffer[64]; memcpy(buffer, &h0, 32); memcpy(buffer + 32, &h1, 32); crypto::hash res; cn_fast_hash(buffer, 64, res); return res; }; for (int n = 0; n < 6; ++n) { memset(&inputs[n], 0, 32); inputs[n].data[0] = n + 1; } // empty ASSERT_FALSE(crypto::tree_branch((const char(*)[32])inputs, 0, crypto::null_hash.data, (char(*)[32])branch, &depth, &path)); // one, matching ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 1, inputs[0].data, (char(*)[32])branch, &depth, &path)); ASSERT_EQ(depth, 0); ASSERT_EQ(path, 0); ASSERT_TRUE(crypto::tree_path(1, 0, &path2)); ASSERT_EQ(path, path2); crypto::tree_hash((const char(*)[32])inputs, 1, root.data); ASSERT_EQ(root, inputs[0]); ASSERT_TRUE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path)); // one, not found ASSERT_FALSE(crypto::tree_branch((const char(*)[32])inputs, 1, inputs[1].data, (char(*)[32])branch, &depth, &path)); // two, index 0 ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 2, inputs[0].data, (char(*)[32])branch, &depth, &path)); ASSERT_EQ(depth, 1); ASSERT_EQ(path, 0); ASSERT_TRUE(crypto::tree_path(2, 0, &path2)); ASSERT_EQ(path, path2); ASSERT_EQ(branch[0], inputs[1]); crypto::tree_hash((const char(*)[32])inputs, 2, root.data); ASSERT_EQ(root, hasher(inputs[0], inputs[1])); ASSERT_TRUE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path)); // two, index 1 ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 2, inputs[1].data, (char(*)[32])branch, &depth, &path)); ASSERT_EQ(depth, 1); ASSERT_EQ(path, 1); ASSERT_TRUE(crypto::tree_path(2, 1, &path2)); ASSERT_EQ(path, path2); ASSERT_EQ(branch[0], inputs[0]); crypto::tree_hash((const char(*)[32])inputs, 2, root.data); ASSERT_EQ(root, hasher(inputs[0], inputs[1])); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_TRUE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path)); // two, not found ASSERT_FALSE(crypto::tree_branch((const char(*)[32])inputs, 2, inputs[2].data, (char(*)[32])branch, &depth, &path)); // a b c 0 // x y // z // three, index 0 ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 3, inputs[0].data, (char(*)[32])branch, &depth, &path)); ASSERT_GE(depth, 1); ASSERT_LE(depth, 2); ASSERT_TRUE(crypto::tree_path(3, 0, &path2)); ASSERT_EQ(path, path2); crypto::tree_hash((const char(*)[32])inputs, 3, root.data); ASSERT_EQ(root, hasher(inputs[0], hasher(inputs[1], inputs[2]))); ASSERT_TRUE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path)); // three, index 1 ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 3, inputs[1].data, (char(*)[32])branch, &depth, &path)); ASSERT_GE(depth, 1); ASSERT_LE(depth, 2); ASSERT_TRUE(crypto::tree_path(3, 1, &path2)); ASSERT_EQ(path, path2); crypto::tree_hash((const char(*)[32])inputs, 3, root.data); ASSERT_EQ(root, hasher(inputs[0], hasher(inputs[1], inputs[2]))); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_TRUE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path)); // three, index 2 ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 3, inputs[2].data, (char(*)[32])branch, &depth, &path)); ASSERT_GE(depth, 1); ASSERT_LE(depth, 2); ASSERT_TRUE(crypto::tree_path(3, 2, &path2)); ASSERT_EQ(path, path2); crypto::tree_hash((const char(*)[32])inputs, 3, root.data); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_TRUE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_TRUE(crypto::tree_branch_hash(inputs[2].data, (const char(*)[32])branch, depth, path, root2.data)); ASSERT_EQ(root, root2); // three, not found ASSERT_FALSE(crypto::tree_branch((const char(*)[32])inputs, 3, inputs[3].data, (char(*)[32])branch, &depth, &path)); // a b c d e 0 0 0 // x y // z // w // five, index 0 ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 5, inputs[0].data, (char(*)[32])branch, &depth, &path)); ASSERT_GE(depth, 2); ASSERT_LE(depth, 3); ASSERT_TRUE(crypto::tree_path(5, 0, &path2)); ASSERT_EQ(path, path2); crypto::tree_hash((const char(*)[32])inputs, 5, root.data); ASSERT_TRUE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[5].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path)); // five, index 1 ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 5, inputs[1].data, (char(*)[32])branch, &depth, &path)); ASSERT_GE(depth, 2); ASSERT_LE(depth, 3); ASSERT_TRUE(crypto::tree_path(5, 1, &path2)); ASSERT_EQ(path, path2); crypto::tree_hash((const char(*)[32])inputs, 5, root.data); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_TRUE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[5].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path)); // five, index 2 ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 5, inputs[2].data, (char(*)[32])branch, &depth, &path)); ASSERT_GE(depth, 2); ASSERT_LE(depth, 3); ASSERT_TRUE(crypto::tree_path(5, 2, &path2)); ASSERT_EQ(path, path2); crypto::tree_hash((const char(*)[32])inputs, 5, root.data); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_TRUE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[5].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path)); // five, index 4 ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 5, inputs[4].data, (char(*)[32])branch, &depth, &path)); ASSERT_GE(depth, 2); ASSERT_LE(depth, 3); ASSERT_TRUE(crypto::tree_path(5, 4, &path2)); ASSERT_EQ(path, path2); crypto::tree_hash((const char(*)[32])inputs, 5, root.data); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_TRUE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[5].data, root.data, (const char(*)[32])branch, depth, path)); ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path)); // a version with an extra (dummy) hash memcpy(branch_1, branch, sizeof(branch)); branch_1[depth] = crypto::null_hash; ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth - 1, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch_1, depth + 1, path)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path ^ 1)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path ^ 2)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path ^ 3)); ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])(branch_1 + 1), depth, path)); // five, not found ASSERT_FALSE(crypto::tree_branch((const char(*)[32])inputs, 5, crypto::null_hash.data, (char(*)[32])branch, &depth, &path)); // depth encoding roundtrip for (uint32_t n_chains = 1; n_chains <= 256; ++n_chains) { for (uint32_t nonce = 0xffffffff - 512; nonce != 1025; ++nonce) { const uint64_t depth = cryptonote::encode_mm_depth(n_chains, nonce); uint32_t n_chains_2, nonce_2; ASSERT_TRUE(cryptonote::decode_mm_depth(depth, n_chains_2, nonce_2)); ASSERT_EQ(n_chains, n_chains_2); ASSERT_EQ(nonce, nonce_2); } } // 257 chains is too much try { cryptonote::encode_mm_depth(257, 0); ASSERT_TRUE(false); } catch (...) {} } TEST(Crypto, generator_consistency) { // crypto/generators.h const crypto::public_key G{crypto::get_G()}; const crypto::public_key H{crypto::get_H()}; const ge_p3 H_p3 = crypto::get_H_p3(); // crypto/crypto-ops.h ASSERT_TRUE(memcmp(&H_p3, &ge_p3_H, sizeof(ge_p3)) == 0); // ringct/rctOps.h ASSERT_TRUE(memcmp(G.data, rct::G.bytes, 32) == 0); // ringct/rctTypes.h ASSERT_TRUE(memcmp(H.data, rct::H.bytes, 32) == 0); }