// Copyright (c) 2017-2024, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Implements the Bulletproofs+ prover and verifier algorithms // // Preprint: https://eprint.iacr.org/2020/735, version 17 Jun 2020 // // NOTE ON NOTATION: // In the signature constructions used in Monero, commitments to zero are treated as // public keys against the curve group generator `G`. This means that amount // commitments must use another generator `H` for values in order to show balance. // The result is that the roles of `g` and `h` in the preprint are effectively swapped // in this code, taking on the roles of `H` and `G`, respectively. Read carefully! #include #include #include #include "misc_log_ex.h" #include "span.h" #include "cryptonote_config.h" extern "C" { #include "crypto/crypto-ops.h" } #include "rctOps.h" #include "multiexp.h" #include "bulletproofs_plus.h" #undef MONERO_DEFAULT_LOG_CATEGORY #define MONERO_DEFAULT_LOG_CATEGORY "bulletproof_plus" #define STRAUS_SIZE_LIMIT 232 #define PIPPENGER_SIZE_LIMIT 0 namespace rct { // Vector functions static rct::key vector_exponent(const rct::keyV &a, const rct::keyV &b); static rct::keyV vector_of_scalar_powers(const rct::key &x, size_t n); // Proof bounds static constexpr size_t maxN = 64; // maximum number of bits in range static constexpr size_t maxM = BULLETPROOF_PLUS_MAX_OUTPUTS; // maximum number of outputs to aggregate into a single proof // Cached public generators static ge_p3 Hi_p3[maxN*maxM], Gi_p3[maxN*maxM]; static std::shared_ptr straus_HiGi_cache; static std::shared_ptr pippenger_HiGi_cache; // Useful scalar constants static const constexpr rct::key ZERO = { {0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } }; // 0 static const constexpr rct::key ONE = { {0x01, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } }; // 1 static const constexpr rct::key TWO = { {0x02, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } }; // 2 static const constexpr rct::key MINUS_ONE = { { 0xec, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10 } }; // -1 static const constexpr rct::key MINUS_INV_EIGHT = { { 0x74, 0xa4, 0x19, 0x7a, 0xf0, 0x7d, 0x0b, 0xf7, 0x05, 0xc2, 0xda, 0x25, 0x2b, 0x5c, 0x0b, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a } }; // -(8**(-1)) static rct::key TWO_SIXTY_FOUR_MINUS_ONE; // 2**64 - 1 // Initial transcript hash static rct::key initial_transcript; static boost::mutex init_mutex; // Use the generator caches to compute a multiscalar multiplication static inline rct::key multiexp(const std::vector &data, size_t HiGi_size) { if (HiGi_size > 0) { static_assert(232 <= STRAUS_SIZE_LIMIT, "Straus in precalc mode can only be calculated till STRAUS_SIZE_LIMIT"); return HiGi_size <= 232 && data.size() == HiGi_size ? straus(data, straus_HiGi_cache, 0) : pippenger(data, pippenger_HiGi_cache, HiGi_size, get_pippenger_c(data.size())); } else { return data.size() <= 95 ? straus(data, NULL, 0) : pippenger(data, NULL, 0, get_pippenger_c(data.size())); } } // Confirm that a scalar is properly reduced static inline bool is_reduced(const rct::key &scalar) { return sc_check(scalar.bytes) == 0; } // Use hashed values to produce indexed public generators static ge_p3 get_exponent(const rct::key &base, size_t idx) { std::string hashed = std::string((const char*)base.bytes, sizeof(base)) + config::HASH_KEY_BULLETPROOF_PLUS_EXPONENT + tools::get_varint_data(idx); rct::key generator; ge_p3 generator_p3; rct::hash_to_p3(generator_p3, rct::hash2rct(crypto::cn_fast_hash(hashed.data(), hashed.size()))); ge_p3_tobytes(generator.bytes, &generator_p3); CHECK_AND_ASSERT_THROW_MES(!(generator == rct::identity()), "Exponent is point at infinity"); return generator_p3; } // Construct public generators static void init_exponents() { boost::lock_guard lock(init_mutex); // Only needs to be done once static bool init_done = false; if (init_done) return; std::vector data; data.reserve(maxN*maxM*2); for (size_t i = 0; i < maxN*maxM; ++i) { Hi_p3[i] = get_exponent(rct::H, i * 2); Gi_p3[i] = get_exponent(rct::H, i * 2 + 1); data.push_back({rct::zero(), Gi_p3[i]}); data.push_back({rct::zero(), Hi_p3[i]}); } straus_HiGi_cache = straus_init_cache(data, STRAUS_SIZE_LIMIT); pippenger_HiGi_cache = pippenger_init_cache(data, 0, PIPPENGER_SIZE_LIMIT); // Compute 2**64 - 1 for later use in simplifying verification TWO_SIXTY_FOUR_MINUS_ONE = TWO; for (size_t i = 0; i < 6; i++) { sc_mul(TWO_SIXTY_FOUR_MINUS_ONE.bytes, TWO_SIXTY_FOUR_MINUS_ONE.bytes, TWO_SIXTY_FOUR_MINUS_ONE.bytes); } sc_sub(TWO_SIXTY_FOUR_MINUS_ONE.bytes, TWO_SIXTY_FOUR_MINUS_ONE.bytes, ONE.bytes); // Generate the initial Fiat-Shamir transcript hash, which is constant across all proofs const std::string domain_separator(config::HASH_KEY_BULLETPROOF_PLUS_TRANSCRIPT); ge_p3 initial_transcript_p3; rct::hash_to_p3(initial_transcript_p3, rct::hash2rct(crypto::cn_fast_hash(domain_separator.data(), domain_separator.size()))); ge_p3_tobytes(initial_transcript.bytes, &initial_transcript_p3); init_done = true; } // Given two scalar arrays, construct a vector pre-commitment: // // a = (a_0, ..., a_{n-1}) // b = (b_0, ..., b_{n-1}) // // Outputs a_0*Gi_0 + ... + a_{n-1}*Gi_{n-1} + // b_0*Hi_0 + ... + b_{n-1}*Hi_{n-1} static rct::key vector_exponent(const rct::keyV &a, const rct::keyV &b) { CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b"); CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN*maxM, "Incompatible sizes of a and maxN"); std::vector multiexp_data; multiexp_data.reserve(a.size()*2); for (size_t i = 0; i < a.size(); ++i) { multiexp_data.emplace_back(a[i], Gi_p3[i]); multiexp_data.emplace_back(b[i], Hi_p3[i]); } return multiexp(multiexp_data, 2 * a.size()); } // Helper function used to compute the L and R terms used in the inner-product round function static rct::key compute_LR(size_t size, const rct::key &y, const std::vector &G, size_t G0, const std::vector &H, size_t H0, const rct::keyV &a, size_t a0, const rct::keyV &b, size_t b0, const rct::key &c, const rct::key &d) { CHECK_AND_ASSERT_THROW_MES(size + G0 <= G.size(), "Incompatible size for G"); CHECK_AND_ASSERT_THROW_MES(size + H0 <= H.size(), "Incompatible size for H"); CHECK_AND_ASSERT_THROW_MES(size + a0 <= a.size(), "Incompatible size for a"); CHECK_AND_ASSERT_THROW_MES(size + b0 <= b.size(), "Incompatible size for b"); CHECK_AND_ASSERT_THROW_MES(size <= maxN*maxM, "size is too large"); std::vector multiexp_data; multiexp_data.resize(size*2 + 2); rct::key temp; for (size_t i = 0; i < size; ++i) { sc_mul(temp.bytes, a[a0+i].bytes, y.bytes); sc_mul(multiexp_data[i*2].scalar.bytes, temp.bytes, INV_EIGHT.bytes); multiexp_data[i*2].point = G[G0+i]; sc_mul(multiexp_data[i*2+1].scalar.bytes, b[b0+i].bytes, INV_EIGHT.bytes); multiexp_data[i*2+1].point = H[H0+i]; } sc_mul(multiexp_data[2*size].scalar.bytes, c.bytes, INV_EIGHT.bytes); ge_p3 H_p3; ge_frombytes_vartime(&H_p3, rct::H.bytes); multiexp_data[2*size].point = H_p3; sc_mul(multiexp_data[2*size+1].scalar.bytes, d.bytes, INV_EIGHT.bytes); ge_p3 G_p3; ge_frombytes_vartime(&G_p3, rct::G.bytes); multiexp_data[2*size+1].point = G_p3; return multiexp(multiexp_data, 0); } // Given a scalar, construct a vector of its powers: // // Output (1,x,x**2,...,x**{n-1}) static rct::keyV vector_of_scalar_powers(const rct::key &x, size_t n) { CHECK_AND_ASSERT_THROW_MES(n != 0, "Need n > 0"); rct::keyV res(n); res[0] = rct::identity(); if (n == 1) return res; res[1] = x; for (size_t i = 2; i < n; ++i) { sc_mul(res[i].bytes, res[i-1].bytes, x.bytes); } return res; } // Given a scalar, construct the sum of its powers from 2 to n (where n is a power of 2): // // Output x**2 + x**4 + x**6 + ... + x**n static rct::key sum_of_even_powers(const rct::key &x, size_t n) { CHECK_AND_ASSERT_THROW_MES((n & (n - 1)) == 0, "Need n to be a power of 2"); CHECK_AND_ASSERT_THROW_MES(n != 0, "Need n > 0"); rct::key x1 = copy(x); sc_mul(x1.bytes, x1.bytes, x1.bytes); rct::key res = copy(x1); while (n > 2) { sc_muladd(res.bytes, x1.bytes, res.bytes, res.bytes); sc_mul(x1.bytes, x1.bytes, x1.bytes); n /= 2; } return res; } // Given a scalar, return the sum of its powers from 1 to n // // Output x**1 + x**2 + x**3 + ... + x**n static rct::key sum_of_scalar_powers(const rct::key &x, size_t n) { CHECK_AND_ASSERT_THROW_MES(n != 0, "Need n > 0"); rct::key res = ONE; if (n == 1) return x; n += 1; rct::key x1 = copy(x); const bool is_power_of_2 = (n & (n - 1)) == 0; if (is_power_of_2) { sc_add(res.bytes, res.bytes, x1.bytes); while (n > 2) { sc_mul(x1.bytes, x1.bytes, x1.bytes); sc_muladd(res.bytes, x1.bytes, res.bytes, res.bytes); n /= 2; } } else { rct::key prev = x1; for (size_t i = 1; i < n; ++i) { if (i > 1) sc_mul(prev.bytes, prev.bytes, x1.bytes); sc_add(res.bytes, res.bytes, prev.bytes); } } sc_sub(res.bytes, res.bytes, ONE.bytes); return res; } // Given two scalar arrays, construct the weighted inner product against another scalar // // Output a_0*b_0*y**1 + a_1*b_1*y**2 + ... + a_{n-1}*b_{n-1}*y**n static rct::key weighted_inner_product(const epee::span &a, const epee::span &b, const rct::key &y) { CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b"); rct::key res = rct::zero(); rct::key y_power = ONE; rct::key temp; for (size_t i = 0; i < a.size(); ++i) { sc_mul(temp.bytes, a[i].bytes, b[i].bytes); sc_mul(y_power.bytes, y_power.bytes, y.bytes); sc_muladd(res.bytes, temp.bytes, y_power.bytes, res.bytes); } return res; } static rct::key weighted_inner_product(const rct::keyV &a, const epee::span &b, const rct::key &y) { CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b"); return weighted_inner_product(epee::to_span(a), b, y); } // Fold inner-product point vectors static void hadamard_fold(std::vector &v, const rct::key &a, const rct::key &b) { CHECK_AND_ASSERT_THROW_MES((v.size() & 1) == 0, "Vector size should be even"); const size_t sz = v.size() / 2; for (size_t n = 0; n < sz; ++n) { ge_dsmp c[2]; ge_dsm_precomp(c[0], &v[n]); ge_dsm_precomp(c[1], &v[sz + n]); ge_double_scalarmult_precomp_vartime2_p3(&v[n], a.bytes, c[0], b.bytes, c[1]); } v.resize(sz); } // Add vectors componentwise static rct::keyV vector_add(const rct::keyV &a, const rct::keyV &b) { CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b"); rct::keyV res(a.size()); for (size_t i = 0; i < a.size(); ++i) { sc_add(res[i].bytes, a[i].bytes, b[i].bytes); } return res; } // Add a scalar to all elements of a vector static rct::keyV vector_add(const rct::keyV &a, const rct::key &b) { rct::keyV res(a.size()); for (size_t i = 0; i < a.size(); ++i) { sc_add(res[i].bytes, a[i].bytes, b.bytes); } return res; } // Subtract a scalar from all elements of a vector static rct::keyV vector_subtract(const rct::keyV &a, const rct::key &b) { rct::keyV res(a.size()); for (size_t i = 0; i < a.size(); ++i) { sc_sub(res[i].bytes, a[i].bytes, b.bytes); } return res; } // Multiply a scalar by all elements of a vector static rct::keyV vector_scalar(const epee::span &a, const rct::key &x) { rct::keyV res(a.size()); for (size_t i = 0; i < a.size(); ++i) { sc_mul(res[i].bytes, a[i].bytes, x.bytes); } return res; } // Inversion helper function static rct::key sm(rct::key y, int n, const rct::key &x) { while (n--) sc_mul(y.bytes, y.bytes, y.bytes); sc_mul(y.bytes, y.bytes, x.bytes); return y; } // Compute the inverse of a nonzero static rct::key invert(const rct::key &x) { CHECK_AND_ASSERT_THROW_MES(!(x == ZERO), "Cannot invert zero!"); rct::key _1, _10, _100, _11, _101, _111, _1001, _1011, _1111; _1 = x; sc_mul(_10.bytes, _1.bytes, _1.bytes); sc_mul(_100.bytes, _10.bytes, _10.bytes); sc_mul(_11.bytes, _10.bytes, _1.bytes); sc_mul(_101.bytes, _10.bytes, _11.bytes); sc_mul(_111.bytes, _10.bytes, _101.bytes); sc_mul(_1001.bytes, _10.bytes, _111.bytes); sc_mul(_1011.bytes, _10.bytes, _1001.bytes); sc_mul(_1111.bytes, _100.bytes, _1011.bytes); rct::key inv; sc_mul(inv.bytes, _1111.bytes, _1.bytes); inv = sm(inv, 123 + 3, _101); inv = sm(inv, 2 + 2, _11); inv = sm(inv, 1 + 4, _1111); inv = sm(inv, 1 + 4, _1111); inv = sm(inv, 4, _1001); inv = sm(inv, 2, _11); inv = sm(inv, 1 + 4, _1111); inv = sm(inv, 1 + 3, _101); inv = sm(inv, 3 + 3, _101); inv = sm(inv, 3, _111); inv = sm(inv, 1 + 4, _1111); inv = sm(inv, 2 + 3, _111); inv = sm(inv, 2 + 2, _11); inv = sm(inv, 1 + 4, _1011); inv = sm(inv, 2 + 4, _1011); inv = sm(inv, 6 + 4, _1001); inv = sm(inv, 2 + 2, _11); inv = sm(inv, 3 + 2, _11); inv = sm(inv, 3 + 2, _11); inv = sm(inv, 1 + 4, _1001); inv = sm(inv, 1 + 3, _111); inv = sm(inv, 2 + 4, _1111); inv = sm(inv, 1 + 4, _1011); inv = sm(inv, 3, _101); inv = sm(inv, 2 + 4, _1111); inv = sm(inv, 3, _101); inv = sm(inv, 1 + 2, _11); return inv; } // Invert a batch of scalars, all of which _must_ be nonzero static rct::keyV invert(rct::keyV x) { rct::keyV scratch; scratch.reserve(x.size()); rct::key acc = rct::identity(); for (size_t n = 0; n < x.size(); ++n) { CHECK_AND_ASSERT_THROW_MES(!(x[n] == ZERO), "Cannot invert zero!"); scratch.push_back(acc); if (n == 0) acc = x[0]; else sc_mul(acc.bytes, acc.bytes, x[n].bytes); } acc = invert(acc); rct::key tmp; for (int i = x.size(); i-- > 0; ) { sc_mul(tmp.bytes, acc.bytes, x[i].bytes); sc_mul(x[i].bytes, acc.bytes, scratch[i].bytes); acc = tmp; } return x; } // Compute the slice of a vector static epee::span slice(const rct::keyV &a, size_t start, size_t stop) { CHECK_AND_ASSERT_THROW_MES(start < a.size(), "Invalid start index"); CHECK_AND_ASSERT_THROW_MES(stop <= a.size(), "Invalid stop index"); CHECK_AND_ASSERT_THROW_MES(start < stop, "Invalid start/stop indices"); return epee::span(&a[start], stop - start); } // Update the transcript static rct::key transcript_update(rct::key &transcript, const rct::key &update_0) { rct::key data[2]; data[0] = transcript; data[1] = update_0; rct::hash_to_scalar(transcript, data, sizeof(data)); return transcript; } static rct::key transcript_update(rct::key &transcript, const rct::key &update_0, const rct::key &update_1) { rct::key data[3]; data[0] = transcript; data[1] = update_0; data[2] = update_1; rct::hash_to_scalar(transcript, data, sizeof(data)); return transcript; } // Given a value v [0..2**N) and a mask gamma, construct a range proof BulletproofPlus bulletproof_plus_PROVE(const rct::key &sv, const rct::key &gamma) { return bulletproof_plus_PROVE(rct::keyV(1, sv), rct::keyV(1, gamma)); } BulletproofPlus bulletproof_plus_PROVE(uint64_t v, const rct::key &gamma) { return bulletproof_plus_PROVE(std::vector(1, v), rct::keyV(1, gamma)); } // Given a set of values v [0..2**N) and masks gamma, construct a range proof BulletproofPlus bulletproof_plus_PROVE(const rct::keyV &sv, const rct::keyV &gamma) { // Sanity check on inputs CHECK_AND_ASSERT_THROW_MES(sv.size() == gamma.size(), "Incompatible sizes of sv and gamma"); CHECK_AND_ASSERT_THROW_MES(!sv.empty(), "sv is empty"); for (const rct::key &sve: sv) CHECK_AND_ASSERT_THROW_MES(is_reduced(sve), "Invalid sv input"); for (const rct::key &g: gamma) CHECK_AND_ASSERT_THROW_MES(is_reduced(g), "Invalid gamma input"); init_exponents(); // Useful proof bounds // // N: number of bits in each range (here, 64) // logN: base-2 logarithm // M: first power of 2 greater than or equal to the number of range proofs to aggregate // logM: base-2 logarithm constexpr size_t logN = 6; // log2(64) constexpr size_t N = 1< 0; ) { if (j < sv.size() && (sv[j][i/8] & (((uint64_t)1)<<(i%8)))) { aL[j*N+i] = rct::identity(); aL8[j*N+i] = INV_EIGHT; aR[j*N+i] = aR8[j*N+i] = rct::zero(); } else { aL[j*N+i] = aL8[j*N+i] = rct::zero(); aR[j*N+i] = MINUS_ONE; aR8[j*N+i] = MINUS_INV_EIGHT; } } } try_again: // This is a Fiat-Shamir transcript rct::key transcript = copy(initial_transcript); transcript = transcript_update(transcript, rct::hash_to_scalar(V)); // A rct::key alpha = rct::skGen(); rct::key pre_A = vector_exponent(aL8, aR8); rct::key A; sc_mul(temp.bytes, alpha.bytes, INV_EIGHT.bytes); rct::addKeys(A, pre_A, rct::scalarmultBase(temp)); // Challenges rct::key y = transcript_update(transcript, A); if (y == rct::zero()) { MINFO("y is 0, trying again"); goto try_again; } rct::key z = transcript = rct::hash_to_scalar(y); if (z == rct::zero()) { MINFO("z is 0, trying again"); goto try_again; } rct::key z_squared; sc_mul(z_squared.bytes, z.bytes, z.bytes); // Windowed vector // d[j*N+i] = z**(2*(j+1)) * 2**i // // We compute this iteratively in order to reduce scalar operations. rct::keyV d(MN, rct::zero()); d[0] = z_squared; for (size_t i = 1; i < N; i++) { sc_mul(d[i].bytes, d[i-1].bytes, TWO.bytes); } for (size_t j = 1; j < M; j++) { for (size_t i = 0; i < N; i++) { sc_mul(d[j*N+i].bytes, d[(j-1)*N+i].bytes, z_squared.bytes); } } rct::keyV y_powers = vector_of_scalar_powers(y, MN+2); // Prepare inner product terms rct::keyV aL1 = vector_subtract(aL, z); rct::keyV aR1 = vector_add(aR, z); rct::keyV d_y(MN); for (size_t i = 0; i < MN; i++) { sc_mul(d_y[i].bytes, d[i].bytes, y_powers[MN-i].bytes); } aR1 = vector_add(aR1, d_y); rct::key alpha1 = alpha; temp = ONE; for (size_t j = 0; j < sv.size(); j++) { sc_mul(temp.bytes, temp.bytes, z_squared.bytes); sc_mul(temp2.bytes, y_powers[MN+1].bytes, temp.bytes); sc_muladd(alpha1.bytes, temp2.bytes, gamma[j].bytes, alpha1.bytes); } // These are used in the inner product rounds size_t nprime = MN; std::vector Gprime(MN); std::vector Hprime(MN); rct::keyV aprime(MN); rct::keyV bprime(MN); const rct::key yinv = invert(y); rct::keyV yinvpow(MN); yinvpow[0] = ONE; for (size_t i = 0; i < MN; ++i) { Gprime[i] = Gi_p3[i]; Hprime[i] = Hi_p3[i]; if (i > 0) { sc_mul(yinvpow[i].bytes, yinvpow[i-1].bytes, yinv.bytes); } aprime[i] = aL1[i]; bprime[i] = aR1[i]; } rct::keyV L(logMN); rct::keyV R(logMN); int round = 0; // Inner-product rounds while (nprime > 1) { nprime /= 2; rct::key cL = weighted_inner_product(slice(aprime, 0, nprime), slice(bprime, nprime, bprime.size()), y); rct::key cR = weighted_inner_product(vector_scalar(slice(aprime, nprime, aprime.size()), y_powers[nprime]), slice(bprime, 0, nprime), y); rct::key dL = rct::skGen(); rct::key dR = rct::skGen(); L[round] = compute_LR(nprime, yinvpow[nprime], Gprime, nprime, Hprime, 0, aprime, 0, bprime, nprime, cL, dL); R[round] = compute_LR(nprime, y_powers[nprime], Gprime, 0, Hprime, nprime, aprime, nprime, bprime, 0, cR, dR); const rct::key challenge = transcript_update(transcript, L[round], R[round]); if (challenge == rct::zero()) { MINFO("challenge is 0, trying again"); goto try_again; } const rct::key challenge_inv = invert(challenge); sc_mul(temp.bytes, yinvpow[nprime].bytes, challenge.bytes); hadamard_fold(Gprime, challenge_inv, temp); hadamard_fold(Hprime, challenge, challenge_inv); sc_mul(temp.bytes, challenge_inv.bytes, y_powers[nprime].bytes); aprime = vector_add(vector_scalar(slice(aprime, 0, nprime), challenge), vector_scalar(slice(aprime, nprime, aprime.size()), temp)); bprime = vector_add(vector_scalar(slice(bprime, 0, nprime), challenge_inv), vector_scalar(slice(bprime, nprime, bprime.size()), challenge)); rct::key challenge_squared; sc_mul(challenge_squared.bytes, challenge.bytes, challenge.bytes); rct::key challenge_squared_inv; sc_mul(challenge_squared_inv.bytes, challenge_inv.bytes, challenge_inv.bytes); sc_muladd(alpha1.bytes, dL.bytes, challenge_squared.bytes, alpha1.bytes); sc_muladd(alpha1.bytes, dR.bytes, challenge_squared_inv.bytes, alpha1.bytes); ++round; } // Final round computations rct::key r = rct::skGen(); rct::key s = rct::skGen(); rct::key d_ = rct::skGen(); rct::key eta = rct::skGen(); std::vector A1_data; A1_data.reserve(4); A1_data.resize(4); sc_mul(A1_data[0].scalar.bytes, r.bytes, INV_EIGHT.bytes); A1_data[0].point = Gprime[0]; sc_mul(A1_data[1].scalar.bytes, s.bytes, INV_EIGHT.bytes); A1_data[1].point = Hprime[0]; sc_mul(A1_data[2].scalar.bytes, d_.bytes, INV_EIGHT.bytes); ge_p3 G_p3; ge_frombytes_vartime(&G_p3, rct::G.bytes); A1_data[2].point = G_p3; sc_mul(temp.bytes, r.bytes, y.bytes); sc_mul(temp.bytes, temp.bytes, bprime[0].bytes); sc_mul(temp2.bytes, s.bytes, y.bytes); sc_mul(temp2.bytes, temp2.bytes, aprime[0].bytes); sc_add(temp.bytes, temp.bytes, temp2.bytes); sc_mul(A1_data[3].scalar.bytes, temp.bytes, INV_EIGHT.bytes); ge_p3 H_p3; ge_frombytes_vartime(&H_p3, rct::H.bytes); A1_data[3].point = H_p3; rct::key A1 = multiexp(A1_data, 0); sc_mul(temp.bytes, r.bytes, y.bytes); sc_mul(temp.bytes, temp.bytes, s.bytes); sc_mul(temp.bytes, temp.bytes, INV_EIGHT.bytes); sc_mul(temp2.bytes, eta.bytes, INV_EIGHT.bytes); rct::key B; rct::addKeys2(B, temp2, temp, rct::H); rct::key e = transcript_update(transcript, A1, B); if (e == rct::zero()) { MINFO("e is 0, trying again"); goto try_again; } rct::key e_squared; sc_mul(e_squared.bytes, e.bytes, e.bytes); rct::key r1; sc_muladd(r1.bytes, aprime[0].bytes, e.bytes, r.bytes); rct::key s1; sc_muladd(s1.bytes, bprime[0].bytes, e.bytes, s.bytes); rct::key d1; sc_muladd(d1.bytes, d_.bytes, e.bytes, eta.bytes); sc_muladd(d1.bytes, alpha1.bytes, e_squared.bytes, d1.bytes); return BulletproofPlus(std::move(V), A, A1, B, r1, s1, d1, std::move(L), std::move(R)); } BulletproofPlus bulletproof_plus_PROVE(const std::vector &v, const rct::keyV &gamma) { CHECK_AND_ASSERT_THROW_MES(v.size() == gamma.size(), "Incompatible sizes of v and gamma"); // vG + gammaH rct::keyV sv(v.size()); for (size_t i = 0; i < v.size(); ++i) { sv[i] = rct::d2h(v[i]); } return bulletproof_plus_PROVE(sv, gamma); } struct bp_plus_proof_data_t { rct::key y, z, e; std::vector challenges; size_t logM, inv_offset; }; // Given a batch of range proofs, determine if they are all valid bool bulletproof_plus_VERIFY(const std::vector &proofs) { init_exponents(); const size_t logN = 6; const size_t N = 1 << logN; // Set up size_t max_length = 0; // size of each of the longest proof's inner-product vectors size_t nV = 0; // number of output commitments across all proofs size_t inv_offset = 0; size_t max_logM = 0; std::vector proof_data; proof_data.reserve(proofs.size()); // We'll perform only a single batch inversion across all proofs in the batch, // since batch inversion requires only one scalar inversion operation. std::vector to_invert; to_invert.reserve(11 * proofs.size()); // maximal size, given the aggregation limit for (const BulletproofPlus *p: proofs) { const BulletproofPlus &proof = *p; // Sanity checks CHECK_AND_ASSERT_MES(is_reduced(proof.r1), false, "Input scalar not in range"); CHECK_AND_ASSERT_MES(is_reduced(proof.s1), false, "Input scalar not in range"); CHECK_AND_ASSERT_MES(is_reduced(proof.d1), false, "Input scalar not in range"); CHECK_AND_ASSERT_MES(proof.V.size() >= 1, false, "V does not have at least one element"); CHECK_AND_ASSERT_MES(proof.L.size() == proof.R.size(), false, "Mismatched L and R sizes"); CHECK_AND_ASSERT_MES(proof.L.size() > 0, false, "Empty proof"); max_length = std::max(max_length, proof.L.size()); nV += proof.V.size(); proof_data.push_back({}); bp_plus_proof_data_t &pd = proof_data.back(); // Reconstruct the challenges rct::key transcript = copy(initial_transcript); transcript = transcript_update(transcript, rct::hash_to_scalar(proof.V)); pd.y = transcript_update(transcript, proof.A); CHECK_AND_ASSERT_MES(!(pd.y == rct::zero()), false, "y == 0"); pd.z = transcript = rct::hash_to_scalar(pd.y); CHECK_AND_ASSERT_MES(!(pd.z == rct::zero()), false, "z == 0"); // Determine the number of inner-product rounds based on proof size size_t M; for (pd.logM = 0; (M = 1< 0, false, "Zero rounds"); // The inner-product challenges are computed per round pd.challenges.resize(rounds); for (size_t j = 0; j < rounds; ++j) { pd.challenges[j] = transcript_update(transcript, proof.L[j], proof.R[j]); CHECK_AND_ASSERT_MES(!(pd.challenges[j] == rct::zero()), false, "challenges[j] == 0"); } // Final challenge pd.e = transcript_update(transcript,proof.A1,proof.B); CHECK_AND_ASSERT_MES(!(pd.e == rct::zero()), false, "e == 0"); // Batch scalar inversions pd.inv_offset = inv_offset; for (size_t j = 0; j < rounds; ++j) to_invert.push_back(pd.challenges[j]); to_invert.push_back(pd.y); inv_offset += rounds + 1; } CHECK_AND_ASSERT_MES(max_length < 32, false, "At least one proof is too large"); size_t maxMN = 1u << max_length; rct::key temp; rct::key temp2; // Final batch proof data std::vector multiexp_data; multiexp_data.reserve(nV + (2 * (max_logM + logN) + 3) * proofs.size() + 2 * maxMN); multiexp_data.resize(2 * maxMN); const std::vector inverses = invert(std::move(to_invert)); to_invert.clear(); // Weights and aggregates // // The idea is to take the single multiscalar multiplication used in the verification // of each proof in the batch and weight it using a random weighting factor, resulting // in just one multiscalar multiplication check to zero for the entire batch. // We can further simplify the verifier complexity by including common group elements // only once in this single multiscalar multiplication. // Common group elements' weighted scalar sums are tracked across proofs for this reason. // // To build a multiscalar multiplication for each proof, we use the method described in // Section 6.1 of the preprint. Note that the result given there does not account for // the construction of the inner-product inputs that are produced in the range proof // verifier algorithm; we have done so here. rct::key G_scalar = rct::zero(); rct::key H_scalar = rct::zero(); rct::keyV Gi_scalars(maxMN, rct::zero()); rct::keyV Hi_scalars(maxMN, rct::zero()); int proof_data_index = 0; rct::keyV challenges_cache; std::vector proof8_V, proof8_L, proof8_R; // Process each proof and add to the weighted batch for (const BulletproofPlus *p: proofs) { const BulletproofPlus &proof = *p; const bp_plus_proof_data_t &pd = proof_data[proof_data_index++]; CHECK_AND_ASSERT_MES(proof.L.size() == 6+pd.logM, false, "Proof is not the expected size"); const size_t M = 1 << pd.logM; const size_t MN = M*N; // Random weighting factor must be nonzero, which is exceptionally unlikely! rct::key weight = ZERO; while (weight == ZERO) { weight = rct::skGen(); } // Rescale previously offset proof elements // // This ensures that all such group elements are in the prime-order subgroup. proof8_V.resize(proof.V.size()); for (size_t i = 0; i < proof.V.size(); ++i) rct::scalarmult8(proof8_V[i], proof.V[i]); proof8_L.resize(proof.L.size()); for (size_t i = 0; i < proof.L.size(); ++i) rct::scalarmult8(proof8_L[i], proof.L[i]); proof8_R.resize(proof.R.size()); for (size_t i = 0; i < proof.R.size(); ++i) rct::scalarmult8(proof8_R[i], proof.R[i]); ge_p3 proof8_A1; ge_p3 proof8_B; ge_p3 proof8_A; rct::scalarmult8(proof8_A1, proof.A1); rct::scalarmult8(proof8_B, proof.B); rct::scalarmult8(proof8_A, proof.A); // Compute necessary powers of the y-challenge rct::key y_MN = copy(pd.y); rct::key y_MN_1; size_t temp_MN = MN; while (temp_MN > 1) { sc_mul(y_MN.bytes, y_MN.bytes, y_MN.bytes); temp_MN /= 2; } sc_mul(y_MN_1.bytes, y_MN.bytes, pd.y.bytes); // V_j: -e**2 * z**(2*j+1) * y**(MN+1) * weight rct::key e_squared; sc_mul(e_squared.bytes, pd.e.bytes, pd.e.bytes); rct::key z_squared; sc_mul(z_squared.bytes, pd.z.bytes, pd.z.bytes); sc_sub(temp.bytes, ZERO.bytes, e_squared.bytes); sc_mul(temp.bytes, temp.bytes, y_MN_1.bytes); sc_mul(temp.bytes, temp.bytes, weight.bytes); for (size_t j = 0; j < proof8_V.size(); j++) { sc_mul(temp.bytes, temp.bytes, z_squared.bytes); multiexp_data.emplace_back(temp, proof8_V[j]); } // B: -weight sc_mul(temp.bytes, MINUS_ONE.bytes, weight.bytes); multiexp_data.emplace_back(temp, proof8_B); // A1: -weight*e sc_mul(temp.bytes, temp.bytes, pd.e.bytes); multiexp_data.emplace_back(temp, proof8_A1); // A: -weight*e*e rct::key minus_weight_e_squared; sc_mul(minus_weight_e_squared.bytes, temp.bytes, pd.e.bytes); multiexp_data.emplace_back(minus_weight_e_squared, proof8_A); // G: weight*d1 sc_muladd(G_scalar.bytes, weight.bytes, proof.d1.bytes, G_scalar.bytes); // Windowed vector // d[j*N+i] = z**(2*(j+1)) * 2**i rct::keyV d(MN, rct::zero()); d[0] = z_squared; for (size_t i = 1; i < N; i++) { sc_add(d[i].bytes, d[i-1].bytes, d[i-1].bytes); } for (size_t j = 1; j < M; j++) { for (size_t i = 0; i < N; i++) { sc_mul(d[j*N+i].bytes, d[(j-1)*N+i].bytes, z_squared.bytes); } } // More efficient computation of sum(d) rct::key sum_d; sc_mul(sum_d.bytes, TWO_SIXTY_FOUR_MINUS_ONE.bytes, sum_of_even_powers(pd.z, 2*M).bytes); // H: weight*( r1*y*s1 + e**2*( y**(MN+1)*z*sum(d) + (z**2-z)*sum(y) ) ) rct::key sum_y = sum_of_scalar_powers(pd.y, MN); sc_sub(temp.bytes, z_squared.bytes, pd.z.bytes); sc_mul(temp.bytes, temp.bytes, sum_y.bytes); sc_mul(temp2.bytes, y_MN_1.bytes, pd.z.bytes); sc_mul(temp2.bytes, temp2.bytes, sum_d.bytes); sc_add(temp.bytes, temp.bytes, temp2.bytes); sc_mul(temp.bytes, temp.bytes, e_squared.bytes); sc_mul(temp2.bytes, proof.r1.bytes, pd.y.bytes); sc_mul(temp2.bytes, temp2.bytes, proof.s1.bytes); sc_add(temp.bytes, temp.bytes, temp2.bytes); sc_muladd(H_scalar.bytes, temp.bytes, weight.bytes, H_scalar.bytes); // Compute the number of rounds for the inner-product argument const size_t rounds = pd.logM+logN; CHECK_AND_ASSERT_MES(rounds > 0, false, "Zero rounds"); const rct::key *challenges_inv = &inverses[pd.inv_offset]; const rct::key yinv = inverses[pd.inv_offset + rounds]; // Compute challenge products challenges_cache.resize(1< 0; --s) { sc_mul(challenges_cache[s].bytes, challenges_cache[s/2].bytes, pd.challenges[j].bytes); sc_mul(challenges_cache[s-1].bytes, challenges_cache[s/2].bytes, challenges_inv[j].bytes); } } // Gi and Hi rct::key e_r1_w_y; sc_mul(e_r1_w_y.bytes, pd.e.bytes, proof.r1.bytes); sc_mul(e_r1_w_y.bytes, e_r1_w_y.bytes, weight.bytes); rct::key e_s1_w; sc_mul(e_s1_w.bytes, pd.e.bytes, proof.s1.bytes); sc_mul(e_s1_w.bytes, e_s1_w.bytes, weight.bytes); rct::key e_squared_z_w; sc_mul(e_squared_z_w.bytes, e_squared.bytes, pd.z.bytes); sc_mul(e_squared_z_w.bytes, e_squared_z_w.bytes, weight.bytes); rct::key minus_e_squared_z_w; sc_sub(minus_e_squared_z_w.bytes, ZERO.bytes, e_squared_z_w.bytes); rct::key minus_e_squared_w_y; sc_sub(minus_e_squared_w_y.bytes, ZERO.bytes, e_squared.bytes); sc_mul(minus_e_squared_w_y.bytes, minus_e_squared_w_y.bytes, weight.bytes); sc_mul(minus_e_squared_w_y.bytes, minus_e_squared_w_y.bytes, y_MN.bytes); for (size_t i = 0; i < MN; ++i) { rct::key g_scalar = copy(e_r1_w_y); rct::key h_scalar; // Use the binary decomposition of the index sc_muladd(g_scalar.bytes, g_scalar.bytes, challenges_cache[i].bytes, e_squared_z_w.bytes); sc_muladd(h_scalar.bytes, e_s1_w.bytes, challenges_cache[(~i) & (MN-1)].bytes, minus_e_squared_z_w.bytes); // Complete the scalar derivation sc_add(Gi_scalars[i].bytes, Gi_scalars[i].bytes, g_scalar.bytes); sc_muladd(h_scalar.bytes, minus_e_squared_w_y.bytes, d[i].bytes, h_scalar.bytes); sc_add(Hi_scalars[i].bytes, Hi_scalars[i].bytes, h_scalar.bytes); // Update iterated values sc_mul(e_r1_w_y.bytes, e_r1_w_y.bytes, yinv.bytes); sc_mul(minus_e_squared_w_y.bytes, minus_e_squared_w_y.bytes, yinv.bytes); } // L_j: -weight*e*e*challenges[j]**2 // R_j: -weight*e*e*challenges[j]**(-2) for (size_t j = 0; j < rounds; ++j) { sc_mul(temp.bytes, pd.challenges[j].bytes, pd.challenges[j].bytes); sc_mul(temp.bytes, temp.bytes, minus_weight_e_squared.bytes); multiexp_data.emplace_back(temp, proof8_L[j]); sc_mul(temp.bytes, challenges_inv[j].bytes, challenges_inv[j].bytes); sc_mul(temp.bytes, temp.bytes, minus_weight_e_squared.bytes); multiexp_data.emplace_back(temp, proof8_R[j]); } } // Verify all proofs in the weighted batch multiexp_data.emplace_back(G_scalar, rct::G); multiexp_data.emplace_back(H_scalar, rct::H); for (size_t i = 0; i < maxMN; ++i) { multiexp_data[i * 2] = {Gi_scalars[i], Gi_p3[i]}; multiexp_data[i * 2 + 1] = {Hi_scalars[i], Hi_p3[i]}; } if (!(multiexp(multiexp_data, 2 * maxMN) == rct::identity())) { MERROR("Verification failure"); return false; } return true; } bool bulletproof_plus_VERIFY(const std::vector &proofs) { std::vector proof_pointers; proof_pointers.reserve(proofs.size()); for (const BulletproofPlus &proof: proofs) proof_pointers.push_back(&proof); return bulletproof_plus_VERIFY(proof_pointers); } bool bulletproof_plus_VERIFY(const BulletproofPlus &proof) { std::vector proofs; proofs.push_back(&proof); return bulletproof_plus_VERIFY(proofs); } }