// Copyright (c) 2017, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Adapted from Python code by Sarang Noether #include "misc_log_ex.h" #include "common/perf_timer.h" extern "C" { #include "crypto/crypto-ops.h" } #include "common/aligned.h" #include "rctOps.h" #include "multiexp.h" #undef MONERO_DEFAULT_LOG_CATEGORY #define MONERO_DEFAULT_LOG_CATEGORY "multiexp" //#define MULTIEXP_PERF(x) x #define MULTIEXP_PERF(x) #define RAW_MEMORY_BLOCK //#define ALTERNATE_LAYOUT //#define TRACK_STRAUS_ZERO_IDENTITY // per points us for N/B points (B point bands) // raw alt 128/192 4096/192 4096/4096 // 0 0 52.6 71 71.2 // 0 1 53.2 72.2 72.4 // 1 0 52.7 67 67.1 // 1 1 52.8 70.4 70.2 // Pippenger: // 1 2 3 4 5 6 7 8 9 bestN // 2 555 598 621 804 1038 1733 2486 5020 8304 1 // 4 783 747 800 1006 1428 2132 3285 5185 9806 2 // 8 1174 1071 1095 1286 1640 2398 3869 6378 12080 2 // 16 2279 1874 1745 1739 2144 2831 4209 6964 12007 4 // 32 3910 3706 2588 2477 2782 3467 4856 7489 12618 4 // 64 7184 5429 4710 4368 4010 4672 6027 8559 13684 5 // 128 14097 10574 8452 7297 6841 6718 8615 10580 15641 6 // 256 27715 20800 16000 13550 11875 11400 11505 14090 18460 6 // 512 55100 41250 31740 26570 22030 19830 20760 21380 25215 6 // 1024 111520 79000 61080 49720 43080 38320 37600 35040 36750 8 // 2048 219480 162680 122120 102080 83760 70360 66600 63920 66160 8 // 4096 453320 323080 247240 210200 180040 150240 132440 114920 110560 9 // 2 4 8 16 32 64 128 256 512 1024 2048 4096 // Bos Coster 858 994 1316 1949 3183 5512 9865 17830 33485 63160 124280 246320 // Straus 226 341 548 980 1870 3538 7039 14490 29020 57200 118640 233640 // Straus/cached 226 315 485 785 1514 2858 5753 11065 22970 45120 98880 194840 // Pippenger 555 747 1071 1739 2477 4010 6718 11400 19830 35040 63920 110560 // Best/cached Straus Straus Straus Straus Straus Straus Straus Straus Pip Pip Pip Pip // Best/uncached Straus Straus Straus Straus Straus Straus Pip Pip Pip Pip Pip Pip namespace rct { static inline bool operator<(const rct::key &k0, const rct::key&k1) { for (int n = 31; n >= 0; --n) { if (k0.bytes[n] < k1.bytes[n]) return true; if (k0.bytes[n] > k1.bytes[n]) return false; } return false; } static inline rct::key div2(const rct::key &k) { rct::key res; int carry = 0; for (int n = 31; n >= 0; --n) { int new_carry = (k.bytes[n] & 1) << 7; res.bytes[n] = k.bytes[n] / 2 + carry; carry = new_carry; } return res; } static inline rct::key pow2(size_t n) { CHECK_AND_ASSERT_THROW_MES(n < 256, "Invalid pow2 argument"); rct::key res = rct::zero(); res[n >> 3] |= 1<<(n&7); return res; } static inline int test(const rct::key &k, size_t n) { if (n >= 256) return 0; return k[n >> 3] & (1 << (n & 7)); } static inline void add(ge_p3 &p3, const ge_cached &other) { ge_p1p1 p1; ge_add(&p1, &p3, &other); ge_p1p1_to_p3(&p3, &p1); } static inline void add(ge_p3 &p3, const ge_p3 &other) { ge_cached cached; ge_p3_to_cached(&cached, &other); add(p3, cached); } rct::key bos_coster_heap_conv(std::vector<MultiexpData> data) { MULTIEXP_PERF(PERF_TIMER_START_UNIT(bos_coster, 1000000)); MULTIEXP_PERF(PERF_TIMER_START_UNIT(setup, 1000000)); size_t points = data.size(); CHECK_AND_ASSERT_THROW_MES(points > 1, "Not enough points"); std::vector<size_t> heap(points); for (size_t n = 0; n < points; ++n) heap[n] = n; auto Comp = [&](size_t e0, size_t e1) { return data[e0].scalar < data[e1].scalar; }; std::make_heap(heap.begin(), heap.end(), Comp); MULTIEXP_PERF(PERF_TIMER_STOP(setup)); MULTIEXP_PERF(PERF_TIMER_START_UNIT(loop, 1000000)); MULTIEXP_PERF(PERF_TIMER_START_UNIT(pop, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(pop)); MULTIEXP_PERF(PERF_TIMER_START_UNIT(add, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(add)); MULTIEXP_PERF(PERF_TIMER_START_UNIT(sub, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(sub)); MULTIEXP_PERF(PERF_TIMER_START_UNIT(push, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(push)); while (heap.size() > 1) { MULTIEXP_PERF(PERF_TIMER_RESUME(pop)); std::pop_heap(heap.begin(), heap.end(), Comp); size_t index1 = heap.back(); heap.pop_back(); std::pop_heap(heap.begin(), heap.end(), Comp); size_t index2 = heap.back(); heap.pop_back(); MULTIEXP_PERF(PERF_TIMER_PAUSE(pop)); MULTIEXP_PERF(PERF_TIMER_RESUME(add)); ge_cached cached; ge_p3_to_cached(&cached, &data[index1].point); ge_p1p1 p1; ge_add(&p1, &data[index2].point, &cached); ge_p1p1_to_p3(&data[index2].point, &p1); MULTIEXP_PERF(PERF_TIMER_PAUSE(add)); MULTIEXP_PERF(PERF_TIMER_RESUME(sub)); sc_sub(data[index1].scalar.bytes, data[index1].scalar.bytes, data[index2].scalar.bytes); MULTIEXP_PERF(PERF_TIMER_PAUSE(sub)); MULTIEXP_PERF(PERF_TIMER_RESUME(push)); if (!(data[index1].scalar == rct::zero())) { heap.push_back(index1); std::push_heap(heap.begin(), heap.end(), Comp); } heap.push_back(index2); std::push_heap(heap.begin(), heap.end(), Comp); MULTIEXP_PERF(PERF_TIMER_PAUSE(push)); } MULTIEXP_PERF(PERF_TIMER_STOP(push)); MULTIEXP_PERF(PERF_TIMER_STOP(sub)); MULTIEXP_PERF(PERF_TIMER_STOP(add)); MULTIEXP_PERF(PERF_TIMER_STOP(pop)); MULTIEXP_PERF(PERF_TIMER_STOP(loop)); MULTIEXP_PERF(PERF_TIMER_START_UNIT(end, 1000000)); //return rct::scalarmultKey(data[index1].point, data[index1].scalar); std::pop_heap(heap.begin(), heap.end(), Comp); size_t index1 = heap.back(); heap.pop_back(); ge_p2 p2; ge_scalarmult(&p2, data[index1].scalar.bytes, &data[index1].point); rct::key res; ge_tobytes(res.bytes, &p2); return res; } rct::key bos_coster_heap_conv_robust(std::vector<MultiexpData> data) { MULTIEXP_PERF(PERF_TIMER_START_UNIT(bos_coster, 1000000)); MULTIEXP_PERF(PERF_TIMER_START_UNIT(setup, 1000000)); size_t points = data.size(); CHECK_AND_ASSERT_THROW_MES(points > 0, "Not enough points"); std::vector<size_t> heap; heap.reserve(points); for (size_t n = 0; n < points; ++n) { if (!(data[n].scalar == rct::zero()) && !ge_p3_is_point_at_infinity(&data[n].point)) heap.push_back(n); } points = heap.size(); if (points == 0) return rct::identity(); auto Comp = [&](size_t e0, size_t e1) { return data[e0].scalar < data[e1].scalar; }; std::make_heap(heap.begin(), heap.end(), Comp); if (points < 2) { std::pop_heap(heap.begin(), heap.end(), Comp); size_t index1 = heap.back(); ge_p2 p2; ge_scalarmult(&p2, data[index1].scalar.bytes, &data[index1].point); rct::key res; ge_tobytes(res.bytes, &p2); return res; } MULTIEXP_PERF(PERF_TIMER_STOP(setup)); MULTIEXP_PERF(PERF_TIMER_START_UNIT(loop, 1000000)); MULTIEXP_PERF(PERF_TIMER_START_UNIT(pop, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(pop)); MULTIEXP_PERF(PERF_TIMER_START_UNIT(div, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(div)); MULTIEXP_PERF(PERF_TIMER_START_UNIT(add, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(add)); MULTIEXP_PERF(PERF_TIMER_START_UNIT(sub, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(sub)); MULTIEXP_PERF(PERF_TIMER_START_UNIT(push, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(push)); while (heap.size() > 1) { MULTIEXP_PERF(PERF_TIMER_RESUME(pop)); std::pop_heap(heap.begin(), heap.end(), Comp); size_t index1 = heap.back(); heap.pop_back(); std::pop_heap(heap.begin(), heap.end(), Comp); size_t index2 = heap.back(); heap.pop_back(); MULTIEXP_PERF(PERF_TIMER_PAUSE(pop)); ge_cached cached; ge_p1p1 p1; ge_p2 p2; MULTIEXP_PERF(PERF_TIMER_RESUME(div)); while (1) { rct::key s1_2 = div2(data[index1].scalar); if (!(data[index2].scalar < s1_2)) break; if (data[index1].scalar.bytes[0] & 1) { data.resize(data.size()+1); data.back().scalar = rct::identity(); data.back().point = data[index1].point; heap.push_back(data.size() - 1); std::push_heap(heap.begin(), heap.end(), Comp); } data[index1].scalar = div2(data[index1].scalar); ge_p3_to_p2(&p2, &data[index1].point); ge_p2_dbl(&p1, &p2); ge_p1p1_to_p3(&data[index1].point, &p1); } MULTIEXP_PERF(PERF_TIMER_PAUSE(div)); MULTIEXP_PERF(PERF_TIMER_RESUME(add)); ge_p3_to_cached(&cached, &data[index1].point); ge_add(&p1, &data[index2].point, &cached); ge_p1p1_to_p3(&data[index2].point, &p1); MULTIEXP_PERF(PERF_TIMER_PAUSE(add)); MULTIEXP_PERF(PERF_TIMER_RESUME(sub)); sc_sub(data[index1].scalar.bytes, data[index1].scalar.bytes, data[index2].scalar.bytes); MULTIEXP_PERF(PERF_TIMER_PAUSE(sub)); MULTIEXP_PERF(PERF_TIMER_RESUME(push)); if (!(data[index1].scalar == rct::zero())) { heap.push_back(index1); std::push_heap(heap.begin(), heap.end(), Comp); } heap.push_back(index2); std::push_heap(heap.begin(), heap.end(), Comp); MULTIEXP_PERF(PERF_TIMER_PAUSE(push)); } MULTIEXP_PERF(PERF_TIMER_STOP(push)); MULTIEXP_PERF(PERF_TIMER_STOP(sub)); MULTIEXP_PERF(PERF_TIMER_STOP(add)); MULTIEXP_PERF(PERF_TIMER_STOP(pop)); MULTIEXP_PERF(PERF_TIMER_STOP(loop)); MULTIEXP_PERF(PERF_TIMER_START_UNIT(end, 1000000)); //return rct::scalarmultKey(data[index1].point, data[index1].scalar); std::pop_heap(heap.begin(), heap.end(), Comp); size_t index1 = heap.back(); heap.pop_back(); ge_p2 p2; ge_scalarmult(&p2, data[index1].scalar.bytes, &data[index1].point); rct::key res; ge_tobytes(res.bytes, &p2); return res; } static constexpr unsigned int STRAUS_C = 4; struct straus_cached_data { #ifdef RAW_MEMORY_BLOCK size_t size; ge_cached *multiples; straus_cached_data(): size(0), multiples(NULL) {} ~straus_cached_data() { aligned_free(multiples); } #else std::vector<std::vector<ge_cached>> multiples; #endif }; #ifdef RAW_MEMORY_BLOCK #ifdef ALTERNATE_LAYOUT #define CACHE_OFFSET(cache,point,digit) cache->multiples[(point)*((1<<STRAUS_C)-1)+((digit)-1)] #else #define CACHE_OFFSET(cache,point,digit) cache->multiples[(point)+cache->size*((digit)-1)] #endif #else #ifdef ALTERNATE_LAYOUT #define CACHE_OFFSET(cache,point,digit) local_cache->multiples[j][digit-1] #else #define CACHE_OFFSET(cache,point,digit) local_cache->multiples[digit][j] #endif #endif std::shared_ptr<straus_cached_data> straus_init_cache(const std::vector<MultiexpData> &data, size_t N) { MULTIEXP_PERF(PERF_TIMER_START_UNIT(multiples, 1000000)); if (N == 0) N = data.size(); CHECK_AND_ASSERT_THROW_MES(N <= data.size(), "Bad cache base data"); ge_cached cached; ge_p1p1 p1; ge_p3 p3; std::shared_ptr<straus_cached_data> cache(new straus_cached_data()); #ifdef RAW_MEMORY_BLOCK const size_t offset = cache->size; cache->multiples = (ge_cached*)aligned_realloc(cache->multiples, sizeof(ge_cached) * ((1<<STRAUS_C)-1) * std::max(offset, N), 4096); CHECK_AND_ASSERT_THROW_MES(cache->multiples, "Out of memory"); cache->size = N; for (size_t j=offset;j<N;++j) { ge_p3_to_cached(&CACHE_OFFSET(cache, j, 1), &data[j].point); for (size_t i=2;i<1<<STRAUS_C;++i) { ge_add(&p1, &data[j].point, &CACHE_OFFSET(cache, j, i-1)); ge_p1p1_to_p3(&p3, &p1); ge_p3_to_cached(&CACHE_OFFSET(cache, j, i), &p3); } } #else #ifdef ALTERNATE_LAYOUT const size_t offset = cache->multiples.size(); cache->multiples.resize(std::max(offset, N)); for (size_t i = offset; i < N; ++i) { cache->multiples[i].resize((1<<STRAUS_C)-1); ge_p3_to_cached(&cache->multiples[i][0], &data[i].point); for (size_t j=2;j<1<<STRAUS_C;++j) { ge_add(&p1, &data[i].point, &cache->multiples[i][j-2]); ge_p1p1_to_p3(&p3, &p1); ge_p3_to_cached(&cache->multiples[i][j-1], &p3); } } #else cache->multiples.resize(1<<STRAUS_C); size_t offset = cache->multiples[1].size(); cache->multiples[1].resize(std::max(offset, N)); for (size_t i = offset; i < N; ++i) ge_p3_to_cached(&cache->multiples[1][i], &data[i].point); for (size_t i=2;i<1<<STRAUS_C;++i) cache->multiples[i].resize(std::max(offset, N)); for (size_t j=offset;j<N;++j) { for (size_t i=2;i<1<<STRAUS_C;++i) { ge_add(&p1, &data[j].point, &cache->multiples[i-1][j]); ge_p1p1_to_p3(&p3, &p1); ge_p3_to_cached(&cache->multiples[i][j], &p3); } } #endif #endif MULTIEXP_PERF(PERF_TIMER_STOP(multiples)); return cache; } size_t straus_get_cache_size(const std::shared_ptr<straus_cached_data> &cache) { size_t sz = 0; #ifdef RAW_MEMORY_BLOCK sz += cache->size * sizeof(ge_cached) * ((1<<STRAUS_C)-1); #else for (const auto &e0: cache->multiples) sz += e0.size() * sizeof(ge_cached); #endif return sz; } rct::key straus(const std::vector<MultiexpData> &data, const std::shared_ptr<straus_cached_data> &cache, size_t STEP) { CHECK_AND_ASSERT_THROW_MES(cache == NULL || cache->size >= data.size(), "Cache is too small"); MULTIEXP_PERF(PERF_TIMER_UNIT(straus, 1000000)); bool HiGi = cache != NULL; STEP = STEP ? STEP : 192; MULTIEXP_PERF(PERF_TIMER_START_UNIT(setup, 1000000)); static constexpr unsigned int mask = (1<<STRAUS_C)-1; std::shared_ptr<straus_cached_data> local_cache = cache == NULL ? straus_init_cache(data) : cache; ge_cached cached; ge_p1p1 p1; ge_p3 p3; #ifdef TRACK_STRAUS_ZERO_IDENTITY MULTIEXP_PERF(PERF_TIMER_START_UNIT(skip, 1000000)); std::vector<uint8_t> skip(data.size()); for (size_t i = 0; i < data.size(); ++i) skip[i] = data[i].scalar == rct::zero() || ge_p3_is_point_at_infinity(&data[i].point); MULTIEXP_PERF(PERF_TIMER_STOP(skip)); #endif MULTIEXP_PERF(PERF_TIMER_START_UNIT(digits, 1000000)); std::unique_ptr<uint8_t[]> digits{new uint8_t[256 * data.size()]}; for (size_t j = 0; j < data.size(); ++j) { unsigned char bytes33[33]; memcpy(bytes33, data[j].scalar.bytes, 32); bytes33[32] = 0; const unsigned char *bytes = bytes33; #if 1 static_assert(STRAUS_C == 4, "optimized version needs STRAUS_C == 4"); unsigned int i; for (i = 0; i < 256; i += 8, bytes++) { digits[j*256+i] = bytes[0] & 0xf; digits[j*256+i+1] = (bytes[0] >> 1) & 0xf; digits[j*256+i+2] = (bytes[0] >> 2) & 0xf; digits[j*256+i+3] = (bytes[0] >> 3) & 0xf; digits[j*256+i+4] = ((bytes[0] >> 4) | (bytes[1]<<4)) & 0xf; digits[j*256+i+5] = ((bytes[0] >> 5) | (bytes[1]<<3)) & 0xf; digits[j*256+i+6] = ((bytes[0] >> 6) | (bytes[1]<<2)) & 0xf; digits[j*256+i+7] = ((bytes[0] >> 7) | (bytes[1]<<1)) & 0xf; } #elif 1 for (size_t i = 0; i < 256; ++i) digits[j*256+i] = ((bytes[i>>3] | (bytes[(i>>3)+1]<<8)) >> (i&7)) & mask; #else rct::key shifted = data[j].scalar; for (size_t i = 0; i < 256; ++i) { digits[j*256+i] = shifted.bytes[0] & 0xf; shifted = div2(shifted, (256-i)>>3); } #endif } MULTIEXP_PERF(PERF_TIMER_STOP(digits)); rct::key maxscalar = rct::zero(); for (size_t i = 0; i < data.size(); ++i) if (maxscalar < data[i].scalar) maxscalar = data[i].scalar; size_t start_i = 0; while (start_i < 256 && !(maxscalar < pow2(start_i))) start_i += STRAUS_C; MULTIEXP_PERF(PERF_TIMER_STOP(setup)); ge_p3 res_p3 = ge_p3_identity; for (size_t start_offset = 0; start_offset < data.size(); start_offset += STEP) { const size_t num_points = std::min(data.size() - start_offset, STEP); ge_p3 band_p3 = ge_p3_identity; size_t i = start_i; if (!(i < STRAUS_C)) goto skipfirst; while (!(i < STRAUS_C)) { ge_p2 p2; ge_p3_to_p2(&p2, &band_p3); for (size_t j = 0; j < STRAUS_C; ++j) { ge_p2_dbl(&p1, &p2); if (j == STRAUS_C - 1) ge_p1p1_to_p3(&band_p3, &p1); else ge_p1p1_to_p2(&p2, &p1); } skipfirst: i -= STRAUS_C; for (size_t j = start_offset; j < start_offset + num_points; ++j) { #ifdef TRACK_STRAUS_ZERO_IDENTITY if (skip[j]) continue; #endif const uint8_t digit = digits[j*256+i]; if (digit) { ge_add(&p1, &band_p3, &CACHE_OFFSET(local_cache, j, digit)); ge_p1p1_to_p3(&band_p3, &p1); } } } ge_p3_to_cached(&cached, &band_p3); ge_add(&p1, &res_p3, &cached); ge_p1p1_to_p3(&res_p3, &p1); } rct::key res; ge_p3_tobytes(res.bytes, &res_p3); return res; } size_t get_pippenger_c(size_t N) { // uncached: 2:1, 4:2, 8:2, 16:3, 32:4, 64:4, 128:5, 256:6, 512:7, 1024:7, 2048:8, 4096:9 // cached: 2:1, 4:2, 8:2, 16:3, 32:4, 64:4, 128:5, 256:6, 512:7, 1024:7, 2048:8, 4096:9 if (N <= 2) return 1; if (N <= 8) return 2; if (N <= 16) return 3; if (N <= 64) return 4; if (N <= 128) return 5; if (N <= 256) return 6; if (N <= 1024) return 7; if (N <= 2048) return 8; return 9; } struct pippenger_cached_data { size_t size; ge_cached *cached; pippenger_cached_data(): size(0), cached(NULL) {} ~pippenger_cached_data() { aligned_free(cached); } }; std::shared_ptr<pippenger_cached_data> pippenger_init_cache(const std::vector<MultiexpData> &data, size_t N) { MULTIEXP_PERF(PERF_TIMER_START_UNIT(pippenger_init_cache, 1000000)); if (N == 0) N = data.size(); CHECK_AND_ASSERT_THROW_MES(N <= data.size(), "Bad cache base data"); ge_cached cached; std::shared_ptr<pippenger_cached_data> cache(new pippenger_cached_data()); cache->size = N; cache->cached = (ge_cached*)aligned_realloc(cache->cached, N * sizeof(ge_cached), 4096); CHECK_AND_ASSERT_THROW_MES(cache->cached, "Out of memory"); for (size_t i = 0; i < N; ++i) ge_p3_to_cached(&cache->cached[i], &data[i].point); MULTIEXP_PERF(PERF_TIMER_STOP(pippenger_init_cache)); return cache; } size_t pippenger_get_cache_size(const std::shared_ptr<pippenger_cached_data> &cache) { return cache->size * sizeof(*cache->cached); } rct::key pippenger(const std::vector<MultiexpData> &data, const std::shared_ptr<pippenger_cached_data> &cache, size_t c) { CHECK_AND_ASSERT_THROW_MES(cache == NULL || cache->size >= data.size(), "Cache is too small"); if (c == 0) c = get_pippenger_c(data.size()); CHECK_AND_ASSERT_THROW_MES(c <= 9, "c is too large"); ge_p3 result = ge_p3_identity; std::unique_ptr<ge_p3[]> buckets{new ge_p3[1<<c]}; std::shared_ptr<pippenger_cached_data> local_cache = cache == NULL ? pippenger_init_cache(data) : cache; rct::key maxscalar = rct::zero(); for (size_t i = 0; i < data.size(); ++i) { if (maxscalar < data[i].scalar) maxscalar = data[i].scalar; } size_t groups = 0; while (groups < 256 && !(maxscalar < pow2(groups))) ++groups; groups = (groups + c - 1) / c; for (size_t k = groups; k-- > 0; ) { if (!ge_p3_is_point_at_infinity(&result)) { ge_p2 p2; ge_p3_to_p2(&p2, &result); for (size_t i = 0; i < c; ++i) { ge_p1p1 p1; ge_p2_dbl(&p1, &p2); if (i == c - 1) ge_p1p1_to_p3(&result, &p1); else ge_p1p1_to_p2(&p2, &p1); } } for (size_t i = 0; i < (1u<<c); ++i) buckets[i] = ge_p3_identity; // partition scalars into buckets for (size_t i = 0; i < data.size(); ++i) { unsigned int bucket = 0; for (size_t j = 0; j < c; ++j) if (test(data[i].scalar, k*c+j)) bucket |= 1<<j; if (bucket == 0) continue; CHECK_AND_ASSERT_THROW_MES(bucket < (1u<<c), "bucket overflow"); if (!ge_p3_is_point_at_infinity(&buckets[bucket])) { add(buckets[bucket], local_cache->cached[i]); } else buckets[bucket] = data[i].point; } // sum the buckets ge_p3 pail = ge_p3_identity; for (size_t i = (1<<c)-1; i > 0; --i) { if (!ge_p3_is_point_at_infinity(&buckets[i])) add(pail, buckets[i]); if (!ge_p3_is_point_at_infinity(&pail)) add(result, pail); } } rct::key res; ge_p3_tobytes(res.bytes, &result); return res; } }