// Copyright (c) 2016, Monero Research Labs // // Author: Shen Noether // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include "misc_log_ex.h" #include "rctOps.h" using namespace crypto; using namespace std; #undef MONERO_DEFAULT_LOG_CATEGORY #define MONERO_DEFAULT_LOG_CATEGORY "ringct" #define CHECK_AND_ASSERT_THROW_MES_L1(expr, message) {if(!(expr)) {MWARNING(message); throw std::runtime_error(message);}} namespace rct { //Various key initialization functions //initializes a key matrix; //first parameter is rows, //second is columns keyM keyMInit(size_t rows, size_t cols) { keyM rv(cols); size_t i = 0; for (i = 0 ; i < cols ; i++) { rv[i] = keyV(rows); } return rv; } //Various key generation functions bool toPointCheckOrder(ge_p3 *P, const unsigned char *data) { if (ge_frombytes_vartime(P, data)) return false; ge_p2 R; ge_scalarmult(&R, curveOrder().bytes, P); key tmp; ge_tobytes(tmp.bytes, &R); return tmp == identity(); } //generates a random scalar which can be used as a secret key or mask void skGen(key &sk) { random32_unbiased(sk.bytes); } //generates a random scalar which can be used as a secret key or mask key skGen() { key sk; skGen(sk); return sk; } //Generates a vector of secret key //Mainly used in testing keyV skvGen(size_t rows ) { CHECK_AND_ASSERT_THROW_MES(rows > 0, "0 keys requested"); keyV rv(rows); size_t i = 0; for (i = 0 ; i < rows ; i++) { skGen(rv[i]); } return rv; } //generates a random curve point (for testing) key pkGen() { key sk = skGen(); key pk = scalarmultBase(sk); return pk; } //generates a random secret and corresponding public key void skpkGen(key &sk, key &pk) { skGen(sk); scalarmultBase(pk, sk); } //generates a random secret and corresponding public key tuple skpkGen() { key sk = skGen(); key pk = scalarmultBase(sk); return make_tuple(sk, pk); } //generates C =aG + bH from b, a is given.. void genC(key & C, const key & a, xmr_amount amount) { key bH = scalarmultH(d2h(amount)); addKeys1(C, a, bH); } //generates a / Pedersen commitment to the amount tuple ctskpkGen(xmr_amount amount) { ctkey sk, pk; skpkGen(sk.dest, pk.dest); skpkGen(sk.mask, pk.mask); key am = d2h(amount); key bH = scalarmultH(am); addKeys(pk.mask, pk.mask, bH); return make_tuple(sk, pk); } //generates a / Pedersen commitment but takes bH as input tuple ctskpkGen(const key &bH) { ctkey sk, pk; skpkGen(sk.dest, pk.dest); skpkGen(sk.mask, pk.mask); addKeys(pk.mask, pk.mask, bH); return make_tuple(sk, pk); } key zeroCommit(xmr_amount amount) { key am = d2h(amount); key bH = scalarmultH(am); return addKeys(G, bH); } key commit(xmr_amount amount, const key &mask) { key c = scalarmultBase(mask); key am = d2h(amount); key bH = scalarmultH(am); addKeys(c, c, bH); return c; } //generates a random uint long long (for testing) xmr_amount randXmrAmount(xmr_amount upperlimit) { return h2d(skGen()) % (upperlimit); } //Scalar multiplications of curve points //does a * G where a is a scalar and G is the curve basepoint void scalarmultBase(key &aG,const key &a) { ge_p3 point; sc_reduce32copy(aG.bytes, a.bytes); //do this beforehand! ge_scalarmult_base(&point, aG.bytes); ge_p3_tobytes(aG.bytes, &point); } //does a * G where a is a scalar and G is the curve basepoint key scalarmultBase(const key & a) { ge_p3 point; key aG; sc_reduce32copy(aG.bytes, a.bytes); //do this beforehand ge_scalarmult_base(&point, aG.bytes); ge_p3_tobytes(aG.bytes, &point); return aG; } //does a * P where a is a scalar and P is an arbitrary point void scalarmultKey(key & aP, const key &P, const key &a) { ge_p3 A; ge_p2 R; CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&A, P.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast(__LINE__)); ge_scalarmult(&R, a.bytes, &A); ge_tobytes(aP.bytes, &R); } //does a * P where a is a scalar and P is an arbitrary point key scalarmultKey(const key & P, const key & a) { ge_p3 A; ge_p2 R; CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&A, P.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast(__LINE__)); ge_scalarmult(&R, a.bytes, &A); key aP; ge_tobytes(aP.bytes, &R); return aP; } //Computes aH where H= toPoint(cn_fast_hash(G)), G the basepoint key scalarmultH(const key & a) { ge_p2 R; ge_scalarmult(&R, a.bytes, &ge_p3_H); key aP; ge_tobytes(aP.bytes, &R); return aP; } //Computes 8P key scalarmult8(const key & P) { ge_p3 p3; CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&p3, P.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast(__LINE__)); ge_p2 p2; ge_p3_to_p2(&p2, &p3); ge_p1p1 p1; ge_mul8(&p1, &p2); ge_p1p1_to_p2(&p2, &p1); rct::key res; ge_tobytes(res.bytes, &p2); return res; } //Computes aL where L is the curve order bool isInMainSubgroup(const key & a) { ge_p3 p3; return toPointCheckOrder(&p3, a.bytes); } //Curve addition / subtractions //for curve points: AB = A + B void addKeys(key &AB, const key &A, const key &B) { ge_p3 B2, A2; CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&B2, B.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast(__LINE__)); CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&A2, A.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast(__LINE__)); ge_cached tmp2; ge_p3_to_cached(&tmp2, &B2); ge_p1p1 tmp3; ge_add(&tmp3, &A2, &tmp2); ge_p1p1_to_p3(&A2, &tmp3); ge_p3_tobytes(AB.bytes, &A2); } rct::key addKeys(const key &A, const key &B) { key k; addKeys(k, A, B); return k; } //addKeys1 //aGB = aG + B where a is a scalar, G is the basepoint, and B is a point void addKeys1(key &aGB, const key &a, const key & B) { key aG = scalarmultBase(a); addKeys(aGB, aG, B); } //addKeys2 //aGbB = aG + bB where a, b are scalars, G is the basepoint and B is a point void addKeys2(key &aGbB, const key &a, const key &b, const key & B) { ge_p2 rv; ge_p3 B2; CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&B2, B.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast(__LINE__)); ge_double_scalarmult_base_vartime(&rv, b.bytes, &B2, a.bytes); ge_tobytes(aGbB.bytes, &rv); } //Does some precomputation to make addKeys3 more efficient // input B a curve point and output a ge_dsmp which has precomputation applied void precomp(ge_dsmp rv, const key & B) { ge_p3 B2; CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&B2, B.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast(__LINE__)); ge_dsm_precomp(rv, &B2); } //addKeys3 //aAbB = a*A + b*B where a, b are scalars, A, B are curve points //B must be input after applying "precomp" void addKeys3(key &aAbB, const key &a, const key &A, const key &b, const ge_dsmp B) { ge_p2 rv; ge_p3 A2; CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&A2, A.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast(__LINE__)); ge_double_scalarmult_precomp_vartime(&rv, a.bytes, &A2, b.bytes, B); ge_tobytes(aAbB.bytes, &rv); } //addKeys3 //aAbB = a*A + b*B where a, b are scalars, A, B are curve points //A and B must be input after applying "precomp" void addKeys3(key &aAbB, const key &a, const ge_dsmp A, const key &b, const ge_dsmp B) { ge_p2 rv; ge_double_scalarmult_precomp_vartime2(&rv, a.bytes, A, b.bytes, B); ge_tobytes(aAbB.bytes, &rv); } //subtract Keys (subtracts curve points) //AB = A - B where A, B are curve points void subKeys(key & AB, const key &A, const key &B) { ge_p3 B2, A2; CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&B2, B.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast(__LINE__)); CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&A2, A.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast(__LINE__)); ge_cached tmp2; ge_p3_to_cached(&tmp2, &B2); ge_p1p1 tmp3; ge_sub(&tmp3, &A2, &tmp2); ge_p1p1_to_p3(&A2, &tmp3); ge_p3_tobytes(AB.bytes, &A2); } //checks if A, B are equal in terms of bytes (may say no if one is a non-reduced scalar) //without doing curve operations bool equalKeys(const key & a, const key & b) { bool rv = true; for (int i = 0; i < 32; ++i) { if (a.bytes[i] != b.bytes[i]) { rv = false; } } return rv; } //Hashing - cn_fast_hash //be careful these are also in crypto namespace //cn_fast_hash for arbitrary multiples of 32 bytes void cn_fast_hash(key &hash, const void * data, const std::size_t l) { keccak((const uint8_t *)data, l, hash.bytes, 32); } void hash_to_scalar(key &hash, const void * data, const std::size_t l) { cn_fast_hash(hash, data, l); sc_reduce32(hash.bytes); } //cn_fast_hash for a 32 byte key void cn_fast_hash(key & hash, const key & in) { keccak((const uint8_t *)in.bytes, 32, hash.bytes, 32); } void hash_to_scalar(key & hash, const key & in) { cn_fast_hash(hash, in); sc_reduce32(hash.bytes); } //cn_fast_hash for a 32 byte key key cn_fast_hash(const key & in) { key hash; keccak((const uint8_t *)in.bytes, 32, hash.bytes, 32); return hash; } key hash_to_scalar(const key & in) { key hash = cn_fast_hash(in); sc_reduce32(hash.bytes); return hash; } //cn_fast_hash for a 128 byte unsigned char key cn_fast_hash128(const void * in) { key hash; keccak((const uint8_t *)in, 128, hash.bytes, 32); return hash; } key hash_to_scalar128(const void * in) { key hash = cn_fast_hash128(in); sc_reduce32(hash.bytes); return hash; } //cn_fast_hash for multisig purpose //This takes the outputs and commitments //and hashes them into a 32 byte sized key key cn_fast_hash(const ctkeyV &PC) { if (PC.empty()) return rct::hash2rct(crypto::cn_fast_hash("", 0)); key rv; cn_fast_hash(rv, &PC[0], 64*PC.size()); return rv; } key hash_to_scalar(const ctkeyV &PC) { key rv = cn_fast_hash(PC); sc_reduce32(rv.bytes); return rv; } //cn_fast_hash for a key-vector of arbitrary length //this is useful since you take a number of keys //put them in the key vector and it concatenates them //and then hashes them key cn_fast_hash(const keyV &keys) { if (keys.empty()) return rct::hash2rct(crypto::cn_fast_hash("", 0)); key rv; cn_fast_hash(rv, &keys[0], keys.size() * sizeof(keys[0])); //dp(rv); return rv; } key hash_to_scalar(const keyV &keys) { key rv = cn_fast_hash(keys); sc_reduce32(rv.bytes); return rv; } key cn_fast_hash(const key64 keys) { key rv; cn_fast_hash(rv, &keys[0], 64 * sizeof(keys[0])); //dp(rv); return rv; } key hash_to_scalar(const key64 keys) { key rv = cn_fast_hash(keys); sc_reduce32(rv.bytes); return rv; } key hashToPointSimple(const key & hh) { key pointk; ge_p1p1 point2; ge_p2 point; ge_p3 res; key h = cn_fast_hash(hh); CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&res, h.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast(__LINE__)); ge_p3_to_p2(&point, &res); ge_mul8(&point2, &point); ge_p1p1_to_p3(&res, &point2); ge_p3_tobytes(pointk.bytes, &res); return pointk; } key hashToPoint(const key & hh) { key pointk; ge_p2 point; ge_p1p1 point2; ge_p3 res; key h = cn_fast_hash(hh); ge_fromfe_frombytes_vartime(&point, h.bytes); ge_mul8(&point2, &point); ge_p1p1_to_p3(&res, &point2); ge_p3_tobytes(pointk.bytes, &res); return pointk; } void hashToPoint(key & pointk, const key & hh) { ge_p2 point; ge_p1p1 point2; ge_p3 res; key h = cn_fast_hash(hh); ge_fromfe_frombytes_vartime(&point, h.bytes); ge_mul8(&point2, &point); ge_p1p1_to_p3(&res, &point2); ge_p3_tobytes(pointk.bytes, &res); } //sums a vector of curve points (for scalars use sc_add) void sumKeys(key & Csum, const keyV & Cis) { identity(Csum); size_t i = 0; for (i = 0; i < Cis.size(); i++) { addKeys(Csum, Csum, Cis[i]); } } //Elliptic Curve Diffie Helman: encodes and decodes the amount b and mask a // where C= aG + bH void ecdhEncode(ecdhTuple & unmasked, const key & sharedSec) { key sharedSec1 = hash_to_scalar(sharedSec); key sharedSec2 = hash_to_scalar(sharedSec1); //encode sc_add(unmasked.mask.bytes, unmasked.mask.bytes, sharedSec1.bytes); sc_add(unmasked.amount.bytes, unmasked.amount.bytes, sharedSec2.bytes); } void ecdhDecode(ecdhTuple & masked, const key & sharedSec) { key sharedSec1 = hash_to_scalar(sharedSec); key sharedSec2 = hash_to_scalar(sharedSec1); //decode sc_sub(masked.mask.bytes, masked.mask.bytes, sharedSec1.bytes); sc_sub(masked.amount.bytes, masked.amount.bytes, sharedSec2.bytes); } }