// Copyright (c) 2017-2022, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // #include "version.h" #include "device_ledger.hpp" #include "ringct/rctOps.h" #include "cryptonote_basic/account.h" #include "cryptonote_basic/subaddress_index.h" #include "cryptonote_core/cryptonote_tx_utils.h" #include #include namespace hw { namespace ledger { #ifdef WITH_DEVICE_LEDGER namespace { bool apdu_verbose =true; } #undef MONERO_DEFAULT_LOG_CATEGORY #define MONERO_DEFAULT_LOG_CATEGORY "device.ledger" /* ===================================================================== */ /* === Debug ==== */ /* ===================================================================== */ void set_apdu_verbose(bool verbose) { apdu_verbose = verbose; } #define TRACKD MTRACE("hw") #define ASSERT_SW(sw,ok,msk) CHECK_AND_ASSERT_THROW_MES(((sw)&(msk))==(ok), \ "Wrong Device Status: " << "0x" << std::hex << (sw) << " (" << Status::to_string(sw) << "), " << \ "EXPECTED 0x" << std::hex << (ok) << " (" << Status::to_string(ok) << "), " << \ "MASK 0x" << std::hex << (msk)); #define ASSERT_T0(exp) CHECK_AND_ASSERT_THROW_MES(exp, "Protocol assert failure: "#exp ) ; #define ASSERT_X(exp,msg) CHECK_AND_ASSERT_THROW_MES(exp, msg); #ifdef DEBUG_HWDEVICE crypto::secret_key dbg_viewkey; crypto::secret_key dbg_spendkey; #endif struct Status { unsigned int code; const char *string; constexpr operator unsigned int() const { return this->code; } static const char *to_string(unsigned int code); }; // Must be sorted in ascending order by the code #define LEDGER_STATUS(status) {status, #status} constexpr Status status_codes[] = { LEDGER_STATUS(SW_OK), LEDGER_STATUS(SW_WRONG_LENGTH), LEDGER_STATUS(SW_SECURITY_PIN_LOCKED), LEDGER_STATUS(SW_SECURITY_LOAD_KEY), LEDGER_STATUS(SW_SECURITY_COMMITMENT_CONTROL), LEDGER_STATUS(SW_SECURITY_AMOUNT_CHAIN_CONTROL), LEDGER_STATUS(SW_SECURITY_COMMITMENT_CHAIN_CONTROL), LEDGER_STATUS(SW_SECURITY_OUTKEYS_CHAIN_CONTROL), LEDGER_STATUS(SW_SECURITY_MAXOUTPUT_REACHED), LEDGER_STATUS(SW_SECURITY_HMAC), LEDGER_STATUS(SW_SECURITY_RANGE_VALUE), LEDGER_STATUS(SW_SECURITY_INTERNAL), LEDGER_STATUS(SW_SECURITY_MAX_SIGNATURE_REACHED), LEDGER_STATUS(SW_SECURITY_PREFIX_HASH), LEDGER_STATUS(SW_SECURITY_LOCKED), LEDGER_STATUS(SW_COMMAND_NOT_ALLOWED), LEDGER_STATUS(SW_SUBCOMMAND_NOT_ALLOWED), LEDGER_STATUS(SW_DENY), LEDGER_STATUS(SW_KEY_NOT_SET), LEDGER_STATUS(SW_WRONG_DATA), LEDGER_STATUS(SW_WRONG_DATA_RANGE), LEDGER_STATUS(SW_IO_FULL), LEDGER_STATUS(SW_CLIENT_NOT_SUPPORTED), LEDGER_STATUS(SW_WRONG_P1P2), LEDGER_STATUS(SW_INS_NOT_SUPPORTED), LEDGER_STATUS(SW_PROTOCOL_NOT_SUPPORTED), LEDGER_STATUS(SW_UNKNOWN) }; const char *Status::to_string(unsigned int code) { constexpr size_t status_codes_size = sizeof(status_codes) / sizeof(status_codes[0]); constexpr const Status *status_codes_end = &status_codes[status_codes_size]; const Status *item = std::lower_bound(&status_codes[0], status_codes_end, code); return (item == status_codes_end || code < *item) ? "UNKNOWN" : item->string; } /* ===================================================================== */ /* === hmacmap ==== */ /* ===================================================================== */ SecHMAC::SecHMAC(const uint8_t s[32], const uint8_t h[32]) { memcpy(this->sec, s, 32); memcpy(this->hmac, h, 32); } void HMACmap::find_mac(const uint8_t sec[32], uint8_t hmac[32]) { size_t sz = hmacs.size(); log_hexbuffer("find_mac: lookup for ", (char*)sec,32); for (size_t i=0; iid = device_id++; this->reset_buffer(); this->mode = NONE; this->has_view_key = false; this->tx_in_progress = false; MDEBUG( "Device "<id <<" Created"); } device_ledger::~device_ledger() { this->release(); MDEBUG( "Device "<id <<" Destroyed"); } /* ======================================================================= */ /* LOCKER */ /* ======================================================================= */ //automatic lock one more level on device ensuring the current thread is allowed to use it #define AUTO_LOCK_CMD() \ /* lock both mutexes without deadlock*/ \ boost::lock(device_locker, command_locker); \ /* make sure both already-locked mutexes are unlocked at the end of scope */ \ boost::lock_guard lock1(device_locker, boost::adopt_lock); \ boost::lock_guard lock2(command_locker, boost::adopt_lock) //lock the device for a long sequence void device_ledger::lock(void) { MDEBUG( "Ask for LOCKING for device "<name << " in thread "); device_locker.lock(); MDEBUG( "Device "<name << " LOCKed"); } //lock the device for a long sequence bool device_ledger::try_lock(void) { MDEBUG( "Ask for LOCKING(try) for device "<name << " in thread "); bool r = device_locker.try_lock(); if (r) { MDEBUG( "Device "<name << " LOCKed(try)"); } else { MDEBUG( "Device "<name << " not LOCKed(try)"); } return r; } //lock the device for a long sequence void device_ledger::unlock(void) { try { MDEBUG( "Ask for UNLOCKING for device "<name << " in thread "); } catch (...) { } device_locker.unlock(); MDEBUG( "Device "<name << " UNLOCKed"); } /* ======================================================================= */ /* IO */ /* ======================================================================= */ #define IO_SW_DENY 0x6982 #define IO_SECRET_KEY 0x02 void device_ledger::logCMD() { if (apdu_verbose) { char strbuffer[1024]; snprintf(strbuffer, sizeof(strbuffer), "%.02x %.02x %.02x %.02x %.02x ", this->buffer_send[0], this->buffer_send[1], this->buffer_send[2], this->buffer_send[3], this->buffer_send[4] ); const size_t len = strlen(strbuffer); buffer_to_str(strbuffer+len, sizeof(strbuffer)-len, (char*)(this->buffer_send+5), this->length_send-5); MDEBUG( "CMD : " << strbuffer); } } void device_ledger::logRESP() { if (apdu_verbose) { char strbuffer[1024]; snprintf(strbuffer, sizeof(strbuffer), "%.04x ", this->sw); const size_t len = strlen(strbuffer); buffer_to_str(strbuffer+len, sizeof(strbuffer)-len, (char*)(this->buffer_recv), this->length_recv); MDEBUG( "RESP : " << strbuffer); } } int device_ledger::set_command_header(unsigned char ins, unsigned char p1, unsigned char p2) { reset_buffer(); this->buffer_send[0] = PROTOCOL_VERSION; this->buffer_send[1] = ins; this->buffer_send[2] = p1; this->buffer_send[3] = p2; this->buffer_send[4] = 0x00; return 5; } int device_ledger::set_command_header_noopt(unsigned char ins, unsigned char p1, unsigned char p2) { int offset = set_command_header(ins, p1, p2); //options this->buffer_send[offset++] = 0; this->buffer_send[4] = offset - 5; return offset; } void device_ledger::send_simple(unsigned char ins, unsigned char p1) { this->length_send = set_command_header_noopt(ins, p1); if (ins == INS_GET_KEY && p1 == IO_SECRET_KEY) { // export view key user input this->exchange_wait_on_input(); } else { this->exchange(); } } void device_ledger::send_secret(const unsigned char sec[32], int &offset) { MDEBUG("send_secret: " << this->tx_in_progress); ASSERT_X(offset + 32 <= BUFFER_SEND_SIZE, "send_secret: out of bounds write (secret)"); memmove(this->buffer_send+offset, sec, 32); offset +=32; if (this->tx_in_progress) { ASSERT_X(offset + 32 <= BUFFER_SEND_SIZE, "send_secret: out of bounds write (mac)"); this->hmac_map.find_mac((uint8_t*)sec, this->buffer_send+offset); offset += 32; } } void device_ledger::receive_secret(unsigned char sec[32], int &offset) { MDEBUG("receive_secret: " << this->tx_in_progress); ASSERT_X(offset + 32 <= BUFFER_RECV_SIZE, "receive_secret: out of bounds read (secret)"); memmove(sec, this->buffer_recv+offset, 32); offset += 32; if (this->tx_in_progress) { ASSERT_X(offset + 32 <= BUFFER_RECV_SIZE, "receive_secret: out of bounds read (mac)"); this->hmac_map.add_mac((uint8_t*)sec, this->buffer_recv+offset); offset += 32; } } bool device_ledger::reset() { reset_buffer(); int offset = set_command_header_noopt(INS_RESET); const size_t verlen = strlen(MONERO_VERSION); ASSERT_X(offset + verlen <= BUFFER_SEND_SIZE, "MONERO_VERSION is too long") memmove(this->buffer_send+offset, MONERO_VERSION, verlen); offset += strlen(MONERO_VERSION); this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); ASSERT_X(this->length_recv>=3, "Communication error, less than three bytes received. Check your application version."); return true; } unsigned int device_ledger::exchange(unsigned int ok, unsigned int mask) { logCMD(); this->length_recv = hw_device.exchange(this->buffer_send, this->length_send, this->buffer_recv, BUFFER_SEND_SIZE, false); ASSERT_X(this->length_recv>=2, "Communication error, less than tow bytes received"); this->length_recv -= 2; this->sw = (this->buffer_recv[length_recv]<<8) | this->buffer_recv[length_recv+1]; logRESP(); MDEBUG("Device "<< this->id << " exchange: sw: " << this->sw << " expected: " << ok); ASSERT_X(sw != SW_CLIENT_NOT_SUPPORTED, "Monero Ledger App doesn't support current monero version. Try to update the Monero Ledger App, at least " << MINIMAL_APP_VERSION_MAJOR<< "." << MINIMAL_APP_VERSION_MINOR << "." << MINIMAL_APP_VERSION_MICRO << " is required."); ASSERT_X(sw != SW_PROTOCOL_NOT_SUPPORTED, "Make sure no other program is communicating with the Ledger."); ASSERT_SW(this->sw,ok,mask); return this->sw; } unsigned int device_ledger::exchange_wait_on_input(unsigned int ok, unsigned int mask) { logCMD(); unsigned int deny = 0; this->length_recv = hw_device.exchange(this->buffer_send, this->length_send, this->buffer_recv, BUFFER_SEND_SIZE, true); ASSERT_X(this->length_recv>=2, "Communication error, less than two bytes received"); this->length_recv -= 2; this->sw = (this->buffer_recv[length_recv]<<8) | this->buffer_recv[length_recv+1]; if (this->sw == IO_SW_DENY) { // cancel on device deny = 1; } else { ASSERT_SW(this->sw,ok,mask); } logRESP(); return deny; } void device_ledger::reset_buffer() { this->length_send = 0; memset(this->buffer_send, 0, BUFFER_SEND_SIZE); this->length_recv = 0; memset(this->buffer_recv, 0, BUFFER_RECV_SIZE); } /* ======================================================================= */ /* SETUP/TEARDOWN */ /* ======================================================================= */ bool device_ledger::set_name(const std::string & name) { this->name = name; return true; } const std::string device_ledger::get_name() const { if (!this->connected()) { return std::string("name).append(">"); } return this->name; } bool device_ledger::init(void) { this->controle_device = &hw::get_device("default"); this->release(); hw_device.init(); MDEBUG( "Device "<id <<" HIDUSB inited"); return true; } static const std::vector known_devices { {0x2c97, 0x0001, 0, 0xffa0}, {0x2c97, 0x0004, 0, 0xffa0}, {0x2c97, 0x0005, 0, 0xffa0}, }; bool device_ledger::connect(void) { this->disconnect(); hw_device.connect(known_devices); this->reset(); #ifdef DEBUG_HWDEVICE cryptonote::account_public_address pubkey; this->get_public_address(pubkey); #endif crypto::secret_key vkey; crypto::secret_key skey; this->get_secret_keys(vkey,skey); return true; } bool device_ledger::connected(void) const { return hw_device.connected(); } bool device_ledger::disconnect() { hw_device.disconnect(); return true; } bool device_ledger::release() { this->disconnect(); hw_device.release(); return true; } bool device_ledger::set_mode(device_mode mode) { AUTO_LOCK_CMD(); int offset; switch(mode) { case TRANSACTION_CREATE_REAL: case TRANSACTION_CREATE_FAKE: offset = set_command_header_noopt(INS_SET_SIGNATURE_MODE, 1); //account this->buffer_send[offset] = mode; offset += 1; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); this->mode = mode; break; case TRANSACTION_PARSE: case NONE: this->mode = mode; break; default: CHECK_AND_ASSERT_THROW_MES(false, " device_ledger::set_mode(unsigned int mode): invalid mode: "<buffer_recv, 32); memmove(pubkey.m_spend_public_key.data, this->buffer_recv+32, 32); return true; } bool device_ledger::get_secret_keys(crypto::secret_key &vkey , crypto::secret_key &skey) { AUTO_LOCK_CMD(); //secret key are represented as fake key on the wallet side memset(vkey.data, 0x00, 32); memset(skey.data, 0xFF, 32); //spcialkey, normal conf handled in decrypt send_simple(INS_GET_KEY, 0x02); //View key is retrievied, if allowed, to speed up blockchain parsing memmove(this->viewkey.data, this->buffer_recv+0, 32); if (is_fake_view_key(this->viewkey)) { MDEBUG("Have Not view key"); this->has_view_key = false; } else { MDEBUG("Have view key"); this->has_view_key = true; } #ifdef DEBUG_HWDEVICE send_simple(INS_GET_KEY, 0x04); memmove(dbg_viewkey.data, this->buffer_recv+0, 32); memmove(dbg_spendkey.data, this->buffer_recv+32, 32); #endif return true; } bool device_ledger::generate_chacha_key(const cryptonote::account_keys &keys, crypto::chacha_key &key, uint64_t kdf_rounds) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE crypto::chacha_key key_x; cryptonote::account_keys keys_x = hw::ledger::decrypt(keys); this->controle_device->generate_chacha_key(keys_x, key_x, kdf_rounds); #endif send_simple(INS_GET_CHACHA8_PREKEY); char prekey[200]; memmove(prekey, &this->buffer_recv[0], 200); crypto::generate_chacha_key_prehashed(&prekey[0], sizeof(prekey), key, kdf_rounds); #ifdef DEBUG_HWDEVICE hw::ledger::check32("generate_chacha_key_prehashed", "key", (char*)key_x.data(), (char*)key.data()); #endif return true; } void device_ledger::display_address(const cryptonote::subaddress_index& index, const boost::optional &payment_id) { AUTO_LOCK_CMD(); int offset = set_command_header_noopt(INS_DISPLAY_ADDRESS, payment_id?1:0); //index memmove(this->buffer_send+offset, &index, sizeof(cryptonote::subaddress_index)); offset +=8 ; //payment ID if (payment_id) { memmove(this->buffer_send+offset, (*payment_id).data, 8); } else { memset(this->buffer_send+offset, 0, 8); } offset +=8; this->buffer_send[4] = offset-5; this->length_send = offset; CHECK_AND_ASSERT_THROW_MES(this->exchange_wait_on_input() == 0, "Timeout/Error on display address."); } /* ======================================================================= */ /* SUB ADDRESS */ /* ======================================================================= */ bool device_ledger::derive_subaddress_public_key(const crypto::public_key &pub, const crypto::key_derivation &derivation, const std::size_t output_index, crypto::public_key &derived_pub){ #ifdef DEBUG_HWDEVICE const crypto::public_key pub_x = pub; crypto::key_derivation derivation_x; if ((this->mode == TRANSACTION_PARSE) && has_view_key) { derivation_x = derivation; } else { derivation_x = hw::ledger::decrypt(derivation); } const std::size_t output_index_x = output_index; crypto::public_key derived_pub_x; log_hexbuffer("derive_subaddress_public_key: [[IN]] pub ", pub_x.data, 32); log_hexbuffer("derive_subaddress_public_key: [[IN]] derivation", derivation_x.data, 32); log_message ("derive_subaddress_public_key: [[IN]] index ", std::to_string((int)output_index_x)); if (!this->controle_device->derive_subaddress_public_key(pub_x, derivation_x,output_index_x,derived_pub_x)) return false; log_hexbuffer("derive_subaddress_public_key: [[OUT]] derived_pub", derived_pub_x.data, 32); #endif if ((this->mode == TRANSACTION_PARSE) && has_view_key) { //If we are in TRANSACTION_PARSE, the given derivation has been retrieved uncrypted (wihtout the help //of the device), so continue that way. MDEBUG( "derive_subaddress_public_key : PARSE mode with known viewkey"); if (!crypto::derive_subaddress_public_key(pub, derivation, output_index,derived_pub)) return false; } else { AUTO_LOCK_CMD(); int offset = set_command_header_noopt(INS_DERIVE_SUBADDRESS_PUBLIC_KEY); //pub memmove(this->buffer_send+offset, pub.data, 32); offset += 32; //derivation this->send_secret((unsigned char*)derivation.data, offset); //index this->buffer_send[offset+0] = output_index>>24; this->buffer_send[offset+1] = output_index>>16; this->buffer_send[offset+2] = output_index>>8; this->buffer_send[offset+3] = output_index>>0; offset += 4; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //pub key memmove(derived_pub.data, &this->buffer_recv[0], 32); } #ifdef DEBUG_HWDEVICE hw::ledger::check32("derive_subaddress_public_key", "derived_pub", derived_pub_x.data, derived_pub.data); #endif return true; } crypto::public_key device_ledger::get_subaddress_spend_public_key(const cryptonote::account_keys& keys, const cryptonote::subaddress_index &index) { if (has_view_key) { cryptonote::account_keys keys_{keys}; keys_.m_view_secret_key = this->viewkey; return this->controle_device->get_subaddress_spend_public_key(keys_, index); } AUTO_LOCK_CMD(); crypto::public_key D; #ifdef DEBUG_HWDEVICE const cryptonote::account_keys keys_x = hw::ledger::decrypt(keys); const cryptonote::subaddress_index index_x = index; crypto::public_key D_x; log_hexbuffer("get_subaddress_spend_public_key: [[IN]] keys.m_view_secret_key ", keys_x.m_view_secret_key.data,32); log_hexbuffer("get_subaddress_spend_public_key: [[IN]] keys.m_spend_secret_key", keys_x.m_spend_secret_key.data,32); log_message ("get_subaddress_spend_public_key: [[IN]] index ", std::to_string(index_x.major)+"."+std::to_string(index_x.minor)); D_x = this->controle_device->get_subaddress_spend_public_key(keys_x, index_x); log_hexbuffer("get_subaddress_spend_public_key: [[OUT]] derivation ", D_x.data, 32); #endif if (index.is_zero()) { D = keys.m_account_address.m_spend_public_key; } else { int offset = set_command_header_noopt(INS_GET_SUBADDRESS_SPEND_PUBLIC_KEY); //index static_assert(sizeof(cryptonote::subaddress_index) == 8, "cryptonote::subaddress_index shall be 8 bytes length"); memmove(this->buffer_send+offset, &index, sizeof(cryptonote::subaddress_index)); offset +=8 ; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); memmove(D.data, &this->buffer_recv[0], 32); } #ifdef DEBUG_HWDEVICE hw::ledger::check32("get_subaddress_spend_public_key", "D", D_x.data, D.data); #endif return D; } std::vector device_ledger::get_subaddress_spend_public_keys(const cryptonote::account_keys &keys, uint32_t account, uint32_t begin, uint32_t end) { std::vector pkeys; cryptonote::subaddress_index index = {account, begin}; crypto::public_key D; for (uint32_t idx = begin; idx < end; ++idx) { index.minor = idx; D = this->get_subaddress_spend_public_key(keys, index); pkeys.push_back(D); } return pkeys; } cryptonote::account_public_address device_ledger::get_subaddress(const cryptonote::account_keys& keys, const cryptonote::subaddress_index &index) { if (has_view_key) { cryptonote::account_keys keys_{keys}; keys_.m_view_secret_key = this->viewkey; return this->controle_device->get_subaddress(keys_, index); } AUTO_LOCK_CMD(); cryptonote::account_public_address address; #ifdef DEBUG_HWDEVICE const cryptonote::account_keys keys_x = hw::ledger::decrypt(keys); const cryptonote::subaddress_index index_x = index; cryptonote::account_public_address address_x; log_hexbuffer("get_subaddress: [[IN]] keys.m_view_secret_key ", keys_x.m_view_secret_key.data, 32); log_hexbuffer("get_subaddress: [[IN]] keys.m_view_public_key", keys_x.m_account_address.m_view_public_key.data, 32); log_hexbuffer("get_subaddress: [[IN]] keys.m_view_secret_key ", keys_x.m_view_secret_key.data, 32); log_hexbuffer("get_subaddress: [[IN]] keys.m_spend_public_key", keys_x.m_account_address.m_spend_public_key.data, 32); log_message ("get_subaddress: [[IN]] index ", std::to_string(index_x.major)+"."+std::to_string(index_x.minor)); address_x = this->controle_device->get_subaddress(keys_x, index_x); log_hexbuffer("get_subaddress: [[OUT]] keys.m_view_public_key ", address_x.m_view_public_key.data, 32); log_hexbuffer("get_subaddress: [[OUT]] keys.m_spend_public_key", address_x.m_spend_public_key.data, 32); #endif if (index.is_zero()) { address = keys.m_account_address; } else { int offset = set_command_header_noopt(INS_GET_SUBADDRESS); //index static_assert(sizeof(cryptonote::subaddress_index) == 8, "cryptonote::subaddress_index shall be 8 bytes length"); memmove(this->buffer_send+offset, &index, sizeof(cryptonote::subaddress_index)); offset +=8 ; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); memmove(address.m_view_public_key.data, &this->buffer_recv[0], 32); memmove(address.m_spend_public_key.data, &this->buffer_recv[32], 32); } #ifdef DEBUG_HWDEVICE hw::ledger::check32("get_subaddress", "address.m_view_public_key.data", address_x.m_view_public_key.data, address.m_view_public_key.data); hw::ledger::check32("get_subaddress", "address.m_spend_public_key.data", address_x.m_spend_public_key.data, address.m_spend_public_key.data); #endif return address; } crypto::secret_key device_ledger::get_subaddress_secret_key(const crypto::secret_key &sec, const cryptonote::subaddress_index &index) { AUTO_LOCK_CMD(); crypto::secret_key sub_sec; #ifdef DEBUG_HWDEVICE const crypto::secret_key sec_x = hw::ledger::decrypt(sec); const cryptonote::subaddress_index index_x = index; crypto::secret_key sub_sec_x; log_message ("get_subaddress_secret_key: [[IN]] index ", std::to_string(index.major)+"."+std::to_string(index.minor)); log_hexbuffer("get_subaddress_secret_key: [[IN]] sec ", sec_x.data, 32); sub_sec_x = this->controle_device->get_subaddress_secret_key(sec_x, index_x); log_hexbuffer("get_subaddress_secret_key: [[OUT]] sub_sec", sub_sec_x.data, 32); #endif int offset = set_command_header_noopt(INS_GET_SUBADDRESS_SECRET_KEY); //sec this->send_secret((unsigned char*)sec.data, offset); //index static_assert(sizeof(cryptonote::subaddress_index) == 8, "cryptonote::subaddress_index shall be 8 bytes length"); memmove(this->buffer_send+offset, &index, sizeof(cryptonote::subaddress_index)); offset +=8 ; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); offset = 0; this->receive_secret((unsigned char*)sub_sec.data, offset); #ifdef DEBUG_HWDEVICE crypto::secret_key sub_sec_clear = hw::ledger::decrypt(sub_sec); hw::ledger::check32("get_subaddress_secret_key", "sub_sec", sub_sec_x.data, sub_sec_clear.data); #endif return sub_sec; } /* ======================================================================= */ /* DERIVATION & KEY */ /* ======================================================================= */ bool device_ledger::verify_keys(const crypto::secret_key &secret_key, const crypto::public_key &public_key) { AUTO_LOCK_CMD(); int offset; offset = set_command_header_noopt(INS_VERIFY_KEY); //sec this->send_secret((unsigned char*)secret_key.data, offset); //pub memmove(this->buffer_send+offset, public_key.data, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); uint32_t verified = this->buffer_recv[0] << 24 | this->buffer_recv[1] << 16 | this->buffer_recv[2] << 8 | this->buffer_recv[3] << 0 ; return verified == 1; } bool device_ledger::scalarmultKey(rct::key & aP, const rct::key &P, const rct::key &a) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const rct::key P_x = P; const rct::key a_x = hw::ledger::decrypt(a); rct::key aP_x; log_hexbuffer("scalarmultKey: [[IN]] P ", (char*)P_x.bytes, 32); log_hexbuffer("scalarmultKey: [[IN]] a ", (char*)a_x.bytes, 32); this->controle_device->scalarmultKey(aP_x, P_x, a_x); log_hexbuffer("scalarmultKey: [[OUT]] aP", (char*)aP_x.bytes, 32); #endif int offset = set_command_header_noopt(INS_SECRET_SCAL_MUL_KEY); //pub memmove(this->buffer_send+offset, P.bytes, 32); offset += 32; //sec this->send_secret(a.bytes, offset); this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //pub key memmove(aP.bytes, &this->buffer_recv[0], 32); #ifdef DEBUG_HWDEVICE hw::ledger::check32("scalarmultKey", "mulkey", (char*)aP_x.bytes, (char*)aP.bytes); #endif return true; } bool device_ledger::scalarmultBase(rct::key &aG, const rct::key &a) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const rct::key a_x = hw::ledger::decrypt(a); rct::key aG_x; log_hexbuffer("scalarmultKey: [[IN]] a ", (char*)a_x.bytes, 32); this->controle_device->scalarmultBase(aG_x, a_x); log_hexbuffer("scalarmultKey: [[OUT]] aG", (char*)aG_x.bytes, 32); #endif int offset = set_command_header_noopt(INS_SECRET_SCAL_MUL_BASE); //sec this->send_secret(a.bytes, offset); this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //pub key memmove(aG.bytes, &this->buffer_recv[0], 32); #ifdef DEBUG_HWDEVICE hw::ledger::check32("scalarmultBase", "mulkey", (char*)aG_x.bytes, (char*)aG.bytes); #endif return true; } bool device_ledger::sc_secret_add( crypto::secret_key &r, const crypto::secret_key &a, const crypto::secret_key &b) { AUTO_LOCK_CMD(); int offset; #ifdef DEBUG_HWDEVICE const crypto::secret_key a_x = hw::ledger::decrypt(a); const crypto::secret_key b_x = hw::ledger::decrypt(b); crypto::secret_key r_x; rct::key aG_x; log_hexbuffer("sc_secret_add: [[IN]] a ", (char*)a_x.data, 32); log_hexbuffer("sc_secret_add: [[IN]] b ", (char*)b_x.data, 32); this->controle_device->sc_secret_add(r_x, a_x, b_x); log_hexbuffer("sc_secret_add: [[OUT]] aG", (char*)r_x.data, 32); #endif offset = set_command_header_noopt(INS_SECRET_KEY_ADD); //sec key this->send_secret((unsigned char*)a.data, offset); //sec key this->send_secret((unsigned char*)b.data, offset); this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //sec key offset = 0; this->receive_secret((unsigned char*)r.data, offset); #ifdef DEBUG_HWDEVICE crypto::secret_key r_clear = hw::ledger::decrypt(r); hw::ledger::check32("sc_secret_add", "r", r_x.data, r_clear.data); #endif return true; } crypto::secret_key device_ledger::generate_keys(crypto::public_key &pub, crypto::secret_key &sec, const crypto::secret_key& recovery_key, bool recover) { AUTO_LOCK_CMD(); int offset; if (recover) { throw std::runtime_error("device generate key does not support recover"); } #ifdef DEBUG_HWDEVICE crypto::public_key pub_x; crypto::secret_key sec_x; crypto::secret_key recovery_key_x; if (recover) { recovery_key_x = hw::ledger::decrypt(recovery_key); log_hexbuffer("generate_keys: [[IN]] pub", (char*)recovery_key_x.data, 32); } #endif send_simple(INS_GENERATE_KEYPAIR); offset = 0; //pub key memmove(pub.data, &this->buffer_recv[0], 32); offset += 32; this->receive_secret((unsigned char*)sec.data, offset); #ifdef DEBUG_HWDEVICE crypto::secret_key sec_clear = hw::ledger::decrypt(sec); sec_x = sec_clear; log_hexbuffer("generate_keys: [[OUT]] pub", (char*)pub.data, 32); log_hexbuffer("generate_keys: [[OUT]] sec", (char*)sec_clear.data, 32); crypto::secret_key_to_public_key(sec_x,pub_x); hw::ledger::check32("generate_keys", "pub", pub_x.data, pub.data); #endif return sec; } bool device_ledger::generate_key_derivation(const crypto::public_key &pub, const crypto::secret_key &sec, crypto::key_derivation &derivation) { bool r = false; #ifdef DEBUG_HWDEVICE const crypto::public_key pub_x = pub; const crypto::secret_key sec_x = (sec == rct::rct2sk(rct::I)) ? sec: hw::ledger::decrypt(sec); crypto::key_derivation derivation_x; log_hexbuffer("generate_key_derivation: [[IN]] pub ", pub_x.data, 32); log_hexbuffer("generate_key_derivation: [[IN]] sec ", sec_x.data, 32); if (!this->controle_device->generate_key_derivation(pub_x, sec_x, derivation_x)) return false; log_hexbuffer("generate_key_derivation: [[OUT]] derivation", derivation_x.data, 32); #endif if ((this->mode == TRANSACTION_PARSE) && has_view_key) { //A derivation is resquested in PASRE mode and we have the view key, //so do that wihtout the device and return the derivation unencrypted. MDEBUG( "generate_key_derivation : PARSE mode with known viewkey"); //Note derivation in PARSE mode can only happen with viewkey, so assert it! assert(is_fake_view_key(sec)); r = crypto::generate_key_derivation(pub, this->viewkey, derivation); } else { AUTO_LOCK_CMD(); int offset = set_command_header_noopt(INS_GEN_KEY_DERIVATION); //pub memmove(this->buffer_send+offset, pub.data, 32); offset += 32; //sec this->send_secret((unsigned char*)sec.data, offset); this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); offset = 0; //derivattion data this->receive_secret((unsigned char*)derivation.data, offset); r = true; } #ifdef DEBUG_HWDEVICE crypto::key_derivation derivation_clear ; if ((this->mode == TRANSACTION_PARSE) && has_view_key) { derivation_clear = derivation; } else { derivation_clear = hw::ledger::decrypt(derivation); } hw::ledger::check32("generate_key_derivation", "derivation", derivation_x.data, derivation_clear.data); #endif return r; } bool device_ledger::conceal_derivation(crypto::key_derivation &derivation, const crypto::public_key &tx_pub_key, const std::vector &additional_tx_pub_keys, const crypto::key_derivation &main_derivation, const std::vector &additional_derivations) { const crypto::public_key *pkey=NULL; if (derivation == main_derivation) { pkey = &tx_pub_key; MDEBUG("conceal derivation with main tx pub key"); } else { for(size_t n=0; n < additional_derivations.size();++n) { if(derivation == additional_derivations[n]) { pkey = &additional_tx_pub_keys[n]; MDEBUG("conceal derivation with additional tx pub key"); break; } } } ASSERT_X(pkey, "Mismatched derivation on scan info"); return this->generate_key_derivation(*pkey, crypto::null_skey, derivation); } bool device_ledger::derivation_to_scalar(const crypto::key_derivation &derivation, const size_t output_index, crypto::ec_scalar &res) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const crypto::key_derivation derivation_x = hw::ledger::decrypt(derivation); const size_t output_index_x = output_index; crypto::ec_scalar res_x; log_hexbuffer("derivation_to_scalar: [[IN]] derivation ", derivation_x.data, 32); log_message ("derivation_to_scalar: [[IN]] output_index ", std::to_string(output_index_x)); this->controle_device->derivation_to_scalar(derivation_x, output_index_x, res_x); log_hexbuffer("derivation_to_scalar: [[OUT]] res ", res_x.data, 32); #endif int offset = set_command_header_noopt(INS_DERIVATION_TO_SCALAR); //derivation this->send_secret((unsigned char*)derivation.data, offset); //index this->buffer_send[offset+0] = output_index>>24; this->buffer_send[offset+1] = output_index>>16; this->buffer_send[offset+2] = output_index>>8; this->buffer_send[offset+3] = output_index>>0; offset += 4; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //derivation data offset = 0; this->receive_secret((unsigned char*)res.data, offset); #ifdef DEBUG_HWDEVICE crypto::ec_scalar res_clear = hw::ledger::decrypt(res); hw::ledger::check32("derivation_to_scalar", "res", res_x.data, res_clear.data); #endif return true; } bool device_ledger::derive_secret_key(const crypto::key_derivation &derivation, const std::size_t output_index, const crypto::secret_key &sec, crypto::secret_key &derived_sec) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const crypto::key_derivation derivation_x = hw::ledger::decrypt(derivation); const std::size_t output_index_x = output_index; const crypto::secret_key sec_x = hw::ledger::decrypt(sec); crypto::secret_key derived_sec_x; log_hexbuffer("derive_secret_key: [[IN]] derivation ", derivation_x.data, 32); log_message ("derive_secret_key: [[IN]] index ", std::to_string(output_index_x)); log_hexbuffer("derive_secret_key: [[IN]] sec ", sec_x.data, 32); this->controle_device->derive_secret_key(derivation_x, output_index_x, sec_x, derived_sec_x); log_hexbuffer("derive_secret_key: [[OUT]] derived_sec", derived_sec_x.data, 32); #endif int offset = set_command_header_noopt(INS_DERIVE_SECRET_KEY); //derivation this->send_secret((unsigned char*)derivation.data, offset); //index this->buffer_send[offset+0] = output_index>>24; this->buffer_send[offset+1] = output_index>>16; this->buffer_send[offset+2] = output_index>>8; this->buffer_send[offset+3] = output_index>>0; offset += 4; //sec this->send_secret((unsigned char*)sec.data, offset); this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); offset = 0; //sec key this->receive_secret((unsigned char*)derived_sec.data, offset); #ifdef DEBUG_HWDEVICE crypto::secret_key derived_sec_clear = hw::ledger::decrypt(derived_sec); hw::ledger::check32("derive_secret_key", "derived_sec", derived_sec_x.data, derived_sec_clear.data); #endif return true; } bool device_ledger::derive_public_key(const crypto::key_derivation &derivation, const std::size_t output_index, const crypto::public_key &pub, crypto::public_key &derived_pub){ AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const crypto::key_derivation derivation_x = hw::ledger::decrypt(derivation); const std::size_t output_index_x = output_index; const crypto::public_key pub_x = pub; crypto::public_key derived_pub_x; log_hexbuffer("derive_public_key: [[IN]] derivation ", derivation_x.data, 32); log_message ("derive_public_key: [[IN]] output_index", std::to_string(output_index_x)); log_hexbuffer("derive_public_key: [[IN]] pub ", pub_x.data, 32); if (!this->controle_device->derive_public_key(derivation_x, output_index_x, pub_x, derived_pub_x)) return false; log_hexbuffer("derive_public_key: [[OUT]] derived_pub ", derived_pub_x.data, 32); #endif int offset = set_command_header_noopt(INS_DERIVE_PUBLIC_KEY); //derivation this->send_secret((unsigned char*)derivation.data, offset); //index this->buffer_send[offset+0] = output_index>>24; this->buffer_send[offset+1] = output_index>>16; this->buffer_send[offset+2] = output_index>>8; this->buffer_send[offset+3] = output_index>>0; offset += 4; //pub memmove(this->buffer_send+offset, pub.data, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //pub key memmove(derived_pub.data, &this->buffer_recv[0], 32); #ifdef DEBUG_HWDEVICE hw::ledger::check32("derive_public_key", "derived_pub", derived_pub_x.data, derived_pub.data); #endif return true; } bool device_ledger::secret_key_to_public_key(const crypto::secret_key &sec, crypto::public_key &pub) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const crypto::secret_key sec_x = hw::ledger::decrypt(sec); crypto::public_key pub_x; log_hexbuffer("secret_key_to_public_key: [[IN]] sec ", sec_x.data, 32); bool rc = this->controle_device->secret_key_to_public_key(sec_x, pub_x); log_hexbuffer("secret_key_to_public_key: [[OUT]] pub", pub_x.data, 32); if (!rc){ log_message("FAIL secret_key_to_public_key", "secret_key rejected"); } #endif int offset = set_command_header_noopt(INS_SECRET_KEY_TO_PUBLIC_KEY); //sec key this->send_secret((unsigned char*)sec.data, offset); this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //pub key memmove(pub.data, &this->buffer_recv[0], 32); #ifdef DEBUG_HWDEVICE hw::ledger::check32("secret_key_to_public_key", "pub", pub_x.data, pub.data); #endif return true; } bool device_ledger::generate_key_image(const crypto::public_key &pub, const crypto::secret_key &sec, crypto::key_image &image){ AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const crypto::public_key pub_x = pub; const crypto::secret_key sec_x = hw::ledger::decrypt(sec); crypto::key_image image_x; log_hexbuffer("generate_key_image: [[IN]] pub ", pub_x.data, 32); log_hexbuffer("generate_key_image: [[IN]] sec ", sec_x.data, 32); this->controle_device->generate_key_image(pub_x, sec_x, image_x); log_hexbuffer("generate_key_image: [[OUT]] image ", image_x.data, 32); #endif int offset = set_command_header_noopt(INS_GEN_KEY_IMAGE); //pub memmove(this->buffer_send+offset, pub.data, 32); offset += 32; //sec this->send_secret((unsigned char*)sec.data, offset); this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //pub key memmove(image.data, &this->buffer_recv[0], 32); #ifdef DEBUG_HWDEVICE hw::ledger::check32("generate_key_image", "image", image_x.data, image.data); #endif return true; } /* ======================================================================= */ /* TRANSACTION */ /* ======================================================================= */ void device_ledger::generate_tx_proof(const crypto::hash &prefix_hash, const crypto::public_key &R, const crypto::public_key &A, const boost::optional &B, const crypto::public_key &D, const crypto::secret_key &r, crypto::signature &sig) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const crypto::hash prefix_hash_x = prefix_hash; const crypto::public_key R_x = R; const crypto::public_key A_x = A; const boost::optional B_x = B; const crypto::public_key D_x = D; const crypto::secret_key r_x = hw::ledger::decrypt(r); crypto::signature sig_x; log_hexbuffer("generate_tx_proof: [[IN]] prefix_hash ", prefix_hash_x.data, 32); log_hexbuffer("generate_tx_proof: [[IN]] R ", R_x.data, 32); log_hexbuffer("generate_tx_proof: [[IN]] A ", A_x.data, 32); if (B_x) { log_hexbuffer("generate_tx_proof: [[IN]] B ", (*B_x).data, 32); } log_hexbuffer("generate_tx_proof: [[IN]] D ", D_x.data, 32); log_hexbuffer("generate_tx_proof: [[IN]] r ", r_x.data, 32); #endif int offset = set_command_header(INS_GET_TX_PROOF); //options this->buffer_send[offset] = B?0x01:0x00; offset += 1; //prefix_hash memmove(&this->buffer_send[offset], prefix_hash.data, 32); offset += 32; // R memmove(&this->buffer_send[offset], R.data, 32); offset += 32; // A memmove(&this->buffer_send[offset], A.data, 32); offset += 32; // B if (B) { memmove(&this->buffer_send[offset], (*B).data, 32); } else { memset(&this->buffer_send[offset], 0, 32); } offset += 32; // D memmove(&this->buffer_send[offset], D.data, 32); offset += 32; // r this->send_secret((unsigned char*)r.data, offset); this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); memmove(sig.c.data, &this->buffer_recv[0], 32); memmove(sig.r.data, &this->buffer_recv[32], 32); #ifdef DEBUG_HWDEVICE log_hexbuffer("GENERATE_TX_PROOF: **c** ", sig.c.data, sizeof( sig.c.data)); log_hexbuffer("GENERATE_TX_PROOF: **r** ", sig.r.data, sizeof( sig.r.data)); this->controle_device->generate_tx_proof(prefix_hash_x, R_x, A_x, B_x, D_x, r_x, sig_x); MDEBUG("FAIL is normal if random is not fixed in proof"); hw::ledger::check32("generate_tx_proof", "c", sig_x.c.data, sig.c.data); hw::ledger::check32("generate_tx_proof", "r", sig_x.r.data, sig.r.data); #endif } bool device_ledger::open_tx(crypto::secret_key &tx_key) { AUTO_LOCK_CMD(); this->lock(); key_map.clear(); hmac_map.clear(); this->tx_in_progress = true; int offset = set_command_header_noopt(INS_OPEN_TX, 0x01); //account this->buffer_send[offset+0] = 0x00; this->buffer_send[offset+1] = 0x00; this->buffer_send[offset+2] = 0x00; this->buffer_send[offset+3] = 0x00; offset += 4; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //skip R, receive: r, r_hmac, fake_a, a_hmac, fake_b, hmac_b unsigned char tmp[32]; offset = 32; this->receive_secret((unsigned char*)tx_key.data, offset); this->receive_secret(tmp, offset); this->receive_secret(tmp, offset); #ifdef DEBUG_HWDEVICE const crypto::secret_key r_x = hw::ledger::decrypt(tx_key); log_hexbuffer("open_tx: [[OUT]] R ", (char*)&this->buffer_recv[0], 32); log_hexbuffer("open_tx: [[OUT]] r ", r_x.data, 32); #endif return true; } void device_ledger::get_transaction_prefix_hash(const cryptonote::transaction_prefix& tx, crypto::hash& h) { AUTO_LOCK_CMD(); int pref_length = 0, pref_offset = 0, offset = 0; #ifdef DEBUG_HWDEVICE crypto::hash h_x; this->controle_device->get_transaction_prefix_hash(tx,h_x); MDEBUG("get_transaction_prefix_hash [[IN]] h_x/1 "< a_x(s_x); CHECK_AND_ASSERT_THROW_MES(::serialization::serialize(a_x, const_cast(tx)), "unable to serialize transaction prefix"); pref_length = s_x.str().size(); //auto pref = std::make_unique(pref_length); auto uprt_pref = std::unique_ptr{ new unsigned char[pref_length] }; unsigned char* pref = uprt_pref.get(); memmove(pref, s_x.str().data(), pref_length); offset = set_command_header_noopt(INS_PREFIX_HASH,1); pref_offset = 0; unsigned char v; //version as varint do { v = pref[pref_offset]; this->buffer_send[offset] = v; offset += 1; pref_offset += 1; } while (v&0x80); //locktime as var int do { v = pref[pref_offset]; this->buffer_send[offset] = v; offset += 1; pref_offset += 1; } while (v&0x80); this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange_wait_on_input(); //hash remains int cnt = 0; while (pref_offset < pref_length) { int len; cnt++; offset = set_command_header(INS_PREFIX_HASH,2,cnt); len = pref_length - pref_offset; //options if (len > (BUFFER_SEND_SIZE-offset-3)) { len = BUFFER_SEND_SIZE-offset-3; this->buffer_send[offset] = 0x80; } else { this->buffer_send[offset] = 0x00; } offset += 1; //send chunk memmove(&this->buffer_send[offset], pref+pref_offset, len); offset += len; pref_offset += len; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); } memmove(h.data, &this->buffer_recv[0], 32); #ifdef DEBUG_HWDEVICE hw::ledger::check8("prefix_hash", "h", h_x.data, h.data); #endif } bool device_ledger::encrypt_payment_id(crypto::hash8 &payment_id, const crypto::public_key &public_key, const crypto::secret_key &secret_key) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const crypto::public_key public_key_x = public_key; const crypto::secret_key secret_key_x = hw::ledger::decrypt(secret_key); crypto::hash8 payment_id_x = payment_id; log_hexbuffer("encrypt_payment_id: [[IN]] payment_id ", payment_id_x.data, 32); log_hexbuffer("encrypt_payment_id: [[IN]] public_key ", public_key_x.data, 32); log_hexbuffer("encrypt_payment_id: [[IN]] secret_key ", secret_key_x.data, 32); this->controle_device->encrypt_payment_id(payment_id_x, public_key_x, secret_key_x); log_hexbuffer("encrypt_payment_id: [[OUT]] payment_id ", payment_id_x.data, 32); #endif int offset = set_command_header_noopt(INS_STEALTH); //pub memmove(&this->buffer_send[offset], public_key.data, 32); offset += 32; //sec this->send_secret((unsigned char*)secret_key.data, offset); //id memmove(&this->buffer_send[offset], payment_id.data, 8); offset += 8; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); memmove(payment_id.data, &this->buffer_recv[0], 8); #ifdef DEBUG_HWDEVICE hw::ledger::check8("stealth", "payment_id", payment_id_x.data, payment_id.data); #endif return true; } bool device_ledger::generate_output_ephemeral_keys(const size_t tx_version, const cryptonote::account_keys &sender_account_keys, const crypto::public_key &txkey_pub, const crypto::secret_key &tx_key, const cryptonote::tx_destination_entry &dst_entr, const boost::optional &change_addr, const size_t output_index, const bool &need_additional_txkeys, const std::vector &additional_tx_keys, std::vector &additional_tx_public_keys, std::vector &amount_keys, crypto::public_key &out_eph_public_key, bool use_view_tags, crypto::view_tag &view_tag) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const size_t &tx_version_x = tx_version; const cryptonote::account_keys sender_account_keys_x = hw::ledger::decrypt(sender_account_keys); memmove((void*)sender_account_keys_x.m_view_secret_key.data, dbg_viewkey.data, 32); const crypto::public_key txkey_pub_x = txkey_pub; const crypto::secret_key tx_key_x = hw::ledger::decrypt(tx_key); const cryptonote::tx_destination_entry dst_entr_x = dst_entr; const boost::optional change_addr_x = change_addr; const size_t output_index_x = output_index; const bool need_additional_txkeys_x = need_additional_txkeys; const bool use_view_tags_x = use_view_tags; const crypto::view_tag view_tag_x = view_tag; std::vector additional_tx_keys_x; for (const auto &k: additional_tx_keys) { additional_tx_keys_x.push_back(hw::ledger::decrypt(k)); } std::vector additional_tx_public_keys_x; std::vector amount_keys_x; crypto::public_key out_eph_public_key_x; log_message ("generate_output_ephemeral_keys: [[IN]] tx_version", std::to_string(tx_version_x)); //log_hexbuffer("generate_output_ephemeral_keys: [[IN]] sender_account_keys.view", sender_account_keys.m_sview_secret_key.data, 32); //log_hexbuffer("generate_output_ephemeral_keys: [[IN]] sender_account_keys.spend", sender_account_keys.m_spend_secret_key.data, 32); log_hexbuffer("generate_output_ephemeral_keys: [[IN]] txkey_pub", txkey_pub_x.data, 32); log_hexbuffer("generate_output_ephemeral_keys: [[IN]] tx_key", tx_key_x.data, 32); log_hexbuffer("generate_output_ephemeral_keys: [[IN]] dst_entr.view", dst_entr_x.addr.m_view_public_key.data, 32); log_hexbuffer("generate_output_ephemeral_keys: [[IN]] dst_entr.spend", dst_entr_x.addr.m_spend_public_key.data, 32); if (change_addr) { log_hexbuffer("generate_output_ephemeral_keys: [[IN]] change_addr.view", (*change_addr_x).m_view_public_key.data, 32); log_hexbuffer("generate_output_ephemeral_keys: [[IN]] change_addr.spend", (*change_addr_x).m_spend_public_key.data, 32); } log_message ("generate_output_ephemeral_keys: [[IN]] output_index", std::to_string(output_index_x)); log_message ("generate_output_ephemeral_keys: [[IN]] need_additional_txkeys", std::to_string(need_additional_txkeys_x)); if(need_additional_txkeys_x) { log_hexbuffer("generate_output_ephemeral_keys: [[IN]] additional_tx_keys[oi]", additional_tx_keys_x[output_index].data, 32); } this->controle_device->generate_output_ephemeral_keys(tx_version_x, sender_account_keys_x, txkey_pub_x, tx_key_x, dst_entr_x, change_addr_x, output_index_x, need_additional_txkeys_x, additional_tx_keys_x, additional_tx_public_keys_x, amount_keys_x, out_eph_public_key_x, use_view_tags_x, view_tag_x); if(need_additional_txkeys_x) { log_hexbuffer("additional_tx_public_keys_x: [[OUT]] additional_tx_public_keys_x", additional_tx_public_keys_x.back().data, 32); } log_hexbuffer("generate_output_ephemeral_keys: [[OUT]] amount_keys ", (char*)amount_keys_x.back().bytes, 32); log_hexbuffer("generate_output_ephemeral_keys: [[OUT]] out_eph_public_key ", out_eph_public_key_x.data, 32); #endif ASSERT_X(tx_version > 1, "TX version not supported"<buffer_send[offset+0] = tx_version>>24; this->buffer_send[offset+1] = tx_version>>16; this->buffer_send[offset+2] = tx_version>>8; this->buffer_send[offset+3] = tx_version>>0; offset += 4; //tx_key this->send_secret((unsigned char*)tx_key.data, offset); //txkey_pub memmove(&this->buffer_send[offset], txkey_pub.data, 32); offset += 32; //Aout memmove(&this->buffer_send[offset], dst_entr.addr.m_view_public_key.data, 32); offset += 32; //Bout memmove(&this->buffer_send[offset], dst_entr.addr.m_spend_public_key.data, 32); offset += 32; //output index this->buffer_send[offset+0] = output_index>>24; this->buffer_send[offset+1] = output_index>>16; this->buffer_send[offset+2] = output_index>>8; this->buffer_send[offset+3] = output_index>>0; offset += 4; //is_change, bool is_change = (change_addr && dst_entr.addr == *change_addr); this->buffer_send[offset] = is_change; offset++; //is_subaddress this->buffer_send[offset] = dst_entr.is_subaddress; offset++; //need_additional_key this->buffer_send[offset] = need_additional_txkeys; offset++; //additional_tx_key if (need_additional_txkeys) { this->send_secret((unsigned char*)additional_txkey.sec.data, offset); } else { memset(&this->buffer_send[offset], 0, 32); offset += 32; } this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); offset = 0; unsigned int recv_len = this->length_recv; //if (tx_version > 1) { ASSERT_X(recv_len>=32, "Not enough data from device"); crypto::secret_key scalar1; this->receive_secret((unsigned char*)scalar1.data, offset); amount_keys.push_back(rct::sk2rct(scalar1)); recv_len -= 32; } ASSERT_X(recv_len>=32, "Not enough data from device"); memmove(out_eph_public_key.data, &this->buffer_recv[offset], 32); recv_len -= 32; offset += 32; if (need_additional_txkeys) { ASSERT_X(recv_len>=32, "Not enough data from device"); memmove(additional_txkey.pub.data, &this->buffer_recv[offset], 32); additional_tx_public_keys.push_back(additional_txkey.pub); offset += 32; recv_len -= 32; } // add ABPkeys this->add_output_key_mapping(dst_entr.addr.m_view_public_key, dst_entr.addr.m_spend_public_key, dst_entr.is_subaddress, is_change, need_additional_txkeys, output_index, amount_keys.back(), out_eph_public_key); #ifdef DEBUG_HWDEVICE log_hexbuffer("generate_output_ephemeral_keys: clear amount_key", (const char*)hw::ledger::decrypt(amount_keys.back()).bytes, 32); hw::ledger::check32("generate_output_ephemeral_keys", "amount_key", (const char*)amount_keys_x.back().bytes, (const char*)hw::ledger::decrypt(amount_keys.back()).bytes); if (need_additional_txkeys) { hw::ledger::check32("generate_output_ephemeral_keys", "additional_tx_key", additional_tx_public_keys_x.back().data, additional_tx_public_keys.back().data); } hw::ledger::check32("generate_output_ephemeral_keys", "out_eph_public_key", out_eph_public_key_x.data, out_eph_public_key.data); #endif return true; } bool device_ledger::add_output_key_mapping(const crypto::public_key &Aout, const crypto::public_key &Bout, const bool is_subaddress, const bool is_change, const bool need_additional, const size_t real_output_index, const rct::key &amount_key, const crypto::public_key &out_eph_public_key) { key_map.add(ABPkeys(rct::pk2rct(Aout),rct::pk2rct(Bout), is_subaddress, is_change, need_additional, real_output_index, rct::pk2rct(out_eph_public_key), amount_key)); return true; } rct::key device_ledger::genCommitmentMask(const rct::key &AKout) { #ifdef DEBUG_HWDEVICE const rct::key AKout_x = hw::ledger::decrypt(AKout); rct::key mask_x; mask_x = this->controle_device->genCommitmentMask(AKout_x); #endif rct::key mask; int offset = set_command_header_noopt(INS_GEN_COMMITMENT_MASK); // AKout this->send_secret(AKout.bytes, offset); this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); memmove(mask.bytes, &this->buffer_recv[0], 32); #ifdef DEBUG_HWDEVICE hw::ledger::check32("genCommitmentMask", "mask", (const char*)mask_x.bytes, (const char*)mask.bytes); #endif return mask; } bool device_ledger::ecdhEncode(rct::ecdhTuple & unmasked, const rct::key & AKout, bool short_amount) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const rct::key AKout_x = hw::ledger::decrypt(AKout); rct::ecdhTuple unmasked_x = unmasked; this->controle_device->ecdhEncode(unmasked_x, AKout_x, short_amount); #endif int offset = set_command_header(INS_BLIND); //options this->buffer_send[offset] = short_amount?0x02:0x00; offset += 1; // AKout this->send_secret(AKout.bytes, offset); //mask k memmove(this->buffer_send+offset, unmasked.mask.bytes, 32); offset += 32; //value v memmove(this->buffer_send+offset, unmasked.amount.bytes, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); memmove(unmasked.amount.bytes, &this->buffer_recv[0], 32); memmove(unmasked.mask.bytes, &this->buffer_recv[32], 32); #ifdef DEBUG_HWDEVICE MDEBUG("ecdhEncode: Akout: "<buffer_recv[64], 3*32); #endif return true; } bool device_ledger::ecdhDecode(rct::ecdhTuple & masked, const rct::key & AKout, bool short_amount) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const rct::key AKout_x = hw::ledger::decrypt(AKout); rct::ecdhTuple masked_x = masked; this->controle_device->ecdhDecode(masked_x, AKout_x, short_amount); #endif int offset = set_command_header(INS_UNBLIND); //options this->buffer_send[offset] = short_amount?0x02:0x00; offset += 1; // AKout this->send_secret(AKout.bytes, offset); //mask k memmove(this->buffer_send+offset, masked.mask.bytes, 32); offset += 32; //value v memmove(this->buffer_send+offset, masked.amount.bytes, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); memmove(masked.amount.bytes, &this->buffer_recv[0], 32); memmove(masked.mask.bytes, &this->buffer_recv[32], 32); #ifdef DEBUG_HWDEVICE MDEBUG("ecdhEncode: Akout: "<controle_device->mlsag_prehash(blob_x, inputs_size_x, outputs_size_x, hashes_x, outPk_x, prehash_x); if (inputs_size) { log_message("mlsag_prehash", (std::string("inputs_size not null: ") + std::to_string(inputs_size)).c_str()); } this->key_map.log(); #endif data = blob.data(); // ====== u8 type, varint txnfee ====== int offset = set_command_header(INS_VALIDATE, 0x01, 0x01); //options this->buffer_send[offset] = (inputs_size == 0)?0x00:0x80; offset += 1; //type uint8_t type = data[0]; this->buffer_send[offset] = data[0]; offset += 1; //txnfee data_offset = 1; while (data[data_offset]&0x80) { this->buffer_send[offset] = data[data_offset]; offset += 1; data_offset += 1; } this->buffer_send[offset] = data[data_offset]; offset += 1; data_offset += 1; this->buffer_send[4] = offset-5; this->length_send = offset; // check fee user input CHECK_AND_ASSERT_THROW_MES(this->exchange_wait_on_input() == 0, "Fee denied on device."); //pseudoOuts if (type == rct::RCTTypeSimple) { for ( i = 0; i < inputs_size; i++) { offset = set_command_header(INS_VALIDATE, 0x01, i+2); //options this->buffer_send[offset] = (i==inputs_size-1)? 0x00:0x80; offset += 1; //pseudoOut memmove(this->buffer_send+offset, data+data_offset,32); offset += 32; data_offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); } } // ====== Aout, Bout, AKout, C, v, k ====== kv_offset = data_offset; if (type==rct::RCTTypeBulletproof2 || type==rct::RCTTypeCLSAG) { C_offset = kv_offset+ (8)*outputs_size; } else { C_offset = kv_offset+ (32+32)*outputs_size; } for ( i = 0; i < outputs_size; i++) { ABPkeys outKeys; bool found; found = this->key_map.find(outPk[i].dest, outKeys); if (!found) { log_hexbuffer("Pout not found", (char*)outPk[i].dest.bytes, 32); CHECK_AND_ASSERT_THROW_MES(found, "Pout not found"); } offset = set_command_header(INS_VALIDATE, 0x02, i+1); //options this->buffer_send[offset] = (i==outputs_size-1)? 0x00:0x80 ; this->buffer_send[offset] |= (type==rct::RCTTypeBulletproof2 || type==rct::RCTTypeCLSAG)?0x02:0x00; offset += 1; //is_subaddress this->buffer_send[offset] = outKeys.is_subaddress; offset++; //is_change_address this->buffer_send[offset] = outKeys.is_change_address; offset++; //Aout memmove(this->buffer_send+offset, outKeys.Aout.bytes, 32); offset+=32; //Bout memmove(this->buffer_send+offset, outKeys.Bout.bytes, 32); offset+=32; //AKout this->send_secret(outKeys.AKout.bytes, offset); //C memmove(this->buffer_send+offset, data+C_offset,32); offset += 32; C_offset += 32; if (type==rct::RCTTypeBulletproof2 || type==rct::RCTTypeCLSAG) { //k memset(this->buffer_send+offset, 0, 32); offset += 32; //v memset(this->buffer_send+offset, 0, 32); memmove(this->buffer_send+offset, data+kv_offset,8); offset += 32; kv_offset += 8; } else { //k memmove(this->buffer_send+offset, data+kv_offset,32); offset += 32; kv_offset += 32; //v memmove(this->buffer_send+offset, data+kv_offset,32); offset += 32; kv_offset += 32; } this->buffer_send[4] = offset-5; this->length_send = offset; // check transaction user input CHECK_AND_ASSERT_THROW_MES(this->exchange_wait_on_input() == 0, "Transaction denied on device."); #ifdef DEBUG_HWDEVICE log_hexbuffer("Prehash AKV input", (char*)&this->buffer_recv[64], 3*32); #endif } // ====== C[], message, proof====== C_offset = kv_offset; for (i = 0; i < outputs_size; i++) { offset = set_command_header(INS_VALIDATE, 0x03, i+1); //options this->buffer_send[offset] = 0x80 ; offset += 1; //C memmove(this->buffer_send+offset, data+C_offset,32); offset += 32; C_offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); } offset = set_command_header_noopt(INS_VALIDATE, 0x03, i+1); //message memmove(this->buffer_send+offset, hashes[0].bytes,32); offset += 32; //proof memmove(this->buffer_send+offset, hashes[2].bytes,32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); memmove(prehash.bytes, this->buffer_recv, 32); #ifdef DEBUG_HWDEVICE hw::ledger::check32("mlsag_prehash", "prehash", (char*)prehash_x.bytes, (char*)prehash.bytes); #endif return true; } bool device_ledger::mlsag_prepare(const rct::key &H, const rct::key &xx, rct::key &a, rct::key &aG, rct::key &aHP, rct::key &II) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const rct::key H_x = H; const rct::key xx_x = hw::ledger::decrypt(xx); rct::key a_x; rct::key aG_x; rct::key aHP_x; rct::key II_x; #endif int offset = set_command_header_noopt(INS_MLSAG, 0x01); //value H memmove(this->buffer_send+offset, H.bytes, 32); offset += 32; //mask xin this->send_secret(xx.bytes, offset); this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); offset = 0; this->receive_secret(a.bytes, offset); memmove(aG.bytes, &this->buffer_recv[offset], 32); offset +=32; memmove(aHP.bytes, &this->buffer_recv[offset], 32); offset +=32; memmove(II.bytes, &this->buffer_recv[offset], 32); #ifdef DEBUG_HWDEVICE a_x = hw::ledger::decrypt(a); rct::scalarmultBase(aG_x, a_x); rct::scalarmultKey(aHP_x, H_x, a_x); rct::scalarmultKey(II_x, H_x, xx_x); hw::ledger::check32("mlsag_prepare", "AG", (char*)aG_x.bytes, (char*)aG.bytes); hw::ledger::check32("mlsag_prepare", "aHP", (char*)aHP_x.bytes, (char*)aHP.bytes); hw::ledger::check32("mlsag_prepare", "II", (char*)II_x.bytes, (char*)II.bytes); #endif return true; } bool device_ledger::mlsag_prepare(rct::key &a, rct::key &aG) { AUTO_LOCK_CMD(); int offset; #ifdef DEBUG_HWDEVICE rct::key a_x; rct::key aG_x; #endif send_simple(INS_MLSAG, 0x01); offset = 0; this->receive_secret(a.bytes, offset); memmove(aG.bytes, &this->buffer_recv[offset], 32); #ifdef DEBUG_HWDEVICE a_x = hw::ledger::decrypt(a); rct::scalarmultBase(aG_x, a_x); hw::ledger::check32("mlsag_prepare", "AG", (char*)aG_x.bytes, (char*)aG.bytes); #endif return true; } bool device_ledger::mlsag_hash(const rct::keyV &long_message, rct::key &c) { AUTO_LOCK_CMD(); size_t cnt; #ifdef DEBUG_HWDEVICE const rct::keyV long_message_x = long_message; rct::key c_x; this->controle_device->mlsag_hash(long_message_x, c_x); #endif cnt = long_message.size(); for (size_t i = 0; ibuffer_send[offset] = (i==(cnt-1))?0x00:0x80; //last offset += 1; //msg part memmove(this->buffer_send+offset, long_message[i].bytes, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); } memmove(c.bytes, &this->buffer_recv[0], 32); #ifdef DEBUG_HWDEVICE hw::ledger::check32("mlsag_hash", "c", (char*)c_x.bytes, (char*)c.bytes); #endif return true; } bool device_ledger::mlsag_sign(const rct::key &c, const rct::keyV &xx, const rct::keyV &alpha, const size_t rows, const size_t dsRows, rct::keyV &ss) { AUTO_LOCK_CMD(); CHECK_AND_ASSERT_THROW_MES(dsRows<=rows, "dsRows greater than rows"); CHECK_AND_ASSERT_THROW_MES(xx.size() == rows, "xx size does not match rows"); CHECK_AND_ASSERT_THROW_MES(alpha.size() == rows, "alpha size does not match rows"); CHECK_AND_ASSERT_THROW_MES(ss.size() == rows, "ss size does not match rows"); #ifdef DEBUG_HWDEVICE const rct::key c_x = c; const rct::keyV xx_x = hw::ledger::decrypt(xx); const rct::keyV alpha_x = hw::ledger::decrypt(alpha); const int rows_x = rows; const int dsRows_x = dsRows; rct::keyV ss_x(ss.size()); this->controle_device->mlsag_sign(c_x, xx_x, alpha_x, rows_x, dsRows_x, ss_x); #endif for (size_t j = 0; j < dsRows; j++) { int offset = set_command_header(INS_MLSAG, 0x03, j+1); //options this->buffer_send[offset] = 0x00; if (j==(dsRows-1)) { this->buffer_send[offset] |= 0x80; //last } offset += 1; //xx this->send_secret(xx[j].bytes, offset); //alpa this->send_secret(alpha[j].bytes, offset); this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //ss memmove(ss[j].bytes, &this->buffer_recv[0], 32); } for (size_t j = dsRows; j < rows; j++) { sc_mulsub(ss[j].bytes, c.bytes, xx[j].bytes, alpha[j].bytes); } #ifdef DEBUG_HWDEVICE for (size_t j = 0; j < rows; j++) { hw::ledger::check32("mlsag_sign", "ss["+std::to_string(j)+"]", (char*)ss_x[j].bytes, (char*)ss[j].bytes); } #endif return true; } bool device_ledger::clsag_prepare(const rct::key &p, const rct::key &z, rct::key &I, rct::key &D, const rct::key &H, rct::key &a, rct::key &aG, rct::key &aH) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const rct::key p_x = hw::ledger::decrypt(p); const rct::key z_x = z; rct::key I_x; rct::key D_x; const rct::key H_x = H; rct::key a_x; rct::key aG_x; rct::key aH_x; this->controle_device->clsag_prepare(p_x, z_x, I_x, D_x, H_x, a_x, aG_x, aH_x); #endif /* rct::skpkGen(a,aG); // aG = a*G rct::scalarmultKey(aH,H,a); // aH = a*H rct::scalarmultKey(I,H,p); // I = p*H rct::scalarmultKey(D,H,z); // D = z*H */ int offset = set_command_header_noopt(INS_CLSAG, 0x01); //p this->send_secret(p.bytes, offset); //z memmove(this->buffer_send+offset, z.bytes, 32); offset += 32; //H memmove(this->buffer_send+offset, H.bytes, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); offset = 0; //a this->receive_secret(a.bytes, offset); //aG memmove(aG.bytes, this->buffer_recv+offset, 32); offset +=32; //aH memmove(aH.bytes, this->buffer_recv+offset, 32); offset +=32; //I = pH memmove(I.bytes, this->buffer_recv+offset, 32); offset +=32; //D = zH memmove(D.bytes, this->buffer_recv+offset, 32); offset +=32; #ifdef DEBUG_HWDEVICE hw::ledger::check32("clsag_prepare", "I", (char*)I_x.bytes, (char*)I.bytes); hw::ledger::check32("clsag_prepare", "D", (char*)D_x.bytes, (char*)D.bytes); hw::ledger::check32("clsag_prepare", "a", (char*)a_x.bytes, (char*)a.bytes); hw::ledger::check32("clsag_prepare", "aG", (char*)aG_x.bytes, (char*)aG.bytes); hw::ledger::check32("clsag_prepare", "aH", (char*)aH_x.bytes, (char*)aH.bytes); #endif return true; } bool device_ledger::clsag_hash(const rct::keyV &data, rct::key &hash) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const rct::keyV data_x = data; rct::key hash_x; this->controle_device->mlsag_hash(data_x, hash_x); #endif size_t cnt; int offset; cnt = data.size(); for (size_t i = 0; ibuffer_send[offset] = (i==(cnt-1))?0x00:0x80; //last offset += 1; //msg part memmove(this->buffer_send+offset, data[i].bytes, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); } //c/hash memmove(hash.bytes, &this->buffer_recv[0], 32); #ifdef DEBUG_HWDEVICE hw::ledger::check32("mlsag_hash", "hash", (char*)hash_x.bytes, (char*)hash.bytes); #endif return true; } bool device_ledger::clsag_sign(const rct::key &c, const rct::key &a, const rct::key &p, const rct::key &z, const rct::key &mu_P, const rct::key &mu_C, rct::key &s) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const rct::key c_x = c; const rct::key a_x = hw::ledger::decrypt(a); const rct::key p_x = hw::ledger::decrypt(p); const rct::key z_x = z; const rct::key mu_P_x = mu_P; const rct::key mu_C_x = mu_C; rct::key s_x; this->controle_device->clsag_sign(c_x, a_x, p_x, z_x, mu_P_x, mu_C_x, s_x); #endif /* rct::key s0_p_mu_P; sc_mul(s0_p_mu_P.bytes,mu_P.bytes,p.bytes); rct::key s0_add_z_mu_C; sc_muladd(s0_add_z_mu_C.bytes,mu_C.bytes,z.bytes,s0_p_mu_P.bytes); sc_mulsub(s.bytes,c.bytes,s0_add_z_mu_C.bytes,a.bytes); */ int offset = set_command_header_noopt(INS_CLSAG, 0x03); //c //discard, unse internal one //a this->send_secret(a.bytes, offset); //p this->send_secret(p.bytes, offset); //z memmove(this->buffer_send+offset, z.bytes, 32); offset += 32; //mu_P memmove(this->buffer_send+offset, mu_P.bytes, 32); offset += 32; //mu_C memmove(this->buffer_send+offset, mu_C.bytes, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); offset = 0; //s memmove(s.bytes, this->buffer_recv+offset, 32); #ifdef DEBUG_HWDEVICE hw::ledger::check32("clsag_sign", "s", (char*)s_x.bytes, (char*)s.bytes); #endif return true; } bool device_ledger::close_tx() { AUTO_LOCK_CMD(); send_simple(INS_CLOSE_TX); key_map.clear(); hmac_map.clear(); this->tx_in_progress = false; this->unlock(); return true; } /* ---------------------------------------------------------- */ static device_ledger *legder_device = NULL; void register_all(std::map> ®istry) { if (!legder_device) { legder_device = new device_ledger(); legder_device->set_name("Ledger"); } registry.insert(std::make_pair("Ledger", std::unique_ptr(legder_device))); } #else //WITH_DEVICE_LEDGER void register_all(std::map> ®istry) { } #endif //WITH_DEVICE_LEDGER } }