// Copyright (c) 2017-2019, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // #include "protocol.hpp" #include #include #include #include #include #include #include #include "cryptonote_config.h" #include #include #include namespace hw{ namespace trezor{ namespace protocol{ std::string key_to_string(const ::crypto::ec_point & key){ return std::string(key.data, sizeof(key.data)); } std::string key_to_string(const ::crypto::ec_scalar & key){ return std::string(key.data, sizeof(key.data)); } std::string key_to_string(const ::crypto::hash & key){ return std::string(key.data, sizeof(key.data)); } std::string key_to_string(const ::rct::key & key){ return std::string(reinterpret_cast(key.bytes), sizeof(key.bytes)); } void string_to_key(::crypto::ec_scalar & key, const std::string & str){ if (str.size() != sizeof(key.data)){ throw std::invalid_argument(std::string("Key has to have ") + std::to_string(sizeof(key.data)) + " B"); } memcpy(key.data, str.data(), sizeof(key.data)); } void string_to_key(::crypto::ec_point & key, const std::string & str){ if (str.size() != sizeof(key.data)){ throw std::invalid_argument(std::string("Key has to have ") + std::to_string(sizeof(key.data)) + " B"); } memcpy(key.data, str.data(), sizeof(key.data)); } void string_to_key(::rct::key & key, const std::string & str){ if (str.size() != sizeof(key.bytes)){ throw std::invalid_argument(std::string("Key has to have ") + std::to_string(sizeof(key.bytes)) + " B"); } memcpy(key.bytes, str.data(), sizeof(key.bytes)); } namespace crypto { namespace chacha { void decrypt(const void* ciphertext, size_t length, const uint8_t* key, const uint8_t* iv, char* plaintext){ if (length < 16){ throw std::invalid_argument("Ciphertext length too small"); } unsigned long long int cip_len = length; auto r = crypto_aead_chacha20poly1305_ietf_decrypt( reinterpret_cast(plaintext), &cip_len, nullptr, static_cast(ciphertext), length, nullptr, 0, iv, key); if (r != 0){ throw exc::Poly1305TagInvalid(); } } } } // Cold Key image sync namespace ki { bool key_image_data(wallet_shim * wallet, const std::vector & transfers, std::vector & res) { for(auto & td : transfers){ ::crypto::public_key tx_pub_key = wallet->get_tx_pub_key_from_received_outs(td); const std::vector<::crypto::public_key> additional_tx_pub_keys = cryptonote::get_additional_tx_pub_keys_from_extra(td.m_tx); res.emplace_back(); auto & cres = res.back(); cres.set_out_key(key_to_string(boost::get(td.m_tx.vout[td.m_internal_output_index].target).key)); cres.set_tx_pub_key(key_to_string(tx_pub_key)); cres.set_internal_output_index(td.m_internal_output_index); for(auto & aux : additional_tx_pub_keys){ cres.add_additional_tx_pub_keys(key_to_string(aux)); } } return true; } std::string compute_hash(const MoneroTransferDetails & rr){ KECCAK_CTX kck; uint8_t md[32]; CHECK_AND_ASSERT_THROW_MES(rr.out_key().size() == 32, "Invalid out_key size"); CHECK_AND_ASSERT_THROW_MES(rr.tx_pub_key().size() == 32, "Invalid tx_pub_key size"); keccak_init(&kck); keccak_update(&kck, reinterpret_cast(rr.out_key().data()), 32); keccak_update(&kck, reinterpret_cast(rr.tx_pub_key().data()), 32); for (const auto &aux : rr.additional_tx_pub_keys()){ CHECK_AND_ASSERT_THROW_MES(aux.size() == 32, "Invalid aux size"); keccak_update(&kck, reinterpret_cast(aux.data()), 32); } auto index_serialized = tools::get_varint_data(rr.internal_output_index()); keccak_update(&kck, reinterpret_cast(index_serialized.data()), index_serialized.size()); keccak_finish(&kck, md); return std::string(reinterpret_cast(md), sizeof(md)); } void generate_commitment(std::vector & mtds, const std::vector & transfers, std::shared_ptr & req) { req = std::make_shared(); KECCAK_CTX kck; uint8_t final_hash[32]; keccak_init(&kck); for(auto &cur : mtds){ auto hash = compute_hash(cur); keccak_update(&kck, reinterpret_cast(hash.data()), hash.size()); } keccak_finish(&kck, final_hash); req = std::make_shared(); req->set_hash(std::string(reinterpret_cast(final_hash), 32)); req->set_num(transfers.size()); std::unordered_map> sub_indices; for (auto &cur : transfers){ auto search = sub_indices.emplace(cur.m_subaddr_index.major, std::set()); auto & st = search.first->second; st.insert(cur.m_subaddr_index.minor); } for (auto& x: sub_indices){ auto subs = req->add_subs(); subs->set_account(x.first); for(auto minor : x.second){ subs->add_minor_indices(minor); } } } } // Cold transaction signing namespace tx { void translate_address(MoneroAccountPublicAddress * dst, const cryptonote::account_public_address * src){ dst->set_view_public_key(key_to_string(src->m_view_public_key)); dst->set_spend_public_key(key_to_string(src->m_spend_public_key)); } void translate_dst_entry(MoneroTransactionDestinationEntry * dst, const cryptonote::tx_destination_entry * src){ dst->set_amount(src->amount); dst->set_is_subaddress(src->is_subaddress); translate_address(dst->mutable_addr(), &(src->addr)); } void translate_src_entry(MoneroTransactionSourceEntry * dst, const cryptonote::tx_source_entry * src){ for(auto & cur : src->outputs){ auto out = dst->add_outputs(); out->set_idx(cur.first); translate_rct_key(out->mutable_key(), &(cur.second)); } dst->set_real_output(src->real_output); dst->set_real_out_tx_key(key_to_string(src->real_out_tx_key)); for(auto & cur : src->real_out_additional_tx_keys){ dst->add_real_out_additional_tx_keys(key_to_string(cur)); } dst->set_real_output_in_tx_index(src->real_output_in_tx_index); dst->set_amount(src->amount); dst->set_rct(src->rct); dst->set_mask(key_to_string(src->mask)); translate_klrki(dst->mutable_multisig_klrki(), &(src->multisig_kLRki)); } void translate_klrki(MoneroMultisigKLRki * dst, const rct::multisig_kLRki * src){ dst->set_k(key_to_string(src->k)); dst->set_l(key_to_string(src->L)); dst->set_r(key_to_string(src->R)); dst->set_ki(key_to_string(src->ki)); } void translate_rct_key(MoneroRctKey * dst, const rct::ctkey * src){ dst->set_dest(key_to_string(src->dest)); dst->set_commitment(key_to_string(src->mask)); } std::string hash_addr(const MoneroAccountPublicAddress * addr, boost::optional amount, boost::optional is_subaddr){ return hash_addr(addr->spend_public_key(), addr->view_public_key(), amount, is_subaddr); } std::string hash_addr(const std::string & spend_key, const std::string & view_key, boost::optional amount, boost::optional is_subaddr){ ::crypto::public_key spend{}, view{}; if (spend_key.size() != 32 || view_key.size() != 32){ throw std::invalid_argument("Public keys have invalid sizes"); } memcpy(spend.data, spend_key.data(), 32); memcpy(view.data, view_key.data(), 32); return hash_addr(&spend, &view, amount, is_subaddr); } std::string hash_addr(const ::crypto::public_key * spend_key, const ::crypto::public_key * view_key, boost::optional amount, boost::optional is_subaddr){ char buff[64+8+1]; size_t offset = 0; memcpy(buff + offset, spend_key->data, 32); offset += 32; memcpy(buff + offset, view_key->data, 32); offset += 32; if (amount){ memcpy(buff + offset, (uint8_t*) &(amount.get()), sizeof(amount.get())); offset += sizeof(amount.get()); } if (is_subaddr){ buff[offset] = is_subaddr.get(); offset += 1; } return std::string(buff, offset); } TData::TData() { in_memory = false; rsig_type = 0; cur_input_idx = 0; cur_output_idx = 0; cur_batch_idx = 0; cur_output_in_batch_idx = 0; } Signer::Signer(wallet_shim *wallet2, const unsigned_tx_set * unsigned_tx, size_t tx_idx, hw::tx_aux_data * aux_data) { m_wallet2 = wallet2; m_unsigned_tx = unsigned_tx; m_aux_data = aux_data; m_tx_idx = tx_idx; m_ct.tx_data = cur_tx(); m_multisig = false; } void Signer::extract_payment_id(){ const std::vector& tx_extra = cur_tx().extra; m_ct.tsx_data.set_payment_id(""); std::vector tx_extra_fields; cryptonote::parse_tx_extra(tx_extra, tx_extra_fields); // ok if partially parsed cryptonote::tx_extra_nonce extra_nonce; ::crypto::hash payment_id{}; if (find_tx_extra_field_by_type(tx_extra_fields, extra_nonce)) { ::crypto::hash8 payment_id8{}; if(cryptonote::get_encrypted_payment_id_from_tx_extra_nonce(extra_nonce.nonce, payment_id8)) { m_ct.tsx_data.set_payment_id(std::string(payment_id8.data, 8)); } else if (cryptonote::get_payment_id_from_tx_extra_nonce(extra_nonce.nonce, payment_id)) { m_ct.tsx_data.set_payment_id(std::string(payment_id.data, 32)); } } } static unsigned get_rsig_type(bool use_bulletproof, size_t num_outputs){ if (!use_bulletproof){ return rct::RangeProofBorromean; } else if (num_outputs > BULLETPROOF_MAX_OUTPUTS){ return rct::RangeProofMultiOutputBulletproof; } else { return rct::RangeProofPaddedBulletproof; } } static void generate_rsig_batch_sizes(std::vector &batches, unsigned rsig_type, size_t num_outputs){ size_t amount_batched = 0; while(amount_batched < num_outputs){ if (rsig_type == rct::RangeProofBorromean || rsig_type == rct::RangeProofBulletproof) { batches.push_back(1); amount_batched += 1; } else if (rsig_type == rct::RangeProofPaddedBulletproof){ if (num_outputs > BULLETPROOF_MAX_OUTPUTS){ throw std::invalid_argument("BP padded can support only BULLETPROOF_MAX_OUTPUTS statements"); } batches.push_back(num_outputs); amount_batched += num_outputs; } else if (rsig_type == rct::RangeProofMultiOutputBulletproof){ size_t batch_size = 1; while (batch_size * 2 + amount_batched <= num_outputs && batch_size * 2 <= BULLETPROOF_MAX_OUTPUTS){ batch_size *= 2; } batch_size = std::min(batch_size, num_outputs - amount_batched); batches.push_back(batch_size); amount_batched += batch_size; } else { throw std::invalid_argument("Unknown rsig type"); } } } void Signer::compute_integrated_indices(TsxData * tsx_data){ if (m_aux_data == nullptr || m_aux_data->tx_recipients.empty()){ return; } auto & chg = tsx_data->change_dts(); std::string change_hash = hash_addr(&chg.addr(), chg.amount(), chg.is_subaddress()); std::vector integrated_indices; std::set integrated_hashes; for (auto & cur : m_aux_data->tx_recipients){ if (!cur.has_payment_id){ continue; } integrated_hashes.emplace(hash_addr(&cur.address.m_spend_public_key, &cur.address.m_view_public_key)); } ssize_t idx = -1; for (auto & cur : tsx_data->outputs()){ idx += 1; std::string c_hash = hash_addr(&cur.addr(), cur.amount(), cur.is_subaddress()); if (c_hash == change_hash || cur.is_subaddress()){ continue; } c_hash = hash_addr(&cur.addr()); if (integrated_hashes.find(c_hash) != integrated_hashes.end()){ integrated_indices.push_back((uint32_t)idx); } } if (!integrated_indices.empty()){ assign_to_repeatable(tsx_data->mutable_integrated_indices(), integrated_indices.begin(), integrated_indices.end()); } } std::shared_ptr Signer::step_init(){ // extract payment ID from construction data auto & tsx_data = m_ct.tsx_data; auto & tx = cur_tx(); m_ct.tx.version = 2; m_ct.tx.unlock_time = tx.unlock_time; tsx_data.set_version(1); tsx_data.set_unlock_time(tx.unlock_time); tsx_data.set_num_inputs(static_cast(tx.sources.size())); tsx_data.set_mixin(static_cast(tx.sources[0].outputs.size() - 1)); tsx_data.set_account(tx.subaddr_account); assign_to_repeatable(tsx_data.mutable_minor_indices(), tx.subaddr_indices.begin(), tx.subaddr_indices.end()); // Rsig decision auto rsig_data = tsx_data.mutable_rsig_data(); m_ct.rsig_type = get_rsig_type(tx.use_bulletproofs, tx.splitted_dsts.size()); rsig_data->set_rsig_type(m_ct.rsig_type); generate_rsig_batch_sizes(m_ct.grouping_vct, m_ct.rsig_type, tx.splitted_dsts.size()); assign_to_repeatable(rsig_data->mutable_grouping(), m_ct.grouping_vct.begin(), m_ct.grouping_vct.end()); translate_dst_entry(tsx_data.mutable_change_dts(), &(tx.change_dts)); for(auto & cur : tx.splitted_dsts){ auto dst = tsx_data.mutable_outputs()->Add(); translate_dst_entry(dst, &cur); } compute_integrated_indices(&tsx_data); int64_t fee = 0; for(auto & cur_in : tx.sources){ fee += cur_in.amount; } for(auto & cur_out : tx.splitted_dsts){ fee -= cur_out.amount; } if (fee < 0){ throw std::invalid_argument("Fee cannot be negative"); } tsx_data.set_fee(static_cast(fee)); this->extract_payment_id(); auto init_req = std::make_shared(); init_req->set_version(0); init_req->mutable_tsx_data()->CopyFrom(tsx_data); return init_req; } void Signer::step_init_ack(std::shared_ptr ack){ m_ct.in_memory = false; if (ack->has_rsig_data()){ m_ct.rsig_param = std::make_shared(ack->rsig_data()); } assign_from_repeatable(&(m_ct.tx_out_entr_hmacs), ack->hmacs().begin(), ack->hmacs().end()); } std::shared_ptr Signer::step_set_input(size_t idx){ CHECK_AND_ASSERT_THROW_MES(idx < cur_tx().sources.size(), "Invalid source index"); m_ct.cur_input_idx = idx; auto res = std::make_shared(); translate_src_entry(res->mutable_src_entr(), &(cur_tx().sources[idx])); return res; } void Signer::step_set_input_ack(std::shared_ptr ack){ auto & vini_str = ack->vini(); cryptonote::txin_v vini; if (!cn_deserialize(vini_str.data(), vini_str.size(), vini)){ throw exc::ProtocolException("Cannot deserialize vin[i]"); } m_ct.tx.vin.emplace_back(vini); m_ct.tx_in_hmacs.push_back(ack->vini_hmac()); m_ct.pseudo_outs.push_back(ack->pseudo_out()); m_ct.pseudo_outs_hmac.push_back(ack->pseudo_out_hmac()); m_ct.alphas.push_back(ack->pseudo_out_alpha()); m_ct.spend_encs.push_back(ack->spend_key()); } void Signer::sort_ki(){ const size_t input_size = cur_tx().sources.size(); m_ct.source_permutation.clear(); for (size_t n = 0; n < input_size; ++n){ m_ct.source_permutation.push_back(n); } CHECK_AND_ASSERT_THROW_MES(m_ct.tx.vin.size() == input_size, "Invalid vector size"); std::sort(m_ct.source_permutation.begin(), m_ct.source_permutation.end(), [&](const size_t i0, const size_t i1) { const cryptonote::txin_to_key &tk0 = boost::get(m_ct.tx.vin[i0]); const cryptonote::txin_to_key &tk1 = boost::get(m_ct.tx.vin[i1]); return memcmp(&tk0.k_image, &tk1.k_image, sizeof(tk0.k_image)) > 0; }); CHECK_AND_ASSERT_THROW_MES(m_ct.tx_in_hmacs.size() == input_size, "Invalid vector size"); CHECK_AND_ASSERT_THROW_MES(m_ct.pseudo_outs.size() == input_size, "Invalid vector size"); CHECK_AND_ASSERT_THROW_MES(m_ct.pseudo_outs_hmac.size() == input_size, "Invalid vector size"); CHECK_AND_ASSERT_THROW_MES(m_ct.alphas.size() == input_size, "Invalid vector size"); CHECK_AND_ASSERT_THROW_MES(m_ct.spend_encs.size() == input_size, "Invalid vector size"); CHECK_AND_ASSERT_THROW_MES(m_ct.tx_data.sources.size() == input_size, "Invalid vector size"); tools::apply_permutation(m_ct.source_permutation, [&](size_t i0, size_t i1){ std::swap(m_ct.tx.vin[i0], m_ct.tx.vin[i1]); std::swap(m_ct.tx_in_hmacs[i0], m_ct.tx_in_hmacs[i1]); std::swap(m_ct.pseudo_outs[i0], m_ct.pseudo_outs[i1]); std::swap(m_ct.pseudo_outs_hmac[i0], m_ct.pseudo_outs_hmac[i1]); std::swap(m_ct.alphas[i0], m_ct.alphas[i1]); std::swap(m_ct.spend_encs[i0], m_ct.spend_encs[i1]); std::swap(m_ct.tx_data.sources[i0], m_ct.tx_data.sources[i1]); }); } std::shared_ptr Signer::step_permutation(){ sort_ki(); if (in_memory()){ return nullptr; } auto res = std::make_shared(); assign_to_repeatable(res->mutable_perm(), m_ct.source_permutation.begin(), m_ct.source_permutation.end()); return res; } void Signer::step_permutation_ack(std::shared_ptr ack){ if (in_memory()){ return; } } std::shared_ptr Signer::step_set_vini_input(size_t idx){ if (in_memory()){ return nullptr; } CHECK_AND_ASSERT_THROW_MES(idx < m_ct.tx_data.sources.size(), "Invalid transaction index"); CHECK_AND_ASSERT_THROW_MES(idx < m_ct.tx.vin.size(), "Invalid transaction index"); CHECK_AND_ASSERT_THROW_MES(idx < m_ct.tx_in_hmacs.size(), "Invalid transaction index"); m_ct.cur_input_idx = idx; auto tx = m_ct.tx_data; auto res = std::make_shared(); auto & vini = m_ct.tx.vin[idx]; translate_src_entry(res->mutable_src_entr(), &(tx.sources[idx])); res->set_vini(cryptonote::t_serializable_object_to_blob(vini)); res->set_vini_hmac(m_ct.tx_in_hmacs[idx]); if (!in_memory()) { CHECK_AND_ASSERT_THROW_MES(idx < m_ct.pseudo_outs.size(), "Invalid transaction index"); CHECK_AND_ASSERT_THROW_MES(idx < m_ct.pseudo_outs_hmac.size(), "Invalid transaction index"); res->set_pseudo_out(m_ct.pseudo_outs[idx]); res->set_pseudo_out_hmac(m_ct.pseudo_outs_hmac[idx]); } return res; } void Signer::step_set_vini_input_ack(std::shared_ptr ack){ if (in_memory()){ return; } } std::shared_ptr Signer::step_all_inputs_set(){ return std::make_shared(); } void Signer::step_all_inputs_set_ack(std::shared_ptr ack){ if (is_offloading()){ // If offloading, expect rsig configuration. if (!ack->has_rsig_data()){ throw exc::ProtocolException("Rsig offloading requires rsig param"); } auto & rsig_data = ack->rsig_data(); if (!rsig_data.has_mask()){ throw exc::ProtocolException("Gamma masks not present in offloaded version"); } auto & mask = rsig_data.mask(); if (mask.size() != 32 * num_outputs()){ throw exc::ProtocolException("Invalid number of gamma masks"); } m_ct.rsig_gamma.reserve(num_outputs()); for(size_t c=0; c < num_outputs(); ++c){ rct::key cmask{}; memcpy(cmask.bytes, mask.data() + c * 32, 32); m_ct.rsig_gamma.emplace_back(cmask); } } } std::shared_ptr Signer::step_set_output(size_t idx){ CHECK_AND_ASSERT_THROW_MES(idx < m_ct.tx_data.splitted_dsts.size(), "Invalid transaction index"); CHECK_AND_ASSERT_THROW_MES(idx < m_ct.tx_out_entr_hmacs.size(), "Invalid transaction index"); m_ct.cur_output_idx = idx; m_ct.cur_output_in_batch_idx += 1; // assumes sequential call to step_set_output() auto res = std::make_shared(); auto & cur_dst = m_ct.tx_data.splitted_dsts[idx]; translate_dst_entry(res->mutable_dst_entr(), &cur_dst); res->set_dst_entr_hmac(m_ct.tx_out_entr_hmacs[idx]); // Range sig offloading to the host if (!is_offloading()) { return res; } CHECK_AND_ASSERT_THROW_MES(m_ct.cur_batch_idx < m_ct.grouping_vct.size(), "Invalid batch index"); if (m_ct.grouping_vct[m_ct.cur_batch_idx] > m_ct.cur_output_in_batch_idx) { return res; } auto rsig_data = res->mutable_rsig_data(); auto batch_size = m_ct.grouping_vct[m_ct.cur_batch_idx]; if (!is_req_bulletproof()){ if (batch_size > 1){ throw std::invalid_argument("Borromean cannot batch outputs"); } CHECK_AND_ASSERT_THROW_MES(idx < m_ct.rsig_gamma.size(), "Invalid gamma index"); rct::key C{}, mask = m_ct.rsig_gamma[idx]; auto genRsig = rct::proveRange(C, mask, cur_dst.amount); // TODO: rsig with given mask auto serRsig = cn_serialize(genRsig); m_ct.tx_out_rsigs.emplace_back(genRsig); rsig_data->set_rsig(serRsig); } else { std::vector amounts; rct::keyV masks; CHECK_AND_ASSERT_THROW_MES(idx + 1 >= batch_size, "Invalid index for batching"); for(size_t i = 0; i < batch_size; ++i){ const size_t bidx = 1 + idx - batch_size + i; CHECK_AND_ASSERT_THROW_MES(bidx < m_ct.tx_data.splitted_dsts.size(), "Invalid gamma index"); CHECK_AND_ASSERT_THROW_MES(bidx < m_ct.rsig_gamma.size(), "Invalid gamma index"); amounts.push_back(m_ct.tx_data.splitted_dsts[bidx].amount); masks.push_back(m_ct.rsig_gamma[bidx]); } auto bp = bulletproof_PROVE(amounts, masks); auto serRsig = cn_serialize(bp); m_ct.tx_out_rsigs.emplace_back(bp); rsig_data->set_rsig(serRsig); } return res; } void Signer::step_set_output_ack(std::shared_ptr ack){ cryptonote::tx_out tx_out; rct::rangeSig range_sig{}; rct::Bulletproof bproof{}; rct::ctkey out_pk{}; rct::ecdhTuple ecdh{}; bool has_rsig = false; std::string rsig_buff; if (ack->has_rsig_data()){ auto & rsig_data = ack->rsig_data(); if (rsig_data.has_rsig() && !rsig_data.rsig().empty()){ has_rsig = true; rsig_buff = rsig_data.rsig(); } else if (rsig_data.rsig_parts_size() > 0){ has_rsig = true; for (const auto &it : rsig_data.rsig_parts()) { rsig_buff += it; } } } if (!cn_deserialize(ack->tx_out(), tx_out)){ throw exc::ProtocolException("Cannot deserialize vout[i]"); } if (!cn_deserialize(ack->out_pk(), out_pk)){ throw exc::ProtocolException("Cannot deserialize out_pk"); } if (!cn_deserialize(ack->ecdh_info(), ecdh)){ throw exc::ProtocolException("Cannot deserialize ecdhtuple"); } if (has_rsig && !is_req_bulletproof() && !cn_deserialize(rsig_buff, range_sig)){ throw exc::ProtocolException("Cannot deserialize rangesig"); } if (has_rsig && is_req_bulletproof() && !cn_deserialize(rsig_buff, bproof)){ throw exc::ProtocolException("Cannot deserialize bulletproof rangesig"); } m_ct.tx.vout.emplace_back(tx_out); m_ct.tx_out_hmacs.push_back(ack->vouti_hmac()); m_ct.tx_out_pk.emplace_back(out_pk); m_ct.tx_out_ecdh.emplace_back(ecdh); if (!has_rsig){ return; } if (is_req_bulletproof()){ CHECK_AND_ASSERT_THROW_MES(m_ct.cur_batch_idx < m_ct.grouping_vct.size(), "Invalid batch index"); auto batch_size = m_ct.grouping_vct[m_ct.cur_batch_idx]; for (size_t i = 0; i < batch_size; ++i){ const size_t bidx = 1 + m_ct.cur_output_idx - batch_size + i; CHECK_AND_ASSERT_THROW_MES(bidx < m_ct.tx_out_pk.size(), "Invalid out index"); rct::key commitment = m_ct.tx_out_pk[bidx].mask; commitment = rct::scalarmultKey(commitment, rct::INV_EIGHT); bproof.V.push_back(commitment); } m_ct.tx_out_rsigs.emplace_back(bproof); if (!rct::bulletproof_VERIFY(boost::get(m_ct.tx_out_rsigs.back()))) { throw exc::ProtocolException("Returned range signature is invalid"); } } else { m_ct.tx_out_rsigs.emplace_back(range_sig); if (!rct::verRange(out_pk.mask, boost::get(m_ct.tx_out_rsigs.back()))) { throw exc::ProtocolException("Returned range signature is invalid"); } } m_ct.cur_batch_idx += 1; m_ct.cur_output_in_batch_idx = 0; } std::shared_ptr Signer::step_all_outs_set(){ return std::make_shared(); } void Signer::step_all_outs_set_ack(std::shared_ptr ack, hw::device &hwdev){ m_ct.rv = std::make_shared(); m_ct.rv->txnFee = ack->rv().txn_fee(); m_ct.rv->type = static_cast(ack->rv().rv_type()); string_to_key(m_ct.rv->message, ack->rv().message()); // Extra copy m_ct.tx.extra.clear(); auto extra = ack->extra(); auto extra_data = extra.data(); m_ct.tx.extra.reserve(extra.size()); for(size_t i = 0; i < extra.size(); ++i){ m_ct.tx.extra.push_back(static_cast(extra_data[i])); } ::crypto::hash tx_prefix_hash{}; cryptonote::get_transaction_prefix_hash(m_ct.tx, tx_prefix_hash); m_ct.tx_prefix_hash = key_to_string(tx_prefix_hash); if (crypto_verify_32(reinterpret_cast(tx_prefix_hash.data), reinterpret_cast(ack->tx_prefix_hash().data()))){ throw exc::proto::SecurityException("Transaction prefix has does not match to the computed value"); } // RctSig auto num_sources = m_ct.tx_data.sources.size(); if (is_simple() || is_req_bulletproof()){ auto dst = &m_ct.rv->pseudoOuts; if (is_bulletproof()){ dst = &m_ct.rv->p.pseudoOuts; } dst->clear(); for (const auto &pseudo_out : m_ct.pseudo_outs) { dst->emplace_back(); string_to_key(dst->back(), pseudo_out); } m_ct.rv->mixRing.resize(num_sources); } else { m_ct.rv->mixRing.resize(m_ct.tsx_data.mixin()); m_ct.rv->mixRing[0].resize(num_sources); } CHECK_AND_ASSERT_THROW_MES(m_ct.tx_out_pk.size() == m_ct.tx_out_ecdh.size(), "Invalid vector sizes"); for(size_t i = 0; i < m_ct.tx_out_ecdh.size(); ++i){ m_ct.rv->outPk.push_back(m_ct.tx_out_pk[i]); m_ct.rv->ecdhInfo.push_back(m_ct.tx_out_ecdh[i]); } for(size_t i = 0; i < m_ct.tx_out_rsigs.size(); ++i){ if (is_bulletproof()){ m_ct.rv->p.bulletproofs.push_back(boost::get(m_ct.tx_out_rsigs[i])); } else { m_ct.rv->p.rangeSigs.push_back(boost::get(m_ct.tx_out_rsigs[i])); } } rct::key hash_computed = rct::get_pre_mlsag_hash(*(m_ct.rv), hwdev); auto & hash = ack->full_message_hash(); if (hash.size() != 32){ throw exc::ProtocolException("Returned mlsag hash has invalid size"); } if (crypto_verify_32(reinterpret_cast(hash_computed.bytes), reinterpret_cast(hash.data()))){ throw exc::proto::SecurityException("Computed MLSAG does not match"); } } std::shared_ptr Signer::step_sign_input(size_t idx){ m_ct.cur_input_idx = idx; CHECK_AND_ASSERT_THROW_MES(idx < m_ct.tx_data.sources.size(), "Invalid transaction index"); CHECK_AND_ASSERT_THROW_MES(idx < m_ct.tx.vin.size(), "Invalid transaction index"); CHECK_AND_ASSERT_THROW_MES(idx < m_ct.tx_in_hmacs.size(), "Invalid transaction index"); CHECK_AND_ASSERT_THROW_MES(idx < m_ct.alphas.size(), "Invalid transaction index"); CHECK_AND_ASSERT_THROW_MES(idx < m_ct.spend_encs.size(), "Invalid transaction index"); auto res = std::make_shared(); translate_src_entry(res->mutable_src_entr(), &(m_ct.tx_data.sources[idx])); res->set_vini(cryptonote::t_serializable_object_to_blob(m_ct.tx.vin[idx])); res->set_vini_hmac(m_ct.tx_in_hmacs[idx]); res->set_pseudo_out_alpha(m_ct.alphas[idx]); res->set_spend_key(m_ct.spend_encs[idx]); if (!in_memory()){ CHECK_AND_ASSERT_THROW_MES(idx < m_ct.pseudo_outs.size(), "Invalid transaction index"); CHECK_AND_ASSERT_THROW_MES(idx < m_ct.pseudo_outs_hmac.size(), "Invalid transaction index"); res->set_pseudo_out(m_ct.pseudo_outs[idx]); res->set_pseudo_out_hmac(m_ct.pseudo_outs_hmac[idx]); } return res; } void Signer::step_sign_input_ack(std::shared_ptr ack){ rct::mgSig mg; if (!cn_deserialize(ack->signature(), mg)){ throw exc::ProtocolException("Cannot deserialize mg[i]"); } m_ct.rv->p.MGs.push_back(mg); } std::shared_ptr Signer::step_final(){ m_ct.tx.rct_signatures = *(m_ct.rv); return std::make_shared(); } void Signer::step_final_ack(std::shared_ptr ack){ if (m_multisig){ auto & cout_key = ack->cout_key(); for(auto & cur : m_ct.couts){ if (cur.size() != 12 + 32){ throw std::invalid_argument("Encrypted cout has invalid length"); } char buff[32]; auto data = cur.data(); crypto::chacha::decrypt(data + 12, 32, reinterpret_cast(cout_key.data()), reinterpret_cast(data), buff); m_ct.couts_dec.emplace_back(buff, 32); } } m_ct.enc_salt1 = ack->salt(); m_ct.enc_salt2 = ack->rand_mult(); m_ct.enc_keys = ack->tx_enc_keys(); } std::string Signer::store_tx_aux_info(){ rapidjson::StringBuffer sb; rapidjson::Writer writer(sb); rapidjson::Document json; json.SetObject(); rapidjson::Value valueS(rapidjson::kStringType); rapidjson::Value valueI(rapidjson::kNumberType); valueI.SetInt(1); json.AddMember("version", valueI, json.GetAllocator()); valueS.SetString(m_ct.enc_salt1.c_str(), m_ct.enc_salt1.size()); json.AddMember("salt1", valueS, json.GetAllocator()); valueS.SetString(m_ct.enc_salt2.c_str(), m_ct.enc_salt2.size()); json.AddMember("salt2", valueS, json.GetAllocator()); valueS.SetString(m_ct.tx_prefix_hash.c_str(), m_ct.tx_prefix_hash.size()); json.AddMember("tx_prefix_hash", valueS, json.GetAllocator()); valueS.SetString(m_ct.enc_keys.c_str(), m_ct.enc_keys.size()); json.AddMember("enc_keys", valueS, json.GetAllocator()); json.Accept(writer); return sb.GetString(); } } } } }