// Copyright (c) 2017-2018, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Adapted from Java code by Sarang Noether #include <stdlib.h> #include <openssl/ssl.h> #include <boost/thread/mutex.hpp> #include "misc_log_ex.h" #include "common/perf_timer.h" extern "C" { #include "crypto/crypto-ops.h" } #include "rctOps.h" #include "bulletproofs.h" #undef MONERO_DEFAULT_LOG_CATEGORY #define MONERO_DEFAULT_LOG_CATEGORY "bulletproofs" //#define DEBUG_BP #define PERF_TIMER_START_BP(x) PERF_TIMER_START_UNIT(x, 1000000) namespace rct { static rct::key vector_exponent(const rct::keyV &a, const rct::keyV &b); static rct::keyV vector_powers(rct::key x, size_t n); static rct::key inner_product(const rct::keyV &a, const rct::keyV &b); static constexpr size_t maxN = 64; static rct::key Hi[maxN], Gi[maxN]; static ge_dsmp Gprecomp[64], Hprecomp[64]; static const rct::key TWO = { {0x02, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } }; static const rct::keyV oneN = vector_powers(rct::identity(), maxN); static const rct::keyV twoN = vector_powers(TWO, maxN); static const rct::key ip12 = inner_product(oneN, twoN); static boost::mutex init_mutex; static rct::key get_exponent(const rct::key &base, size_t idx) { static const std::string salt("bulletproof"); std::string hashed = std::string((const char*)base.bytes, sizeof(base)) + salt + tools::get_varint_data(idx); return rct::hashToPoint(rct::hash2rct(crypto::cn_fast_hash(hashed.data(), hashed.size()))); } static void init_exponents() { boost::lock_guard<boost::mutex> lock(init_mutex); static bool init_done = false; if (init_done) return; for (size_t i = 0; i < maxN; ++i) { Hi[i] = get_exponent(rct::H, i * 2); rct::precomp(Hprecomp[i], Hi[i]); Gi[i] = get_exponent(rct::H, i * 2 + 1); rct::precomp(Gprecomp[i], Gi[i]); } init_done = true; } /* Given two scalar arrays, construct a vector commitment */ static rct::key vector_exponent(const rct::keyV &a, const rct::keyV &b) { CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b"); CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN, "Incompatible sizes of a and maxN"); rct::key res = rct::identity(); for (size_t i = 0; i < a.size(); ++i) { rct::key term; rct::addKeys3(term, a[i], Gprecomp[i], b[i], Hprecomp[i]); rct::addKeys(res, res, term); } return res; } /* Compute a custom vector-scalar commitment */ static rct::key vector_exponent_custom(const rct::keyV &A, const rct::keyV &B, const rct::keyV &a, const rct::keyV &b) { CHECK_AND_ASSERT_THROW_MES(A.size() == B.size(), "Incompatible sizes of A and B"); CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b"); CHECK_AND_ASSERT_THROW_MES(a.size() == A.size(), "Incompatible sizes of a and A"); CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN, "Incompatible sizes of a and maxN"); rct::key res = rct::identity(); for (size_t i = 0; i < a.size(); ++i) { rct::key term; #if 0 // we happen to know where A and B might fall, so don't bother checking the rest ge_dsmp *Acache = NULL, *Bcache = NULL; ge_dsmp Acache_custom[1], Bcache_custom[1]; if (Gi[i] == A[i]) Acache = Gprecomp + i; else if (i<32 && Gi[i+32] == A[i]) Acache = Gprecomp + i + 32; else { rct::precomp(Acache_custom[0], A[i]); Acache = Acache_custom; } if (i == 0 && B[i] == Hi[0]) Bcache = Hprecomp; else { rct::precomp(Bcache_custom[0], B[i]); Bcache = Bcache_custom; } rct::addKeys3(term, a[i], *Acache, b[i], *Bcache); #else ge_dsmp Acache, Bcache; rct::precomp(Bcache, B[i]); rct::addKeys3(term, a[i], A[i], b[i], Bcache); #endif rct::addKeys(res, res, term); } return res; } /* Given a scalar, construct a vector of powers */ static rct::keyV vector_powers(rct::key x, size_t n) { rct::keyV res(n); if (n == 0) return res; res[0] = rct::identity(); if (n == 1) return res; res[1] = x; for (size_t i = 2; i < n; ++i) { sc_mul(res[i].bytes, res[i-1].bytes, x.bytes); } return res; } /* Given two scalar arrays, construct the inner product */ static rct::key inner_product(const rct::keyV &a, const rct::keyV &b) { CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b"); rct::key res = rct::zero(); for (size_t i = 0; i < a.size(); ++i) { sc_muladd(res.bytes, a[i].bytes, b[i].bytes, res.bytes); } return res; } /* Given two scalar arrays, construct the Hadamard product */ static rct::keyV hadamard(const rct::keyV &a, const rct::keyV &b) { CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b"); rct::keyV res(a.size()); for (size_t i = 0; i < a.size(); ++i) { sc_mul(res[i].bytes, a[i].bytes, b[i].bytes); } return res; } /* Given two curvepoint arrays, construct the Hadamard product */ static rct::keyV hadamard2(const rct::keyV &a, const rct::keyV &b) { CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b"); rct::keyV res(a.size()); for (size_t i = 0; i < a.size(); ++i) { rct::addKeys(res[i], a[i], b[i]); } return res; } /* Add two vectors */ static rct::keyV vector_add(const rct::keyV &a, const rct::keyV &b) { CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b"); rct::keyV res(a.size()); for (size_t i = 0; i < a.size(); ++i) { sc_add(res[i].bytes, a[i].bytes, b[i].bytes); } return res; } /* Subtract two vectors */ static rct::keyV vector_subtract(const rct::keyV &a, const rct::keyV &b) { CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b"); rct::keyV res(a.size()); for (size_t i = 0; i < a.size(); ++i) { sc_sub(res[i].bytes, a[i].bytes, b[i].bytes); } return res; } /* Multiply a scalar and a vector */ static rct::keyV vector_scalar(const rct::keyV &a, const rct::key &x) { rct::keyV res(a.size()); for (size_t i = 0; i < a.size(); ++i) { sc_mul(res[i].bytes, a[i].bytes, x.bytes); } return res; } /* Exponentiate a curve vector by a scalar */ static rct::keyV vector_scalar2(const rct::keyV &a, const rct::key &x) { rct::keyV res(a.size()); for (size_t i = 0; i < a.size(); ++i) { rct::scalarmultKey(res[i], a[i], x); } return res; } static rct::key switch_endianness(rct::key k) { std::reverse(k.bytes, k.bytes + sizeof(k)); return k; } /* Compute the inverse of a scalar, the stupid way */ static rct::key invert(const rct::key &x) { rct::key inv; BN_CTX *ctx = BN_CTX_new(); BIGNUM *X = BN_new(); BIGNUM *L = BN_new(); BIGNUM *I = BN_new(); BN_bin2bn(switch_endianness(x).bytes, sizeof(rct::key), X); BN_bin2bn(switch_endianness(rct::curveOrder()).bytes, sizeof(rct::key), L); CHECK_AND_ASSERT_THROW_MES(BN_mod_inverse(I, X, L, ctx), "Failed to invert"); const int len = BN_num_bytes(I); CHECK_AND_ASSERT_THROW_MES((size_t)len <= sizeof(rct::key), "Invalid number length"); inv = rct::zero(); BN_bn2bin(I, inv.bytes); std::reverse(inv.bytes, inv.bytes + len); BN_free(I); BN_free(L); BN_free(X); BN_CTX_free(ctx); #ifdef DEBUG_BP rct::key tmp; sc_mul(tmp.bytes, inv.bytes, x.bytes); CHECK_AND_ASSERT_THROW_MES(tmp == rct::identity(), "invert failed"); #endif return inv; } /* Compute the slice of a vector */ static rct::keyV slice(const rct::keyV &a, size_t start, size_t stop) { CHECK_AND_ASSERT_THROW_MES(start < a.size(), "Invalid start index"); CHECK_AND_ASSERT_THROW_MES(stop <= a.size(), "Invalid stop index"); CHECK_AND_ASSERT_THROW_MES(start < stop, "Invalid start/stop indices"); rct::keyV res(stop - start); for (size_t i = start; i < stop; ++i) { res[i - start] = a[i]; } return res; } static rct::key hash_cache_mash(rct::key &hash_cache, const rct::key &mash0, const rct::key &mash1) { rct::keyV data; data.reserve(3); data.push_back(hash_cache); data.push_back(mash0); data.push_back(mash1); return hash_cache = rct::hash_to_scalar(data); } static rct::key hash_cache_mash(rct::key &hash_cache, const rct::key &mash0, const rct::key &mash1, const rct::key &mash2) { rct::keyV data; data.reserve(4); data.push_back(hash_cache); data.push_back(mash0); data.push_back(mash1); data.push_back(mash2); return hash_cache = rct::hash_to_scalar(data); } static rct::key hash_cache_mash(rct::key &hash_cache, const rct::key &mash0, const rct::key &mash1, const rct::key &mash2, const rct::key &mash3) { rct::keyV data; data.reserve(5); data.push_back(hash_cache); data.push_back(mash0); data.push_back(mash1); data.push_back(mash2); data.push_back(mash3); return hash_cache = rct::hash_to_scalar(data); } /* Given a value v (0..2^N-1) and a mask gamma, construct a range proof */ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma) { init_exponents(); PERF_TIMER_UNIT(PROVE, 1000000); constexpr size_t logN = 6; // log2(64) constexpr size_t N = 1<<logN; rct::key V; rct::keyV aL(N), aR(N); PERF_TIMER_START_BP(PROVE_v); rct::addKeys2(V, gamma, sv, rct::H); PERF_TIMER_STOP(PROVE_v); PERF_TIMER_START_BP(PROVE_aLaR); for (size_t i = N; i-- > 0; ) { if (sv[i/8] & (((uint64_t)1)<<(i%8))) { aL[i] = rct::identity(); } else { aL[i] = rct::zero(); } sc_sub(aR[i].bytes, aL[i].bytes, rct::identity().bytes); } PERF_TIMER_STOP(PROVE_aLaR); rct::key hash_cache = rct::hash_to_scalar(V); // DEBUG: Test to ensure this recovers the value #ifdef DEBUG_BP uint64_t test_aL = 0, test_aR = 0; for (size_t i = 0; i < N; ++i) { if (aL[i] == rct::identity()) test_aL += ((uint64_t)1)<<i; if (aR[i] == rct::zero()) test_aR += ((uint64_t)1)<<i; } uint64_t v_test = 0; for (int n = 0; n < 8; ++n) v_test |= (((uint64_t)sv[n]) << (8*n)); CHECK_AND_ASSERT_THROW_MES(test_aL == v_test, "test_aL failed"); CHECK_AND_ASSERT_THROW_MES(test_aR == v_test, "test_aR failed"); #endif PERF_TIMER_START_BP(PROVE_step1); // PAPER LINES 38-39 rct::key alpha = rct::skGen(); rct::key ve = vector_exponent(aL, aR); rct::key A; rct::addKeys(A, ve, rct::scalarmultBase(alpha)); // PAPER LINES 40-42 rct::keyV sL = rct::skvGen(N), sR = rct::skvGen(N); rct::key rho = rct::skGen(); ve = vector_exponent(sL, sR); rct::key S; rct::addKeys(S, ve, rct::scalarmultBase(rho)); // PAPER LINES 43-45 rct::key y = hash_cache_mash(hash_cache, A, S); rct::key z = hash_cache = rct::hash_to_scalar(y); // Polynomial construction before PAPER LINE 46 rct::key t0 = rct::zero(); rct::key t1 = rct::zero(); rct::key t2 = rct::zero(); const auto yN = vector_powers(y, N); rct::key ip1y = inner_product(oneN, yN); rct::key tmp; sc_muladd(t0.bytes, z.bytes, ip1y.bytes, t0.bytes); rct::key zsq; sc_mul(zsq.bytes, z.bytes, z.bytes); sc_muladd(t0.bytes, zsq.bytes, sv.bytes, t0.bytes); rct::key k = rct::zero(); sc_mulsub(k.bytes, zsq.bytes, ip1y.bytes, k.bytes); rct::key zcu; sc_mul(zcu.bytes, zsq.bytes, z.bytes); sc_mulsub(k.bytes, zcu.bytes, ip12.bytes, k.bytes); sc_add(t0.bytes, t0.bytes, k.bytes); // DEBUG: Test the value of t0 has the correct form #ifdef DEBUG_BP rct::key test_t0 = rct::zero(); rct::key iph = inner_product(aL, hadamard(aR, yN)); sc_add(test_t0.bytes, test_t0.bytes, iph.bytes); rct::key ips = inner_product(vector_subtract(aL, aR), yN); sc_muladd(test_t0.bytes, z.bytes, ips.bytes, test_t0.bytes); rct::key ipt = inner_product(twoN, aL); sc_muladd(test_t0.bytes, zsq.bytes, ipt.bytes, test_t0.bytes); sc_add(test_t0.bytes, test_t0.bytes, k.bytes); CHECK_AND_ASSERT_THROW_MES(t0 == test_t0, "t0 check failed"); #endif PERF_TIMER_STOP(PROVE_step1); PERF_TIMER_START_BP(PROVE_step2); const auto HyNsR = hadamard(yN, sR); const auto vpIz = vector_scalar(oneN, z); const auto vp2zsq = vector_scalar(twoN, zsq); const auto aL_vpIz = vector_subtract(aL, vpIz); const auto aR_vpIz = vector_add(aR, vpIz); rct::key ip1 = inner_product(aL_vpIz, HyNsR); sc_add(t1.bytes, t1.bytes, ip1.bytes); rct::key ip2 = inner_product(sL, vector_add(hadamard(yN, aR_vpIz), vp2zsq)); sc_add(t1.bytes, t1.bytes, ip2.bytes); rct::key ip3 = inner_product(sL, HyNsR); sc_add(t2.bytes, t2.bytes, ip3.bytes); // PAPER LINES 47-48 rct::key tau1 = rct::skGen(), tau2 = rct::skGen(); rct::key T1 = rct::addKeys(rct::scalarmultKey(rct::H, t1), rct::scalarmultBase(tau1)); rct::key T2 = rct::addKeys(rct::scalarmultKey(rct::H, t2), rct::scalarmultBase(tau2)); // PAPER LINES 49-51 rct::key x = hash_cache_mash(hash_cache, z, T1, T2); // PAPER LINES 52-53 rct::key taux = rct::zero(); sc_mul(taux.bytes, tau1.bytes, x.bytes); rct::key xsq; sc_mul(xsq.bytes, x.bytes, x.bytes); sc_muladd(taux.bytes, tau2.bytes, xsq.bytes, taux.bytes); sc_muladd(taux.bytes, gamma.bytes, zsq.bytes, taux.bytes); rct::key mu; sc_muladd(mu.bytes, x.bytes, rho.bytes, alpha.bytes); // PAPER LINES 54-57 rct::keyV l = vector_add(aL_vpIz, vector_scalar(sL, x)); rct::keyV r = vector_add(hadamard(yN, vector_add(aR_vpIz, vector_scalar(sR, x))), vp2zsq); PERF_TIMER_STOP(PROVE_step2); PERF_TIMER_START_BP(PROVE_step3); rct::key t = inner_product(l, r); // DEBUG: Test if the l and r vectors match the polynomial forms #ifdef DEBUG_BP rct::key test_t; sc_muladd(test_t.bytes, t1.bytes, x.bytes, t0.bytes); sc_muladd(test_t.bytes, t2.bytes, xsq.bytes, test_t.bytes); CHECK_AND_ASSERT_THROW_MES(test_t == t, "test_t check failed"); #endif // PAPER LINES 32-33 rct::key x_ip = hash_cache_mash(hash_cache, x, taux, mu, t); // These are used in the inner product rounds size_t nprime = N; rct::keyV Gprime(N); rct::keyV Hprime(N); rct::keyV aprime(N); rct::keyV bprime(N); const rct::key yinv = invert(y); rct::key yinvpow = rct::identity(); for (size_t i = 0; i < N; ++i) { Gprime[i] = Gi[i]; Hprime[i] = scalarmultKey(Hi[i], yinvpow); sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes); aprime[i] = l[i]; bprime[i] = r[i]; } rct::keyV L(logN); rct::keyV R(logN); int round = 0; rct::keyV w(logN); // this is the challenge x in the inner product protocol PERF_TIMER_STOP(PROVE_step3); PERF_TIMER_START_BP(PROVE_step4); // PAPER LINE 13 while (nprime > 1) { // PAPER LINE 15 nprime /= 2; // PAPER LINES 16-17 rct::key cL = inner_product(slice(aprime, 0, nprime), slice(bprime, nprime, bprime.size())); rct::key cR = inner_product(slice(aprime, nprime, aprime.size()), slice(bprime, 0, nprime)); // PAPER LINES 18-19 L[round] = vector_exponent_custom(slice(Gprime, nprime, Gprime.size()), slice(Hprime, 0, nprime), slice(aprime, 0, nprime), slice(bprime, nprime, bprime.size())); sc_mul(tmp.bytes, cL.bytes, x_ip.bytes); rct::addKeys(L[round], L[round], rct::scalarmultKey(rct::H, tmp)); R[round] = vector_exponent_custom(slice(Gprime, 0, nprime), slice(Hprime, nprime, Hprime.size()), slice(aprime, nprime, aprime.size()), slice(bprime, 0, nprime)); sc_mul(tmp.bytes, cR.bytes, x_ip.bytes); rct::addKeys(R[round], R[round], rct::scalarmultKey(rct::H, tmp)); // PAPER LINES 21-22 w[round] = hash_cache_mash(hash_cache, L[round], R[round]); // PAPER LINES 24-25 const rct::key winv = invert(w[round]); Gprime = hadamard2(vector_scalar2(slice(Gprime, 0, nprime), winv), vector_scalar2(slice(Gprime, nprime, Gprime.size()), w[round])); Hprime = hadamard2(vector_scalar2(slice(Hprime, 0, nprime), w[round]), vector_scalar2(slice(Hprime, nprime, Hprime.size()), winv)); // PAPER LINES 28-29 aprime = vector_add(vector_scalar(slice(aprime, 0, nprime), w[round]), vector_scalar(slice(aprime, nprime, aprime.size()), winv)); bprime = vector_add(vector_scalar(slice(bprime, 0, nprime), winv), vector_scalar(slice(bprime, nprime, bprime.size()), w[round])); ++round; } PERF_TIMER_STOP(PROVE_step4); // PAPER LINE 58 (with inclusions from PAPER LINE 8 and PAPER LINE 20) return Bulletproof(V, A, S, T1, T2, taux, mu, L, R, aprime[0], bprime[0], t); } Bulletproof bulletproof_PROVE(uint64_t v, const rct::key &gamma) { // vG + gammaH PERF_TIMER_START_BP(PROVE_v); rct::key sv = rct::zero(); sv.bytes[0] = v & 255; sv.bytes[1] = (v >> 8) & 255; sv.bytes[2] = (v >> 16) & 255; sv.bytes[3] = (v >> 24) & 255; sv.bytes[4] = (v >> 32) & 255; sv.bytes[5] = (v >> 40) & 255; sv.bytes[6] = (v >> 48) & 255; sv.bytes[7] = (v >> 56) & 255; PERF_TIMER_STOP(PROVE_v); return bulletproof_PROVE(sv, gamma); } /* Given a range proof, determine if it is valid */ bool bulletproof_VERIFY(const Bulletproof &proof) { init_exponents(); CHECK_AND_ASSERT_MES(proof.V.size() == 1, false, "V does not have exactly one element"); CHECK_AND_ASSERT_MES(proof.L.size() == proof.R.size(), false, "Mismatched L and R sizes"); CHECK_AND_ASSERT_MES(proof.L.size() > 0, false, "Empty proof"); CHECK_AND_ASSERT_MES(proof.L.size() == 6, false, "Proof is not for 64 bits"); const size_t logN = proof.L.size(); const size_t N = 1 << logN; // Reconstruct the challenges PERF_TIMER_START_BP(VERIFY); PERF_TIMER_START_BP(VERIFY_start); rct::key hash_cache = rct::hash_to_scalar(proof.V[0]); rct::key y = hash_cache_mash(hash_cache, proof.A, proof.S); rct::key z = hash_cache = rct::hash_to_scalar(y); rct::key x = hash_cache_mash(hash_cache, z, proof.T1, proof.T2); PERF_TIMER_STOP(VERIFY_start); PERF_TIMER_START_BP(VERIFY_line_60); // Reconstruct the challenges rct::key x_ip = hash_cache_mash(hash_cache, x, proof.taux, proof.mu, proof.t); PERF_TIMER_STOP(VERIFY_line_60); PERF_TIMER_START_BP(VERIFY_line_61); // PAPER LINE 61 rct::key L61Left = rct::addKeys(rct::scalarmultBase(proof.taux), rct::scalarmultKey(rct::H, proof.t)); rct::key k = rct::zero(); const auto yN = vector_powers(y, N); rct::key ip1y = inner_product(oneN, yN); rct::key zsq; sc_mul(zsq.bytes, z.bytes, z.bytes); rct::key tmp, tmp2; sc_mulsub(k.bytes, zsq.bytes, ip1y.bytes, k.bytes); rct::key zcu; sc_mul(zcu.bytes, zsq.bytes, z.bytes); sc_mulsub(k.bytes, zcu.bytes, ip12.bytes, k.bytes); PERF_TIMER_STOP(VERIFY_line_61); PERF_TIMER_START_BP(VERIFY_line_61rl); sc_muladd(tmp.bytes, z.bytes, ip1y.bytes, k.bytes); rct::key L61Right = rct::scalarmultKey(rct::H, tmp); CHECK_AND_ASSERT_MES(proof.V.size() == 1, false, "proof.V does not have exactly one element"); tmp = rct::scalarmultKey(proof.V[0], zsq); rct::addKeys(L61Right, L61Right, tmp); tmp = rct::scalarmultKey(proof.T1, x); rct::addKeys(L61Right, L61Right, tmp); rct::key xsq; sc_mul(xsq.bytes, x.bytes, x.bytes); tmp = rct::scalarmultKey(proof.T2, xsq); rct::addKeys(L61Right, L61Right, tmp); PERF_TIMER_STOP(VERIFY_line_61rl); if (!(L61Right == L61Left)) { MERROR("Verification failure at step 1"); return false; } PERF_TIMER_START_BP(VERIFY_line_62); // PAPER LINE 62 rct::key P = rct::addKeys(proof.A, rct::scalarmultKey(proof.S, x)); PERF_TIMER_STOP(VERIFY_line_62); // Compute the number of rounds for the inner product const size_t rounds = proof.L.size(); CHECK_AND_ASSERT_MES(rounds > 0, false, "Zero rounds"); PERF_TIMER_START_BP(VERIFY_line_21_22); // PAPER LINES 21-22 // The inner product challenges are computed per round rct::keyV w(rounds); for (size_t i = 0; i < rounds; ++i) { w[i] = hash_cache_mash(hash_cache, proof.L[i], proof.R[i]); } PERF_TIMER_STOP(VERIFY_line_21_22); PERF_TIMER_START_BP(VERIFY_line_24_25); // Basically PAPER LINES 24-25 // Compute the curvepoints from G[i] and H[i] rct::key inner_prod = rct::identity(); rct::key yinvpow = rct::identity(); rct::key ypow = rct::identity(); PERF_TIMER_START_BP(VERIFY_line_24_25_invert); const rct::key yinv = invert(y); rct::keyV winv(rounds); for (size_t i = 0; i < rounds; ++i) winv[i] = invert(w[i]); PERF_TIMER_STOP(VERIFY_line_24_25_invert); for (size_t i = 0; i < N; ++i) { // Convert the index to binary IN REVERSE and construct the scalar exponent rct::key g_scalar = proof.a; rct::key h_scalar; sc_mul(h_scalar.bytes, proof.b.bytes, yinvpow.bytes); for (size_t j = rounds; j-- > 0; ) { size_t J = w.size() - j - 1; if ((i & (((size_t)1)<<j)) == 0) { sc_mul(g_scalar.bytes, g_scalar.bytes, winv[J].bytes); sc_mul(h_scalar.bytes, h_scalar.bytes, w[J].bytes); } else { sc_mul(g_scalar.bytes, g_scalar.bytes, w[J].bytes); sc_mul(h_scalar.bytes, h_scalar.bytes, winv[J].bytes); } } // Adjust the scalars using the exponents from PAPER LINE 62 sc_add(g_scalar.bytes, g_scalar.bytes, z.bytes); sc_mul(tmp.bytes, zsq.bytes, twoN[i].bytes); sc_muladd(tmp.bytes, z.bytes, ypow.bytes, tmp.bytes); sc_mulsub(h_scalar.bytes, tmp.bytes, yinvpow.bytes, h_scalar.bytes); // Now compute the basepoint's scalar multiplication // Each of these could be written as a multiexp operation instead rct::addKeys3(tmp, g_scalar, Gprecomp[i], h_scalar, Hprecomp[i]); rct::addKeys(inner_prod, inner_prod, tmp); if (i != N-1) { sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes); sc_mul(ypow.bytes, ypow.bytes, y.bytes); } } PERF_TIMER_STOP(VERIFY_line_24_25); PERF_TIMER_START_BP(VERIFY_line_26); // PAPER LINE 26 rct::key pprime; sc_sub(tmp.bytes, rct::zero().bytes, proof.mu.bytes); rct::addKeys(pprime, P, rct::scalarmultBase(tmp)); for (size_t i = 0; i < rounds; ++i) { sc_mul(tmp.bytes, w[i].bytes, w[i].bytes); sc_mul(tmp2.bytes, winv[i].bytes, winv[i].bytes); #if 1 ge_dsmp cacheL, cacheR; rct::precomp(cacheL, proof.L[i]); rct::precomp(cacheR, proof.R[i]); rct::addKeys3(tmp, tmp, cacheL, tmp2, cacheR); rct::addKeys(pprime, pprime, tmp); #else rct::addKeys(pprime, pprime, rct::scalarmultKey(proof.L[i], tmp)); rct::addKeys(pprime, pprime, rct::scalarmultKey(proof.R[i], tmp2)); #endif } sc_mul(tmp.bytes, proof.t.bytes, x_ip.bytes); rct::addKeys(pprime, pprime, rct::scalarmultKey(rct::H, tmp)); PERF_TIMER_STOP(VERIFY_line_26); PERF_TIMER_START_BP(VERIFY_step2_check); sc_mul(tmp.bytes, proof.a.bytes, proof.b.bytes); sc_mul(tmp.bytes, tmp.bytes, x_ip.bytes); tmp = rct::scalarmultKey(rct::H, tmp); rct::addKeys(tmp, tmp, inner_prod); PERF_TIMER_STOP(VERIFY_step2_check); if (!(pprime == tmp)) { MERROR("Verification failure at step 2"); return false; } PERF_TIMER_STOP(VERIFY); return true; } }