//#define DBG // Copyright (c) 2016, Monero Research Labs // // Author: Shen Noether // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #pragma once #ifndef RCTOPS_H #define RCTOPS_H #include #include #include "crypto/generic-ops.h" extern "C" { #include "crypto/random.h" #include "crypto/keccak.h" #include "rctCryptoOps.h" } #include "crypto/crypto.h" #include "rctTypes.h" //Define this flag when debugging to get additional info on the console #ifdef DBG #define DP(x) dp(x) #else #define DP(x) #endif namespace rct { //Various key initialization functions static const key Z = { {0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } }; static const key I = { {0x01, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } }; static const key L = { {0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10 } }; static const key G = { {0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66 } }; static const key EIGHT = { {0x08, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } }; static const key INV_EIGHT = { { 0x79, 0x2f, 0xdc, 0xe2, 0x29, 0xe5, 0x06, 0x61, 0xd0, 0xda, 0x1c, 0x7d, 0xb3, 0x9d, 0xd3, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06 } }; //Creates a zero scalar inline key zero() { return Z; } inline void zero(key &z) { memset(&z, 0, 32); } //Creates a zero elliptic curve point inline key identity() { return I; } inline void identity(key &Id) { memcpy(&Id, &I, 32); } //Creates a key equal to the curve order inline key curveOrder() { return L; } inline void curveOrder(key &l) { l = L; } //copies a scalar or point inline void copy(key &AA, const key &A) { memcpy(&AA, &A, 32); } inline key copy(const key & A) { key AA; memcpy(&AA, &A, 32); return AA; } //initializes a key matrix; //first parameter is rows, //second is columns keyM keyMInit(size_t rows, size_t cols); //Various key generation functions bool toPointCheckOrder(ge_p3 *P, const unsigned char *data); //generates a random scalar which can be used as a secret key or mask key skGen(); void skGen(key &); //generates a vector of secret keys of size "int" keyV skvGen(size_t rows ); //generates a random curve point (for testing) key pkGen(); //generates a random secret and corresponding public key void skpkGen(key &sk, key &pk); std::tuple skpkGen(); //generates a / Pedersen commitment to the amount std::tuple ctskpkGen(xmr_amount amount); //generates C =aG + bH from b, a is random void genC(key & C, const key & a, xmr_amount amount); //this one is mainly for testing, can take arbitrary amounts.. std::tuple ctskpkGen(const key &bH); // make a pedersen commitment with given key key commit(xmr_amount amount, const key &mask); // make a pedersen commitment with zero key key zeroCommit(xmr_amount amount); //generates a random uint long long xmr_amount randXmrAmount(xmr_amount upperlimit); //Scalar multiplications of curve points //does a * G where a is a scalar and G is the curve basepoint void scalarmultBase(key & aG, const key &a); key scalarmultBase(const key & a); //does a * P where a is a scalar and P is an arbitrary point void scalarmultKey(key &aP, const key &P, const key &a); key scalarmultKey(const key &P, const key &a); //Computes aH where H= toPoint(cn_fast_hash(G)), G the basepoint key scalarmultH(const key & a); // checks a is in the main subgroup (ie, not a small one) bool isInMainSubgroup(const key & a); //Curve addition / subtractions //for curve points: AB = A + B void addKeys(key &AB, const key &A, const key &B); rct::key addKeys(const key &A, const key &B); //aGB = aG + B where a is a scalar, G is the basepoint, and B is a point void addKeys1(key &aGB, const key &a, const key & B); //aGbB = aG + bB where a, b are scalars, G is the basepoint and B is a point void addKeys2(key &aGbB, const key &a, const key &b, const key &B); //Does some precomputation to make addKeys3 more efficient // input B a curve point and output a ge_dsmp which has precomputation applied void precomp(ge_dsmp rv, const key &B); //aAbB = a*A + b*B where a, b are scalars, A, B are curve points //B must be input after applying "precomp" void addKeys3(key &aAbB, const key &a, const key &A, const key &b, const ge_dsmp B); void addKeys3(key &aAbB, const key &a, const ge_dsmp A, const key &b, const ge_dsmp B); //AB = A - B where A, B are curve points void subKeys(key &AB, const key &A, const key &B); //checks if A, B are equal as curve points bool equalKeys(const key & A, const key & B); //Hashing - cn_fast_hash //be careful these are also in crypto namespace //cn_fast_hash for arbitrary l multiples of 32 bytes void cn_fast_hash(key &hash, const void * data, const size_t l); void hash_to_scalar(key &hash, const void * data, const size_t l); //cn_fast_hash for a 32 byte key void cn_fast_hash(key &hash, const key &in); void hash_to_scalar(key &hash, const key &in); //cn_fast_hash for a 32 byte key key cn_fast_hash(const key &in); key hash_to_scalar(const key &in); //for mg sigs key cn_fast_hash128(const void * in); key hash_to_scalar128(const void * in); key cn_fast_hash(const ctkeyV &PC); key hash_to_scalar(const ctkeyV &PC); //for mg sigs key cn_fast_hash(const keyV &keys); key hash_to_scalar(const keyV &keys); //for ANSL key cn_fast_hash(const key64 keys); key hash_to_scalar(const key64 keys); //returns hashToPoint as described in https://github.com/ShenNoether/ge_fromfe_writeup key hashToPointSimple(const key &in); key hashToPoint(const key &in); void hashToPoint(key &out, const key &in); //sums a vector of curve points (for scalars use sc_add) void sumKeys(key & Csum, const key &Cis); //Elliptic Curve Diffie Helman: encodes and decodes the amount b and mask a // where C= aG + bH void ecdhEncode(ecdhTuple & unmasked, const key & sharedSec); void ecdhDecode(ecdhTuple & masked, const key & sharedSec); } #endif /* RCTOPS_H */