// Copyright (c) 2017-2018, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // #include #include #include #include #include "transport.hpp" #include "messages/messages-common.pb.h" using namespace std; using json = rapidjson::Document; namespace hw{ namespace trezor{ bool t_serialize(const std::string & in, std::string & out){ out = in; return true; } bool t_serialize(const json_val & in, std::string & out){ rapidjson::StringBuffer sb; rapidjson::Writer writer(sb); in.Accept(writer); out = sb.GetString(); return true; } std::string t_serialize(const json_val & in){ std::string ret; t_serialize(in, ret); return ret; } bool t_deserialize(const std::string & in, std::string & out){ out = in; return true; } bool t_deserialize(const std::string & in, json & out){ if (out.Parse(in.c_str()).HasParseError()) { throw exc::CommunicationException("JSON parse error"); } return true; } static std::string json_get_string(const rapidjson::Value & in){ return std::string(in.GetString()); } // // Helpers // #define PROTO_HEADER_SIZE 6 static size_t message_size(const google::protobuf::Message &req){ return static_cast(req.ByteSize()); } static size_t serialize_message_buffer_size(size_t msg_size) { return PROTO_HEADER_SIZE + msg_size; // tag 2B + len 4B } static void serialize_message_header(void * buff, uint16_t tag, uint32_t len){ uint16_t wire_tag = boost::endian::native_to_big(static_cast(tag)); uint32_t wire_len = boost::endian::native_to_big(static_cast(len)); memcpy(buff, (void *) &wire_tag, 2); memcpy((uint8_t*)buff + 2, (void *) &wire_len, 4); } static void deserialize_message_header(const void * buff, uint16_t & tag, uint32_t & len){ uint16_t wire_tag; uint32_t wire_len; memcpy(&wire_tag, buff, 2); memcpy(&wire_len, (uint8_t*)buff + 2, 4); tag = boost::endian::big_to_native(wire_tag); len = boost::endian::big_to_native(wire_len); } static void serialize_message(const google::protobuf::Message &req, size_t msg_size, uint8_t * buff, size_t buff_size) { auto msg_wire_num = MessageMapper::get_message_wire_number(req); const auto req_buffer_size = serialize_message_buffer_size(msg_size); if (req_buffer_size > buff_size){ throw std::invalid_argument("Buffer too small"); } serialize_message_header(buff, msg_wire_num, msg_size); if (!req.SerializeToArray(buff + 6, msg_size)){ throw exc::EncodingException("Message serialization error"); } } // // Communication protocol // #define REPLEN 64 void ProtocolV1::write(Transport & transport, const google::protobuf::Message & req){ const auto msg_size = message_size(req); const auto buff_size = serialize_message_buffer_size(msg_size) + 2; std::unique_ptr req_buff(new uint8_t[buff_size]); uint8_t * req_buff_raw = req_buff.get(); req_buff_raw[0] = '#'; req_buff_raw[1] = '#'; serialize_message(req, msg_size, req_buff_raw + 2, buff_size - 2); size_t offset = 0; uint8_t chunk_buff[REPLEN]; // Chunk by chunk upload while(offset < buff_size){ auto to_copy = std::min((size_t)(buff_size - offset), (size_t)(REPLEN - 1)); chunk_buff[0] = '?'; memcpy(chunk_buff + 1, req_buff_raw + offset, to_copy); // Pad with zeros if (to_copy < REPLEN - 1){ memset(chunk_buff + 1 + to_copy, 0, REPLEN - 1 - to_copy); } transport.write_chunk(chunk_buff, REPLEN); offset += REPLEN - 1; } } void ProtocolV1::read(Transport & transport, std::shared_ptr & msg, messages::MessageType * msg_type){ char chunk[REPLEN]; // Initial chunk read size_t nread = transport.read_chunk(chunk, REPLEN); if (nread != REPLEN){ throw exc::CommunicationException("Read chunk has invalid size"); } if (strncmp(chunk, "?##", 3) != 0){ throw exc::CommunicationException("Malformed chunk"); } uint16_t tag; uint32_t len; nread -= 3 + 6; deserialize_message_header(chunk + 3, tag, len); std::string data_acc(chunk + 3 + 6, nread); data_acc.reserve(len); while(nread < len){ const size_t cur = transport.read_chunk(chunk, REPLEN); if (chunk[0] != '?'){ throw exc::CommunicationException("Chunk malformed"); } data_acc.append(chunk + 1, cur - 1); nread += cur - 1; } if (msg_type){ *msg_type = static_cast(tag); } if (nread < len){ throw exc::CommunicationException("Response incomplete"); } std::shared_ptr msg_wrap(MessageMapper::get_message(tag)); if (!msg_wrap->ParseFromArray(data_acc.c_str(), len)){ throw exc::CommunicationException("Message could not be parsed"); } msg = msg_wrap; } // // Bridge transport // const char * BridgeTransport::PATH_PREFIX = "bridge:"; std::string BridgeTransport::get_path() const { if (!m_device_path){ return ""; } std::string path(PATH_PREFIX); return path + m_device_path.get(); } void BridgeTransport::enumerate(t_transport_vect & res) { json bridge_res; std::string req; bool req_status = invoke_bridge_http("/enumerate", req, bridge_res, m_http_client); if (!req_status){ throw exc::CommunicationException("Bridge enumeration failed"); } for(rapidjson::Value::ConstValueIterator itr = bridge_res.Begin(); itr != bridge_res.End(); ++itr){ auto element = itr->GetObject(); auto t = std::make_shared(boost::make_optional(json_get_string(element["path"]))); t->m_device_info.emplace(); t->m_device_info->CopyFrom(*itr, t->m_device_info->GetAllocator()); res.push_back(t); } } void BridgeTransport::open() { if (!m_device_path){ throw exc::CommunicationException("Coud not open, empty device path"); } std::string uri = "/acquire/" + m_device_path.get() + "/null"; std::string req; json bridge_res; bool req_status = invoke_bridge_http(uri, req, bridge_res, m_http_client); if (!req_status){ throw exc::CommunicationException("Failed to acquire device"); } m_session = boost::make_optional(json_get_string(bridge_res["session"])); } void BridgeTransport::close() { if (!m_device_path || !m_session){ throw exc::CommunicationException("Device not open"); } std::string uri = "/release/" + m_session.get(); std::string req; json bridge_res; bool req_status = invoke_bridge_http(uri, req, bridge_res, m_http_client); if (!req_status){ throw exc::CommunicationException("Failed to release device"); } m_session = boost::none; } void BridgeTransport::write(const google::protobuf::Message &req) { m_response = boost::none; const auto msg_size = message_size(req); const auto buff_size = serialize_message_buffer_size(msg_size); std::unique_ptr req_buff(new uint8_t[buff_size]); uint8_t * req_buff_raw = req_buff.get(); serialize_message(req, msg_size, req_buff_raw, buff_size); std::string uri = "/call/" + m_session.get(); std::string req_hex = epee::to_hex::string(epee::span(req_buff_raw, buff_size)); std::string res_hex; bool req_status = invoke_bridge_http(uri, req_hex, res_hex, m_http_client); if (!req_status){ throw exc::CommunicationException("Call method failed"); } m_response = res_hex; } void BridgeTransport::read(std::shared_ptr & msg, messages::MessageType * msg_type) { if (!m_response){ throw exc::CommunicationException("Could not read, no response stored"); } std::string bin_data; if (!epee::string_tools::parse_hexstr_to_binbuff(m_response.get(), bin_data)){ throw exc::CommunicationException("Response is not well hexcoded"); } uint16_t msg_tag; uint32_t msg_len; deserialize_message_header(bin_data.c_str(), msg_tag, msg_len); if (bin_data.size() != msg_len + 6){ throw exc::CommunicationException("Response is not well hexcoded"); } if (msg_type){ *msg_type = static_cast(msg_tag); } std::shared_ptr msg_wrap(MessageMapper::get_message(msg_tag)); if (!msg_wrap->ParseFromArray(bin_data.c_str() + 6, msg_len)){ throw exc::EncodingException("Response is not well hexcoded"); } msg = msg_wrap; } const boost::optional & BridgeTransport::device_info() const { return m_device_info; } std::ostream& BridgeTransport::dump(std::ostream& o) const { return o << "BridgeTransport"; } // // UdpTransport // const char * UdpTransport::PATH_PREFIX = "udp:"; const char * UdpTransport::DEFAULT_HOST = "127.0.0.1"; const int UdpTransport::DEFAULT_PORT = 21324; UdpTransport::UdpTransport(boost::optional device_path, boost::optional> proto) : m_io_service(), m_deadline(m_io_service) { m_device_port = DEFAULT_PORT; if (device_path) { const std::string device_str = device_path.get(); auto delim = device_str.find(':'); if (delim == std::string::npos) { m_device_host = device_str; } else { m_device_host = device_str.substr(0, delim); m_device_port = std::stoi(device_str.substr(delim + 1)); } } else { m_device_host = DEFAULT_HOST; } if (m_device_port <= 1024 || m_device_port > 65535){ throw std::invalid_argument("Port number invalid"); } if (m_device_host != "localhost" && m_device_host != DEFAULT_HOST){ throw std::invalid_argument("Local endpoint allowed only"); } m_proto = proto ? proto.get() : std::make_shared(); } std::string UdpTransport::get_path() const { std::string path(PATH_PREFIX); return path + m_device_host + ":" + std::to_string(m_device_port); } void UdpTransport::require_socket(){ if (!m_socket){ throw exc::NotConnectedException("Socket not connected"); } } bool UdpTransport::ping(){ return ping_int(); } bool UdpTransport::ping_int(boost::posix_time::time_duration timeout){ require_socket(); try { std::string req = "PINGPING"; char res[8]; m_socket->send_to(boost::asio::buffer(req.c_str(), req.size()), m_endpoint); receive(res, 8, nullptr, false, timeout); return memcmp(res, "PONGPONG", 8) == 0; } catch(...){ return false; } } void UdpTransport::enumerate(t_transport_vect & res) { std::shared_ptr t = std::make_shared(); bool t_works = false; try{ t->open(); t_works = t->ping(); } catch(...) { } t->close(); if (t_works){ res.push_back(t); } } void UdpTransport::open() { udp::resolver resolver(m_io_service); udp::resolver::query query(udp::v4(), m_device_host, std::to_string(m_device_port)); m_endpoint = *resolver.resolve(query); m_socket.reset(new udp::socket(m_io_service)); m_socket->open(udp::v4()); m_deadline.expires_at(boost::posix_time::pos_infin); check_deadline(); m_proto->session_begin(*this); } void UdpTransport::close() { if (!m_socket){ throw exc::CommunicationException("Socket is already closed"); } m_proto->session_end(*this); m_socket->close(); m_socket = nullptr; } void UdpTransport::write_chunk(const void * buff, size_t size){ require_socket(); if (size != 64){ throw exc::CommunicationException("Invalid chunk size"); } auto written = m_socket->send_to(boost::asio::buffer(buff, size), m_endpoint); if (size != written){ throw exc::CommunicationException("Could not send the whole chunk"); } } size_t UdpTransport::read_chunk(void * buff, size_t size){ require_socket(); if (size < 64){ throw std::invalid_argument("Buffer too small"); } ssize_t len; while(true) { try { boost::system::error_code ec; len = receive(buff, size, &ec, true); if (ec == boost::asio::error::operation_aborted) { continue; } else if (ec) { throw exc::CommunicationException(std::string("Comm error: ") + ec.message()); } if (len != 64) { throw exc::CommunicationException("Invalid chunk size"); } break; } catch(exc::CommunicationException const& e){ throw; } catch(std::exception const& e){ MWARNING("Error reading chunk, reason: " << e.what()); throw exc::CommunicationException(std::string("Chunk read error: ") + std::string(e.what())); } } return static_cast(len); } ssize_t UdpTransport::receive(void * buff, size_t size, boost::system::error_code * error_code, bool no_throw, boost::posix_time::time_duration timeout){ boost::system::error_code ec; boost::asio::mutable_buffer buffer = boost::asio::buffer(buff, size); require_socket(); // Set a deadline for the asynchronous operation. m_deadline.expires_from_now(timeout); // Set up the variables that receive the result of the asynchronous // operation. The error code is set to would_block to signal that the // operation is incomplete. Asio guarantees that its asynchronous // operations will never fail with would_block, so any other value in // ec indicates completion. ec = boost::asio::error::would_block; std::size_t length = 0; // Start the asynchronous operation itself. The handle_receive function // used as a callback will update the ec and length variables. m_socket->async_receive_from(boost::asio::buffer(buffer), m_endpoint, boost::bind(&UdpTransport::handle_receive, _1, _2, &ec, &length)); // Block until the asynchronous operation has completed. do { m_io_service.run_one(); } while (ec == boost::asio::error::would_block); if (error_code){ *error_code = ec; } if (no_throw){ return length; } // Operation result if (ec == boost::asio::error::operation_aborted){ throw exc::TimeoutException(); } else if (ec) { MWARNING("Reading from UDP socket failed: " << ec.message()); throw exc::CommunicationException(); } return length; } void UdpTransport::write(const google::protobuf::Message &req) { m_proto->write(*this, req); } void UdpTransport::read(std::shared_ptr & msg, messages::MessageType * msg_type) { m_proto->read(*this, msg, msg_type); } void UdpTransport::check_deadline(){ if (!m_socket){ return; // no active socket. } // Check whether the deadline has passed. We compare the deadline against // the current time since a new asynchronous operation may have moved the // deadline before this actor had a chance to run. if (m_deadline.expires_at() <= boost::asio::deadline_timer::traits_type::now()) { // The deadline has passed. The outstanding asynchronous operation needs // to be cancelled so that the blocked receive() function will return. // // Please note that cancel() has portability issues on some versions of // Microsoft Windows, and it may be necessary to use close() instead. // Consult the documentation for cancel() for further information. m_socket->cancel(); // There is no longer an active deadline. The expiry is set to positive // infinity so that the actor takes no action until a new deadline is set. m_deadline.expires_at(boost::posix_time::pos_infin); } // Put the actor back to sleep. m_deadline.async_wait(boost::bind(&UdpTransport::check_deadline, this)); } void UdpTransport::handle_receive(const boost::system::error_code &ec, std::size_t length, boost::system::error_code *out_ec, std::size_t *out_length) { *out_ec = ec; *out_length = length; } std::ostream& UdpTransport::dump(std::ostream& o) const { return o << "UdpTransport"; } void enumerate(t_transport_vect & res){ BridgeTransport bt; bt.enumerate(res); hw::trezor::UdpTransport btu; btu.enumerate(res); } std::shared_ptr transport(const std::string & path){ if (boost::starts_with(path, BridgeTransport::PATH_PREFIX)){ return std::make_shared(path.substr(strlen(BridgeTransport::PATH_PREFIX))); } else if (boost::starts_with(path, UdpTransport::PATH_PREFIX)){ return std::make_shared(path.substr(strlen(UdpTransport::PATH_PREFIX))); } else { throw std::invalid_argument("Unknown Trezor device path: " + path); } } void throw_failure_exception(const messages::common::Failure * failure) { if (failure == nullptr){ throw std::invalid_argument("Failure message cannot be null"); } boost::optional message = failure->has_message() ? boost::make_optional(failure->message()) : boost::none; boost::optional code = failure->has_code() ? boost::make_optional(static_cast(failure->code())) : boost::none; if (!code){ throw exc::proto::FailureException(code, message); } auto ecode = failure->code(); if (ecode == messages::common::Failure_FailureType_Failure_UnexpectedMessage){ throw exc::proto::UnexpectedMessageException(code, message); } else if (ecode == messages::common::Failure_FailureType_Failure_ActionCancelled){ throw exc::proto::CancelledException(code, message); } else if (ecode == messages::common::Failure_FailureType_Failure_PinExpected){ throw exc::proto::PinExpectedException(code, message); } else if (ecode == messages::common::Failure_FailureType_Failure_PinInvalid){ throw exc::proto::InvalidPinException(code, message); } else if (ecode == messages::common::Failure_FailureType_Failure_NotEnoughFunds){ throw exc::proto::NotEnoughFundsException(code, message); } else if (ecode == messages::common::Failure_FailureType_Failure_NotInitialized){ throw exc::proto::NotInitializedException(code, message); } else if (ecode == messages::common::Failure_FailureType_Failure_FirmwareError){ throw exc::proto::FirmwareErrorException(code, message); } else { throw exc::proto::FailureException(code, message); } } std::ostream& operator<<(std::ostream& o, hw::trezor::Transport const& t){ return t.dump(o); } std::ostream& operator<<(std::ostream& o, std::shared_ptr const& t){ if (!t){ return o << "None"; } return t->dump(o); } } }