// Copyright (c) 2017-2019, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // #include "device_ledger.hpp" #include "log.hpp" #include "ringct/rctOps.h" #include "cryptonote_basic/account.h" #include "cryptonote_basic/subaddress_index.h" #include "cryptonote_core/cryptonote_tx_utils.h" #include #include namespace hw { namespace ledger { #ifdef WITH_DEVICE_LEDGER #undef MONERO_DEFAULT_LOG_CATEGORY #define MONERO_DEFAULT_LOG_CATEGORY "device.ledger" /* ===================================================================== */ /* === Debug ==== */ /* ===================================================================== */ void set_apdu_verbose(bool verbose) { apdu_verbose = verbose; } #define TRACKD MTRACE("hw") #define ASSERT_SW(sw,ok,msk) CHECK_AND_ASSERT_THROW_MES(((sw)&(mask))==(ok), "Wrong Device Status : SW=" << std::hex << (sw) << " (EXPECT=" << std::hex << (ok) << ", MASK=" << std::hex << (mask) << ")") ; #define ASSERT_T0(exp) CHECK_AND_ASSERT_THROW_MES(exp, "Protocol assert failure: "#exp ) ; #define ASSERT_X(exp,msg) CHECK_AND_ASSERT_THROW_MES(exp, msg); #ifdef DEBUG_HWDEVICE crypto::secret_key dbg_viewkey; crypto::secret_key dbg_spendkey; #endif /* ===================================================================== */ /* === Keymap ==== */ /* ===================================================================== */ ABPkeys::ABPkeys(const rct::key& A, const rct::key& B, const bool is_subaddr, const bool is_change, const bool need_additional_txkeys, const size_t real_output_index, const rct::key& P, const rct::key& AK) { Aout = A; Bout = B; is_subaddress = is_subaddr; is_change_address = is_change; additional_key = need_additional_txkeys; index = real_output_index; Pout = P; AKout = AK; } ABPkeys::ABPkeys(const ABPkeys& keys) { Aout = keys.Aout; Bout = keys.Bout; is_subaddress = keys.is_subaddress; is_change_address = keys.is_change_address; additional_key = keys.additional_key; index = keys.index; Pout = keys.Pout; AKout = keys.AKout; } bool Keymap::find(const rct::key& P, ABPkeys& keys) const { size_t sz = ABP.size(); for (size_t i=0; iid = device_id++; this->reset_buffer(); this->mode = NONE; this->has_view_key = false; MDEBUG( "Device "<id <<" Created"); } device_ledger::~device_ledger() { this->release(); MDEBUG( "Device "<id <<" Destroyed"); } /* ======================================================================= */ /* LOCKER */ /* ======================================================================= */ //automatic lock one more level on device ensuring the current thread is allowed to use it #define AUTO_LOCK_CMD() \ /* lock both mutexes without deadlock*/ \ boost::lock(device_locker, command_locker); \ /* make sure both already-locked mutexes are unlocked at the end of scope */ \ boost::lock_guard lock1(device_locker, boost::adopt_lock); \ boost::lock_guard lock2(command_locker, boost::adopt_lock) //lock the device for a long sequence void device_ledger::lock(void) { MDEBUG( "Ask for LOCKING for device "<name << " in thread "); device_locker.lock(); MDEBUG( "Device "<name << " LOCKed"); } //lock the device for a long sequence bool device_ledger::try_lock(void) { MDEBUG( "Ask for LOCKING(try) for device "<name << " in thread "); bool r = device_locker.try_lock(); if (r) { MDEBUG( "Device "<name << " LOCKed(try)"); } else { MDEBUG( "Device "<name << " not LOCKed(try)"); } return r; } //lock the device for a long sequence void device_ledger::unlock(void) { try { MDEBUG( "Ask for UNLOCKING for device "<name << " in thread "); } catch (...) { } device_locker.unlock(); MDEBUG( "Device "<name << " UNLOCKed"); } /* ======================================================================= */ /* IO */ /* ======================================================================= */ #define IO_SW_DENY 0x6982 #define IO_SECRET_KEY 0x02 void device_ledger::logCMD() { if (apdu_verbose) { char strbuffer[1024]; snprintf(strbuffer, sizeof(strbuffer), "%.02x %.02x %.02x %.02x %.02x ", this->buffer_send[0], this->buffer_send[1], this->buffer_send[2], this->buffer_send[3], this->buffer_send[4] ); const size_t len = strlen(strbuffer); buffer_to_str(strbuffer+len, sizeof(strbuffer)-len, (char*)(this->buffer_send+5), this->length_send-5); MDEBUG( "CMD : " << strbuffer); } } void device_ledger::logRESP() { if (apdu_verbose) { char strbuffer[1024]; snprintf(strbuffer, sizeof(strbuffer), "%.04x ", this->sw); const size_t len = strlen(strbuffer); buffer_to_str(strbuffer+len, sizeof(strbuffer)-len, (char*)(this->buffer_recv), this->length_recv); MDEBUG( "RESP : " << strbuffer); } } int device_ledger::set_command_header(unsigned char ins, unsigned char p1, unsigned char p2) { reset_buffer(); this->buffer_send[0] = PROTOCOL_VERSION; this->buffer_send[1] = ins; this->buffer_send[2] = p1; this->buffer_send[3] = p2; this->buffer_send[4] = 0x00; return 5; } int device_ledger::set_command_header_noopt(unsigned char ins, unsigned char p1, unsigned char p2) { int offset = set_command_header(ins, p1, p2); //options this->buffer_send[offset++] = 0; this->buffer_send[4] = offset - 5; return offset; } void device_ledger::send_simple(unsigned char ins, unsigned char p1) { this->length_send = set_command_header_noopt(ins, p1); if (ins == INS_GET_KEY && p1 == IO_SECRET_KEY) { // export view key user input this->exchange_wait_on_input(); } else { this->exchange(); } } bool device_ledger::reset() { reset_buffer(); int offset = set_command_header_noopt(INS_RESET); memmove(this->buffer_send+offset, MONERO_VERSION, strlen(MONERO_VERSION)); offset += strlen(MONERO_VERSION); this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); ASSERT_X(this->length_recv>=3, "Communication error, less than three bytes received. Check your application version."); unsigned int device_version = 0; device_version = VERSION(this->buffer_recv[0], this->buffer_recv[1], this->buffer_recv[2]); ASSERT_X (device_version >= MINIMAL_APP_VERSION, "Unsupported device application version: " << VERSION_MAJOR(device_version)<<"."<length_recv = hw_device.exchange(this->buffer_send, this->length_send, this->buffer_recv, BUFFER_SEND_SIZE, false); ASSERT_X(this->length_recv>=2, "Communication error, less than tow bytes received"); this->length_recv -= 2; this->sw = (this->buffer_recv[length_recv]<<8) | this->buffer_recv[length_recv+1]; ASSERT_SW(this->sw,ok,msk); logRESP(); return this->sw; } unsigned int device_ledger::exchange_wait_on_input(unsigned int ok, unsigned int mask) { logCMD(); unsigned int deny = 0; this->length_recv = hw_device.exchange(this->buffer_send, this->length_send, this->buffer_recv, BUFFER_SEND_SIZE, true); ASSERT_X(this->length_recv>=2, "Communication error, less than two bytes received"); this->length_recv -= 2; this->sw = (this->buffer_recv[length_recv]<<8) | this->buffer_recv[length_recv+1]; if (this->sw == IO_SW_DENY) { // cancel on device deny = 1; } else { ASSERT_SW(this->sw,ok,msk); } logRESP(); return deny; } void device_ledger::reset_buffer() { this->length_send = 0; memset(this->buffer_send, 0, BUFFER_SEND_SIZE); this->length_recv = 0; memset(this->buffer_recv, 0, BUFFER_RECV_SIZE); } /* ======================================================================= */ /* SETUP/TEARDOWN */ /* ======================================================================= */ bool device_ledger::set_name(const std::string & name) { this->name = name; return true; } const std::string device_ledger::get_name() const { if (!this->connected()) { return std::string("name).append(">"); } return this->name; } bool device_ledger::init(void) { #ifdef DEBUG_HWDEVICE this->controle_device = &hw::get_device("default"); #endif this->release(); hw_device.init(); MDEBUG( "Device "<id <<" HIDUSB inited"); return true; } bool device_ledger::connect(void) { this->disconnect(); hw_device.connect(0x2c97, 0x0001, 0, 0xffa0); this->reset(); #ifdef DEBUG_HWDEVICE cryptonote::account_public_address pubkey; this->get_public_address(pubkey); #endif crypto::secret_key vkey; crypto::secret_key skey; this->get_secret_keys(vkey,skey); return true; } bool device_ledger::connected(void) const { return hw_device.connected(); } bool device_ledger::disconnect() { hw_device.disconnect(); return true; } bool device_ledger::release() { this->disconnect(); hw_device.release(); return true; } bool device_ledger::set_mode(device_mode mode) { AUTO_LOCK_CMD(); int offset; switch(mode) { case TRANSACTION_CREATE_REAL: case TRANSACTION_CREATE_FAKE: offset = set_command_header_noopt(INS_SET_SIGNATURE_MODE, 1); //account this->buffer_send[offset] = mode; offset += 1; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); this->mode = mode; break; case TRANSACTION_PARSE: case NONE: this->mode = mode; break; default: CHECK_AND_ASSERT_THROW_MES(false, " device_ledger::set_mode(unsigned int mode): invalid mode: "<buffer_recv, 32); memmove(pubkey.m_spend_public_key.data, this->buffer_recv+32, 32); return true; } bool device_ledger::get_secret_keys(crypto::secret_key &vkey , crypto::secret_key &skey) { AUTO_LOCK_CMD(); //secret key are represented as fake key on the wallet side memset(vkey.data, 0x00, 32); memset(skey.data, 0xFF, 32); //spcialkey, normal conf handled in decrypt send_simple(INS_GET_KEY, 0x02); //View key is retrievied, if allowed, to speed up blockchain parsing memmove(this->viewkey.data, this->buffer_recv+0, 32); if (is_fake_view_key(this->viewkey)) { MDEBUG("Have Not view key"); this->has_view_key = false; } else { MDEBUG("Have view key"); this->has_view_key = true; } #ifdef DEBUG_HWDEVICE memmove(dbg_viewkey.data, this->buffer_recv+0, 32); memmove(dbg_spendkey.data, this->buffer_recv+32, 32); #endif return true; } bool device_ledger::generate_chacha_key(const cryptonote::account_keys &keys, crypto::chacha_key &key, uint64_t kdf_rounds) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE crypto::chacha_key key_x; cryptonote::account_keys keys_x = hw::ledger::decrypt(keys); this->controle_device->generate_chacha_key(keys_x, key_x, kdf_rounds); #endif send_simple(INS_GET_CHACHA8_PREKEY); char prekey[200]; memmove(prekey, &this->buffer_recv[0], 200); crypto::generate_chacha_key_prehashed(&prekey[0], sizeof(prekey), key, kdf_rounds); #ifdef DEBUG_HWDEVICE hw::ledger::check32("generate_chacha_key_prehashed", "key", (char*)key_x.data(), (char*)key.data()); #endif return true; } /* ======================================================================= */ /* SUB ADDRESS */ /* ======================================================================= */ bool device_ledger::derive_subaddress_public_key(const crypto::public_key &pub, const crypto::key_derivation &derivation, const std::size_t output_index, crypto::public_key &derived_pub){ AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const crypto::public_key pub_x = pub; crypto::key_derivation derivation_x; if ((this->mode == TRANSACTION_PARSE) && has_view_key) { derivation_x = derivation; } else { derivation_x = hw::ledger::decrypt(derivation); } const std::size_t output_index_x = output_index; crypto::public_key derived_pub_x; log_hexbuffer("derive_subaddress_public_key: [[IN]] pub ", pub_x.data, 32); log_hexbuffer("derive_subaddress_public_key: [[IN]] derivation", derivation_x.data, 32); log_message ("derive_subaddress_public_key: [[IN]] index ", std::to_string((int)output_index_x)); this->controle_device->derive_subaddress_public_key(pub_x, derivation_x,output_index_x,derived_pub_x); log_hexbuffer("derive_subaddress_public_key: [[OUT]] derived_pub", derived_pub_x.data, 32); #endif if ((this->mode == TRANSACTION_PARSE) && has_view_key) { //If we are in TRANSACTION_PARSE, the given derivation has been retrieved uncrypted (wihtout the help //of the device), so continue that way. MDEBUG( "derive_subaddress_public_key : PARSE mode with known viewkey"); crypto::derive_subaddress_public_key(pub, derivation, output_index,derived_pub); } else { int offset = set_command_header_noopt(INS_DERIVE_SUBADDRESS_PUBLIC_KEY); //pub memmove(this->buffer_send+offset, pub.data, 32); offset += 32; //derivation memmove(this->buffer_send+offset, derivation.data, 32); offset += 32; //index this->buffer_send[offset+0] = output_index>>24; this->buffer_send[offset+1] = output_index>>16; this->buffer_send[offset+2] = output_index>>8; this->buffer_send[offset+3] = output_index>>0; offset += 4; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //pub key memmove(derived_pub.data, &this->buffer_recv[0], 32); } #ifdef DEBUG_HWDEVICE hw::ledger::check32("derive_subaddress_public_key", "derived_pub", derived_pub_x.data, derived_pub.data); #endif return true; } crypto::public_key device_ledger::get_subaddress_spend_public_key(const cryptonote::account_keys& keys, const cryptonote::subaddress_index &index) { AUTO_LOCK_CMD(); crypto::public_key D; #ifdef DEBUG_HWDEVICE const cryptonote::account_keys keys_x = hw::ledger::decrypt(keys); const cryptonote::subaddress_index index_x = index; crypto::public_key D_x; log_hexbuffer("get_subaddress_spend_public_key: [[IN]] keys.m_view_secret_key ", keys_x.m_view_secret_key.data,32); log_hexbuffer("get_subaddress_spend_public_key: [[IN]] keys.m_spend_secret_key", keys_x.m_spend_secret_key.data,32); log_message ("get_subaddress_spend_public_key: [[IN]] index ", std::to_string(index_x.major)+"."+std::to_string(index_x.minor)); D_x = this->controle_device->get_subaddress_spend_public_key(keys_x, index_x); log_hexbuffer("get_subaddress_spend_public_key: [[OUT]] derivation ", D_x.data, 32); #endif if (index.is_zero()) { D = keys.m_account_address.m_spend_public_key; } else { int offset = set_command_header_noopt(INS_GET_SUBADDRESS_SPEND_PUBLIC_KEY); //index static_assert(sizeof(cryptonote::subaddress_index) == 8, "cryptonote::subaddress_index shall be 8 bytes length"); memmove(this->buffer_send+offset, &index, sizeof(cryptonote::subaddress_index)); offset +=8 ; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); memmove(D.data, &this->buffer_recv[0], 32); } #ifdef DEBUG_HWDEVICE hw::ledger::check32("get_subaddress_spend_public_key", "D", D_x.data, D.data); #endif return D; } std::vector device_ledger::get_subaddress_spend_public_keys(const cryptonote::account_keys &keys, uint32_t account, uint32_t begin, uint32_t end) { std::vector pkeys; cryptonote::subaddress_index index = {account, begin}; crypto::public_key D; for (uint32_t idx = begin; idx < end; ++idx) { index.minor = idx; D = this->get_subaddress_spend_public_key(keys, index); pkeys.push_back(D); } return pkeys; } cryptonote::account_public_address device_ledger::get_subaddress(const cryptonote::account_keys& keys, const cryptonote::subaddress_index &index) { AUTO_LOCK_CMD(); cryptonote::account_public_address address; #ifdef DEBUG_HWDEVICE const cryptonote::account_keys keys_x = hw::ledger::decrypt(keys); const cryptonote::subaddress_index index_x = index; cryptonote::account_public_address address_x; log_hexbuffer("get_subaddress: [[IN]] keys.m_view_secret_key ", keys_x.m_view_secret_key.data, 32); log_hexbuffer("get_subaddress: [[IN]] keys.m_view_public_key", keys_x.m_account_address.m_view_public_key.data, 32); log_hexbuffer("get_subaddress: [[IN]] keys.m_view_secret_key ", keys_x.m_view_secret_key.data, 32); log_hexbuffer("get_subaddress: [[IN]] keys.m_spend_public_key", keys_x.m_account_address.m_spend_public_key.data, 32); log_message ("get_subaddress: [[IN]] index ", std::to_string(index_x.major)+"."+std::to_string(index_x.minor)); address_x = this->controle_device->get_subaddress(keys_x, index_x); log_hexbuffer("get_subaddress: [[OUT]] keys.m_view_public_key ", address_x.m_view_public_key.data, 32); log_hexbuffer("get_subaddress: [[OUT]] keys.m_spend_public_key", address_x.m_spend_public_key.data, 32); #endif if (index.is_zero()) { address = keys.m_account_address; } else { int offset = set_command_header_noopt(INS_GET_SUBADDRESS); //index static_assert(sizeof(cryptonote::subaddress_index) == 8, "cryptonote::subaddress_index shall be 8 bytes length"); memmove(this->buffer_send+offset, &index, sizeof(cryptonote::subaddress_index)); offset +=8 ; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); memmove(address.m_view_public_key.data, &this->buffer_recv[0], 32); memmove(address.m_spend_public_key.data, &this->buffer_recv[32], 32); } #ifdef DEBUG_HWDEVICE hw::ledger::check32("get_subaddress", "address.m_view_public_key.data", address_x.m_view_public_key.data, address.m_view_public_key.data); hw::ledger::check32("get_subaddress", "address.m_spend_public_key.data", address_x.m_spend_public_key.data, address.m_spend_public_key.data); #endif return address; } crypto::secret_key device_ledger::get_subaddress_secret_key(const crypto::secret_key &sec, const cryptonote::subaddress_index &index) { AUTO_LOCK_CMD(); crypto::secret_key sub_sec; #ifdef DEBUG_HWDEVICE const crypto::secret_key sec_x = hw::ledger::decrypt(sec); const cryptonote::subaddress_index index_x = index; crypto::secret_key sub_sec_x; log_message ("get_subaddress_secret_key: [[IN]] index ", std::to_string(index.major)+"."+std::to_string(index.minor)); log_hexbuffer("get_subaddress_secret_key: [[IN]] sec ", sec_x.data, 32); sub_sec_x = this->controle_device->get_subaddress_secret_key(sec_x, index_x); log_hexbuffer("get_subaddress_secret_key: [[OUT]] sub_sec", sub_sec_x.data, 32); #endif int offset = set_command_header_noopt(INS_GET_SUBADDRESS_SECRET_KEY); //sec memmove(this->buffer_send+offset, sec.data, 32); offset += 32; //index static_assert(sizeof(cryptonote::subaddress_index) == 8, "cryptonote::subaddress_index shall be 8 bytes length"); memmove(this->buffer_send+offset, &index, sizeof(cryptonote::subaddress_index)); offset +=8 ; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); memmove(sub_sec.data, &this->buffer_recv[0], 32); #ifdef DEBUG_HWDEVICE crypto::secret_key sub_sec_clear = hw::ledger::decrypt(sub_sec); hw::ledger::check32("get_subaddress_secret_key", "sub_sec", sub_sec_x.data, sub_sec_clear.data); #endif return sub_sec; } /* ======================================================================= */ /* DERIVATION & KEY */ /* ======================================================================= */ bool device_ledger::verify_keys(const crypto::secret_key &secret_key, const crypto::public_key &public_key) { AUTO_LOCK_CMD(); int offset; offset = set_command_header_noopt(INS_VERIFY_KEY); //sec memmove(this->buffer_send+offset, secret_key.data, 32); offset += 32; //pub memmove(this->buffer_send+offset, public_key.data, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); uint32_t verified = this->buffer_recv[0] << 24 | this->buffer_recv[1] << 16 | this->buffer_recv[2] << 8 | this->buffer_recv[3] << 0 ; return verified == 1; } bool device_ledger::scalarmultKey(rct::key & aP, const rct::key &P, const rct::key &a) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const rct::key P_x = P; const rct::key a_x = hw::ledger::decrypt(a); rct::key aP_x; log_hexbuffer("scalarmultKey: [[IN]] P ", (char*)P_x.bytes, 32); log_hexbuffer("scalarmultKey: [[IN]] a ", (char*)a_x.bytes, 32); this->controle_device->scalarmultKey(aP_x, P_x, a_x); log_hexbuffer("scalarmultKey: [[OUT]] aP", (char*)aP_x.bytes, 32); #endif int offset = set_command_header_noopt(INS_SECRET_SCAL_MUL_KEY); //pub memmove(this->buffer_send+offset, P.bytes, 32); offset += 32; //sec memmove(this->buffer_send+offset, a.bytes, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //pub key memmove(aP.bytes, &this->buffer_recv[0], 32); #ifdef DEBUG_HWDEVICE hw::ledger::check32("scalarmultKey", "mulkey", (char*)aP_x.bytes, (char*)aP.bytes); #endif return true; } bool device_ledger::scalarmultBase(rct::key &aG, const rct::key &a) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const rct::key a_x = hw::ledger::decrypt(a); rct::key aG_x; log_hexbuffer("scalarmultKey: [[IN]] a ", (char*)a_x.bytes, 32); this->controle_device->scalarmultBase(aG_x, a_x); log_hexbuffer("scalarmultKey: [[OUT]] aG", (char*)aG_x.bytes, 32); #endif int offset = set_command_header_noopt(INS_SECRET_SCAL_MUL_BASE); //sec memmove(this->buffer_send+offset, a.bytes, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //pub key memmove(aG.bytes, &this->buffer_recv[0], 32); #ifdef DEBUG_HWDEVICE hw::ledger::check32("scalarmultBase", "mulkey", (char*)aG_x.bytes, (char*)aG.bytes); #endif return true; } bool device_ledger::sc_secret_add( crypto::secret_key &r, const crypto::secret_key &a, const crypto::secret_key &b) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const crypto::secret_key a_x = hw::ledger::decrypt(a); const crypto::secret_key b_x = hw::ledger::decrypt(b); crypto::secret_key r_x; this->controle_device->sc_secret_add(r_x, a_x, b_x); #endif int offset = set_command_header_noopt(INS_SECRET_KEY_ADD); //sec key memmove(this->buffer_send+offset, a.data, 32); offset += 32; //sec key memmove(this->buffer_send+offset, b.data, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //pub key memmove(r.data, &this->buffer_recv[0], 32); #ifdef DEBUG_HWDEVICE crypto::secret_key r_clear = hw::ledger::decrypt(r); hw::ledger::check32("sc_secret_add", "r", r_x.data, r_clear.data); #endif return true; } crypto::secret_key device_ledger::generate_keys(crypto::public_key &pub, crypto::secret_key &sec, const crypto::secret_key& recovery_key, bool recover) { AUTO_LOCK_CMD(); if (recover) { throw std::runtime_error("device generate key does not support recover"); } #ifdef DEBUG_HWDEVICE crypto::public_key pub_x; crypto::secret_key sec_x; #endif send_simple(INS_GENERATE_KEYPAIR); //pub key memmove(pub.data, &this->buffer_recv[0], 32); memmove(sec.data, &this->buffer_recv[32], 32); #ifdef DEBUG_HWDEVICE crypto::secret_key sec_clear = hw::ledger::decrypt(sec); sec_x = sec_clear; crypto::secret_key_to_public_key(sec_x,pub_x); hw::ledger::check32("generate_keys", "pub", pub_x.data, pub.data); #endif return sec; } bool device_ledger::generate_key_derivation(const crypto::public_key &pub, const crypto::secret_key &sec, crypto::key_derivation &derivation) { AUTO_LOCK_CMD(); bool r = false; #ifdef DEBUG_HWDEVICE const crypto::public_key pub_x = pub; const crypto::secret_key sec_x = hw::ledger::decrypt(sec); crypto::key_derivation derivation_x; log_hexbuffer("generate_key_derivation: [[IN]] pub ", pub_x.data, 32); log_hexbuffer("generate_key_derivation: [[IN]] sec ", sec_x.data, 32); this->controle_device->generate_key_derivation(pub_x, sec_x, derivation_x); log_hexbuffer("generate_key_derivation: [[OUT]] derivation", derivation_x.data, 32); #endif if ((this->mode == TRANSACTION_PARSE) && has_view_key) { //A derivation is resquested in PASRE mode and we have the view key, //so do that wihtout the device and return the derivation unencrypted. MDEBUG( "generate_key_derivation : PARSE mode with known viewkey"); //Note derivation in PARSE mode can only happen with viewkey, so assert it! assert(is_fake_view_key(sec)); r = crypto::generate_key_derivation(pub, this->viewkey, derivation); } else { int offset = set_command_header_noopt(INS_GEN_KEY_DERIVATION); //pub memmove(this->buffer_send+offset, pub.data, 32); offset += 32; //sec memmove(this->buffer_send+offset, sec.data, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //derivattion data memmove(derivation.data, &this->buffer_recv[0], 32); r = true; } #ifdef DEBUG_HWDEVICE crypto::key_derivation derivation_clear ; if ((this->mode == TRANSACTION_PARSE) && has_view_key) { derivation_clear = derivation; }else { derivation_clear = hw::ledger::decrypt(derivation); } hw::ledger::check32("generate_key_derivation", "derivation", derivation_x.data, derivation_clear.data); #endif return r; } bool device_ledger::conceal_derivation(crypto::key_derivation &derivation, const crypto::public_key &tx_pub_key, const std::vector &additional_tx_pub_keys, const crypto::key_derivation &main_derivation, const std::vector &additional_derivations) { const crypto::public_key *pkey=NULL; if (derivation == main_derivation) { pkey = &tx_pub_key; MDEBUG("conceal derivation with main tx pub key"); } else { for(size_t n=0; n < additional_derivations.size();++n) { if(derivation == additional_derivations[n]) { pkey = &additional_tx_pub_keys[n]; MDEBUG("conceal derivation with additionnal tx pub key"); break; } } } ASSERT_X(pkey, "Mismatched derivation on scan info"); return this->generate_key_derivation(*pkey, crypto::null_skey, derivation); } bool device_ledger::derivation_to_scalar(const crypto::key_derivation &derivation, const size_t output_index, crypto::ec_scalar &res) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const crypto::key_derivation derivation_x = hw::ledger::decrypt(derivation); const size_t output_index_x = output_index; crypto::ec_scalar res_x; log_hexbuffer("derivation_to_scalar: [[IN]] derivation ", derivation_x.data, 32); log_message ("derivation_to_scalar: [[IN]] output_index ", std::to_string(output_index_x)); this->controle_device->derivation_to_scalar(derivation_x, output_index_x, res_x); log_hexbuffer("derivation_to_scalar: [[OUT]] res ", res_x.data, 32); #endif int offset = set_command_header_noopt(INS_DERIVATION_TO_SCALAR); //derivattion memmove(this->buffer_send+offset, derivation.data, 32); offset += 32; //index this->buffer_send[offset+0] = output_index>>24; this->buffer_send[offset+1] = output_index>>16; this->buffer_send[offset+2] = output_index>>8; this->buffer_send[offset+3] = output_index>>0; offset += 4; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //derivattion data memmove(res.data, &this->buffer_recv[0], 32); #ifdef DEBUG_HWDEVICE crypto::ec_scalar res_clear = hw::ledger::decrypt(res); hw::ledger::check32("derivation_to_scalar", "res", res_x.data, res_clear.data); #endif return true; } bool device_ledger::derive_secret_key(const crypto::key_derivation &derivation, const std::size_t output_index, const crypto::secret_key &sec, crypto::secret_key &derived_sec) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const crypto::key_derivation derivation_x = hw::ledger::decrypt(derivation); const std::size_t output_index_x = output_index; const crypto::secret_key sec_x = hw::ledger::decrypt(sec); crypto::secret_key derived_sec_x; log_hexbuffer("derive_secret_key: [[IN]] derivation ", derivation_x.data, 32); log_message ("derive_secret_key: [[IN]] index ", std::to_string(output_index_x)); log_hexbuffer("derive_secret_key: [[IN]] sec ", sec_x.data, 32); this->controle_device->derive_secret_key(derivation_x, output_index_x, sec_x, derived_sec_x); log_hexbuffer("derive_secret_key: [[OUT]] derived_sec", derived_sec_x.data, 32); #endif int offset = set_command_header_noopt(INS_DERIVE_SECRET_KEY); //derivation memmove(this->buffer_send+offset, derivation.data, 32); offset += 32; //index this->buffer_send[offset+0] = output_index>>24; this->buffer_send[offset+1] = output_index>>16; this->buffer_send[offset+2] = output_index>>8; this->buffer_send[offset+3] = output_index>>0; offset += 4; //sec memmove(this->buffer_send+offset, sec.data, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //pub key memmove(derived_sec.data, &this->buffer_recv[0], 32); #ifdef DEBUG_HWDEVICE crypto::secret_key derived_sec_clear = hw::ledger::decrypt(derived_sec); hw::ledger::check32("derive_secret_key", "derived_sec", derived_sec_x.data, derived_sec_clear.data); #endif return true; } bool device_ledger::derive_public_key(const crypto::key_derivation &derivation, const std::size_t output_index, const crypto::public_key &pub, crypto::public_key &derived_pub){ AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const crypto::key_derivation derivation_x = hw::ledger::decrypt(derivation); const std::size_t output_index_x = output_index; const crypto::public_key pub_x = pub; crypto::public_key derived_pub_x; log_hexbuffer("derive_public_key: [[IN]] derivation ", derivation_x.data, 32); log_message ("derive_public_key: [[IN]] output_index", std::to_string(output_index_x)); log_hexbuffer("derive_public_key: [[IN]] pub ", pub_x.data, 32); this->controle_device->derive_public_key(derivation_x, output_index_x, pub_x, derived_pub_x); log_hexbuffer("derive_public_key: [[OUT]] derived_pub ", derived_pub_x.data, 32); #endif int offset = set_command_header_noopt(INS_DERIVE_PUBLIC_KEY); //derivation memmove(this->buffer_send+offset, derivation.data, 32); offset += 32; //index this->buffer_send[offset+0] = output_index>>24; this->buffer_send[offset+1] = output_index>>16; this->buffer_send[offset+2] = output_index>>8; this->buffer_send[offset+3] = output_index>>0; offset += 4; //pub memmove(this->buffer_send+offset, pub.data, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //pub key memmove(derived_pub.data, &this->buffer_recv[0], 32); #ifdef DEBUG_HWDEVICE hw::ledger::check32("derive_public_key", "derived_pub", derived_pub_x.data, derived_pub.data); #endif return true; } bool device_ledger::secret_key_to_public_key(const crypto::secret_key &sec, crypto::public_key &pub) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const crypto::secret_key sec_x = hw::ledger::decrypt(sec); crypto::public_key pub_x; log_hexbuffer("secret_key_to_public_key: [[IN]] sec ", sec_x.data, 32); bool rc = this->controle_device->secret_key_to_public_key(sec_x, pub_x); log_hexbuffer("secret_key_to_public_key: [[OUT]] pub", pub_x.data, 32); if (!rc){ log_message("secret_key_to_public_key", "secret_key rejected"); } #endif int offset = set_command_header_noopt(INS_SECRET_KEY_TO_PUBLIC_KEY); //sec key memmove(this->buffer_send+offset, sec.data, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //pub key memmove(pub.data, &this->buffer_recv[0], 32); #ifdef DEBUG_HWDEVICE hw::ledger::check32("secret_key_to_public_key", "pub", pub_x.data, pub.data); #endif return true; } bool device_ledger::generate_key_image(const crypto::public_key &pub, const crypto::secret_key &sec, crypto::key_image &image){ AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const crypto::public_key pub_x = pub; const crypto::secret_key sec_x = hw::ledger::decrypt(sec); crypto::key_image image_x; log_hexbuffer("generate_key_image: [[IN]] pub ", pub_x.data, 32); log_hexbuffer("generate_key_image: [[IN]] sec ", sec_x.data, 32); this->controle_device->generate_key_image(pub_x, sec_x, image_x); log_hexbuffer("generate_key_image: [[OUT]] image ", image_x.data, 32); #endif int offset = set_command_header_noopt(INS_GEN_KEY_IMAGE); //pub memmove(this->buffer_send+offset, pub.data, 32); offset += 32; //sec memmove(this->buffer_send+offset, sec.data, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //pub key memmove(image.data, &this->buffer_recv[0], 32); #ifdef DEBUG_HWDEVICE hw::ledger::check32("generate_key_image", "image", image_x.data, image.data); #endif return true; } /* ======================================================================= */ /* TRANSACTION */ /* ======================================================================= */ bool device_ledger::open_tx(crypto::secret_key &tx_key) { AUTO_LOCK_CMD(); key_map.clear(); int offset = set_command_header_noopt(INS_OPEN_TX, 0x01); //account this->buffer_send[offset+0] = 0x00; this->buffer_send[offset+1] = 0x00; this->buffer_send[offset+2] = 0x00; this->buffer_send[offset+3] = 0x00; offset += 4; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); memmove(tx_key.data, &this->buffer_recv[32], 32); return true; } bool device_ledger::encrypt_payment_id(crypto::hash8 &payment_id, const crypto::public_key &public_key, const crypto::secret_key &secret_key) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const crypto::public_key public_key_x = public_key; const crypto::secret_key secret_key_x = hw::ledger::decrypt(secret_key); crypto::hash8 payment_id_x = payment_id; this->controle_device->encrypt_payment_id(payment_id_x, public_key_x, secret_key_x); #endif int offset = set_command_header_noopt(INS_STEALTH); //pub memmove(&this->buffer_send[offset], public_key.data, 32); offset += 32; //sec memmove(&this->buffer_send[offset], secret_key.data, 32); offset += 32; //id memmove(&this->buffer_send[offset], payment_id.data, 8); offset += 8; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); memmove(payment_id.data, &this->buffer_recv[0], 8); #ifdef DEBUG_HWDEVICE hw::ledger::check8("stealth", "payment_id", payment_id_x.data, payment_id.data); #endif return true; } bool device_ledger::generate_output_ephemeral_keys(const size_t tx_version, const cryptonote::account_keys &sender_account_keys, const crypto::public_key &txkey_pub, const crypto::secret_key &tx_key, const cryptonote::tx_destination_entry &dst_entr, const boost::optional &change_addr, const size_t output_index, const bool &need_additional_txkeys, const std::vector &additional_tx_keys, std::vector &additional_tx_public_keys, std::vector &amount_keys, crypto::public_key &out_eph_public_key) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const size_t &tx_version_x = tx_version; const cryptonote::account_keys sender_account_keys_x = sender_account_keys; memmove((void*)sender_account_keys_x.m_view_secret_key.data, dbg_viewkey.data, 32); const crypto::public_key &txkey_pub_x = txkey_pub; const crypto::secret_key &tx_key_x = tx_key; const cryptonote::tx_destination_entry &dst_entr_x = dst_entr; const boost::optional &change_addr_x = change_addr; const size_t &output_index_x = output_index; const bool &need_additional_txkeys_x = need_additional_txkeys; const std::vector &additional_tx_keys_x = additional_tx_keys; std::vector additional_tx_public_keys_x; std::vector amount_keys_x; crypto::public_key out_eph_public_key_x; this->controle_device->generate_output_ephemeral_keys(tx_version_x, sender_account_keys_x, txkey_pub_x, tx_key_x, dst_entr_x, change_addr_x, output_index_x, need_additional_txkeys_x, additional_tx_keys_x, additional_tx_public_keys_x, amount_keys_x, out_eph_public_key_x); #endif // make additional tx pubkey if necessary cryptonote::keypair additional_txkey; if (need_additional_txkeys) { additional_txkey.sec = additional_tx_keys[output_index]; } //compute derivation, out_eph_public_key, and amount key in one shot on device, to ensure checkable link const crypto::secret_key *sec; bool is_change; if (change_addr && dst_entr.addr == *change_addr) { // sending change to yourself; derivation = a*R is_change = true; sec = &sender_account_keys.m_view_secret_key; } else { is_change = false; if (dst_entr.is_subaddress && need_additional_txkeys) { sec = &additional_txkey.sec; } else { sec = &tx_key; } } int offset = set_command_header_noopt(INS_GEN_TXOUT_KEYS); //tx_version this->buffer_send[offset+0] = tx_version>>24; this->buffer_send[offset+1] = tx_version>>16; this->buffer_send[offset+2] = tx_version>>8; this->buffer_send[offset+3] = tx_version>>0; offset += 4; //tx_sec memmove(&this->buffer_send[offset], sec->data, 32); offset += 32; //Aout memmove(&this->buffer_send[offset], dst_entr.addr.m_view_public_key.data, 32); offset += 32; //Bout memmove(&this->buffer_send[offset], dst_entr.addr.m_spend_public_key.data, 32); offset += 32; //output index this->buffer_send[offset+0] = output_index>>24; this->buffer_send[offset+1] = output_index>>16; this->buffer_send[offset+2] = output_index>>8; this->buffer_send[offset+3] = output_index>>0; offset += 4; //is_change, this->buffer_send[offset] = is_change; offset++; //is_subaddress this->buffer_send[offset] = dst_entr.is_subaddress; offset++; //need_additional_key this->buffer_send[offset] = need_additional_txkeys; offset++; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); offset = 0; unsigned int recv_len = this->length_recv; if (need_additional_txkeys) { ASSERT_X(recv_len>=32, "Not enought data from device"); memmove(additional_txkey.pub.data, &this->buffer_recv[offset], 32); additional_tx_public_keys.push_back(additional_txkey.pub); offset += 32; recv_len -= 32; } if (tx_version > 1) { ASSERT_X(recv_len>=32, "Not enought data from device"); crypto::secret_key scalar1; memmove(scalar1.data, &this->buffer_recv[offset],32); amount_keys.push_back(rct::sk2rct(scalar1)); offset += 32; recv_len -= 32; } ASSERT_X(recv_len>=32, "Not enought data from device"); memmove(out_eph_public_key.data, &this->buffer_recv[offset], 32); recv_len -= 32; // add ABPkeys this->add_output_key_mapping(dst_entr.addr.m_view_public_key, dst_entr.addr.m_spend_public_key, dst_entr.is_subaddress, is_change, need_additional_txkeys, output_index, amount_keys.back(), out_eph_public_key); #ifdef DEBUG_HWDEVICE hw::ledger::check32("generate_output_ephemeral_keys", "amount_key", (const char*)amount_keys_x.back().bytes, (const char*)hw::ledger::decrypt(amount_keys.back()).bytes); if (need_additional_txkeys) { hw::ledger::check32("generate_output_ephemeral_keys", "additional_tx_key", additional_tx_keys_x.back().data, additional_tx_keys.back().data); } hw::ledger::check32("generate_output_ephemeral_keys", "out_eph_public_key", out_eph_public_key_x.data, out_eph_public_key.data); #endif return true; } bool device_ledger::add_output_key_mapping(const crypto::public_key &Aout, const crypto::public_key &Bout, const bool is_subaddress, const bool is_change, const bool need_additional, const size_t real_output_index, const rct::key &amount_key, const crypto::public_key &out_eph_public_key) { key_map.add(ABPkeys(rct::pk2rct(Aout),rct::pk2rct(Bout), is_subaddress, is_change, need_additional, real_output_index, rct::pk2rct(out_eph_public_key), amount_key)); return true; } bool device_ledger::ecdhEncode(rct::ecdhTuple & unmasked, const rct::key & AKout, bool short_amount) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const rct::key AKout_x = hw::ledger::decrypt(AKout); rct::ecdhTuple unmasked_x = unmasked; this->controle_device->ecdhEncode(unmasked_x, AKout_x, short_amount); #endif int offset = set_command_header(INS_BLIND); //options this->buffer_send[offset] = short_amount?0x02:0x00; offset += 1; // AKout memmove(this->buffer_send+offset, AKout.bytes, 32); offset += 32; //mask k memmove(this->buffer_send+offset, unmasked.mask.bytes, 32); offset += 32; //value v memmove(this->buffer_send+offset, unmasked.amount.bytes, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); memmove(unmasked.amount.bytes, &this->buffer_recv[0], 32); memmove(unmasked.mask.bytes, &this->buffer_recv[32], 32); #ifdef DEBUG_HWDEVICE hw::ledger::check32("ecdhEncode", "amount", (char*)unmasked_x.amount.bytes, (char*)unmasked.amount.bytes); hw::ledger::check32("ecdhEncode", "mask", (char*)unmasked_x.mask.bytes, (char*)unmasked.mask.bytes); log_hexbuffer("Blind AKV input", (char*)&this->buffer_recv[64], 3*32); #endif return true; } bool device_ledger::ecdhDecode(rct::ecdhTuple & masked, const rct::key & AKout, bool short_amount) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const rct::key AKout_x = hw::ledger::decrypt(AKout); rct::ecdhTuple masked_x = masked; this->controle_device->ecdhDecode(masked_x, AKout_x, short_amount); #endif int offset = set_command_header(INS_UNBLIND); //options this->buffer_send[offset] = short_amount?0x02:0x00; offset += 1; // AKout memmove(this->buffer_send+offset, AKout.bytes, 32); offset += 32; //mask k memmove(this->buffer_send+offset, masked.mask.bytes, 32); offset += 32; //value v memmove(this->buffer_send+offset, masked.amount.bytes, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); memmove(masked.amount.bytes, &this->buffer_recv[0], 32); memmove(masked.mask.bytes, &this->buffer_recv[32], 32); #ifdef DEBUG_HWDEVICE hw::ledger::check32("ecdhDecode", "amount", (char*)masked_x.amount.bytes, (char*)masked.amount.bytes); hw::ledger::check32("ecdhDecode", "mask", (char*)masked_x.mask.bytes,(char*) masked.mask.bytes); #endif return true; } bool device_ledger::mlsag_prehash(const std::string &blob, size_t inputs_size, size_t outputs_size, const rct::keyV &hashes, const rct::ctkeyV &outPk, rct::key &prehash) { AUTO_LOCK_CMD(); unsigned int data_offset, C_offset, kv_offset, i; const char *data; #ifdef DEBUG_HWDEVICE const std::string blob_x = blob; size_t inputs_size_x = inputs_size; size_t outputs_size_x = outputs_size; const rct::keyV hashes_x = hashes; const rct::ctkeyV outPk_x = outPk; rct::key prehash_x; this->controle_device->mlsag_prehash(blob_x, inputs_size_x, outputs_size_x, hashes_x, outPk_x, prehash_x); if (inputs_size) { log_message("mlsag_prehash", (std::string("inputs_size not null: ") + std::to_string(inputs_size)).c_str()); } this->key_map.log(); #endif data = blob.data(); // ====== u8 type, varint txnfee ====== int offset = set_command_header(INS_VALIDATE, 0x01, 0x01); //options this->buffer_send[offset] = (inputs_size == 0)?0x00:0x80; offset += 1; //type uint8_t type = data[0]; this->buffer_send[offset] = data[0]; offset += 1; //txnfee data_offset = 1; while (data[data_offset]&0x80) { this->buffer_send[offset] = data[data_offset]; offset += 1; data_offset += 1; } this->buffer_send[offset] = data[data_offset]; offset += 1; data_offset += 1; this->buffer_send[4] = offset-5; this->length_send = offset; // check fee user input CHECK_AND_ASSERT_THROW_MES(this->exchange_wait_on_input() == 0, "Fee denied on device."); //pseudoOuts if (type == rct::RCTTypeSimple) { for ( i = 0; i < inputs_size; i++) { offset = set_command_header(INS_VALIDATE, 0x01, i+2); //options this->buffer_send[offset] = (i==inputs_size-1)? 0x00:0x80; offset += 1; //pseudoOut memmove(this->buffer_send+offset, data+data_offset,32); offset += 32; data_offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); } } // ====== Aout, Bout, AKout, C, v, k ====== kv_offset = data_offset; if (type==rct::RCTTypeBulletproof2) { C_offset = kv_offset+ (8)*outputs_size; } else { C_offset = kv_offset+ (32+32)*outputs_size; } for ( i = 0; i < outputs_size; i++) { ABPkeys outKeys; bool found; found = this->key_map.find(outPk[i].dest, outKeys); if (!found) { log_hexbuffer("Pout not found", (char*)outPk[i].dest.bytes, 32); CHECK_AND_ASSERT_THROW_MES(found, "Pout not found"); } offset = set_command_header(INS_VALIDATE, 0x02, i+1); //options this->buffer_send[offset] = (i==outputs_size-1)? 0x00:0x80 ; this->buffer_send[offset] |= (type==rct::RCTTypeBulletproof2)?0x02:0x00; offset += 1; if (found) { //is_subaddress this->buffer_send[offset] = outKeys.is_subaddress; offset++; //is_change_address this->buffer_send[offset] = outKeys.is_change_address; offset++; //Aout memmove(this->buffer_send+offset, outKeys.Aout.bytes, 32); offset+=32; //Bout memmove(this->buffer_send+offset, outKeys.Bout.bytes, 32); offset+=32; //AKout memmove(this->buffer_send+offset, outKeys.AKout.bytes, 32); offset+=32; } else { // dummy: is_subaddress Aout Bout AKout offset += 2+32*3; } //C memmove(this->buffer_send+offset, data+C_offset,32); offset += 32; C_offset += 32; if (type==rct::RCTTypeBulletproof2) { //k memset(this->buffer_send+offset, 0, 32); offset += 32; //v memset(this->buffer_send+offset, 0, 32); memmove(this->buffer_send+offset, data+kv_offset,8); offset += 32; kv_offset += 8; } else { //k memmove(this->buffer_send+offset, data+kv_offset,32); offset += 32; kv_offset += 32; //v memmove(this->buffer_send+offset, data+kv_offset,32); offset += 32; kv_offset += 32; } this->buffer_send[4] = offset-5; this->length_send = offset; // check transaction user input CHECK_AND_ASSERT_THROW_MES(this->exchange_wait_on_input() == 0, "Transaction denied on device."); #ifdef DEBUG_HWDEVICE log_hexbuffer("Prehash AKV input", (char*)&this->buffer_recv[64], 3*32); #endif } // ====== C[], message, proof====== C_offset = kv_offset; for (i = 0; i < outputs_size; i++) { offset = set_command_header(INS_VALIDATE, 0x03, i+1); //options this->buffer_send[offset] = 0x80 ; offset += 1; //C memmove(this->buffer_send+offset, data+C_offset,32); offset += 32; C_offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); } offset = set_command_header_noopt(INS_VALIDATE, 0x03, i+1); //message memmove(this->buffer_send+offset, hashes[0].bytes,32); offset += 32; //proof memmove(this->buffer_send+offset, hashes[2].bytes,32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); memmove(prehash.bytes, this->buffer_recv, 32); #ifdef DEBUG_HWDEVICE hw::ledger::check32("mlsag_prehash", "prehash", (char*)prehash_x.bytes, (char*)prehash.bytes); #endif return true; } bool device_ledger::mlsag_prepare(const rct::key &H, const rct::key &xx, rct::key &a, rct::key &aG, rct::key &aHP, rct::key &II) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE const rct::key H_x = H; const rct::key xx_x = hw::ledger::decrypt(xx); rct::key a_x; rct::key aG_x; rct::key aHP_x; rct::key II_x; #endif int offset = set_command_header_noopt(INS_MLSAG, 0x01); //value H memmove(this->buffer_send+offset, H.bytes, 32); offset += 32; //mask xin memmove(this->buffer_send+offset, xx.bytes, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); memmove(a.bytes, &this->buffer_recv[32*0], 32); memmove(aG.bytes, &this->buffer_recv[32*1], 32); memmove(aHP.bytes, &this->buffer_recv[32*2], 32); memmove(II.bytes, &this->buffer_recv[32*3], 32); #ifdef DEBUG_HWDEVICE a_x = hw::ledger::decrypt(a); rct::scalarmultBase(aG_x, a_x); rct::scalarmultKey(aHP_x, H_x, a_x); rct::scalarmultKey(II_x, H_x, xx_x); hw::ledger::check32("mlsag_prepare", "AG", (char*)aG_x.bytes, (char*)aG.bytes); hw::ledger::check32("mlsag_prepare", "aHP", (char*)aHP_x.bytes, (char*)aHP.bytes); hw::ledger::check32("mlsag_prepare", "II", (char*)II_x.bytes, (char*)II.bytes); #endif return true; } bool device_ledger::mlsag_prepare(rct::key &a, rct::key &aG) { AUTO_LOCK_CMD(); #ifdef DEBUG_HWDEVICE rct::key a_x; rct::key aG_x; #endif send_simple(INS_MLSAG, 0x01); memmove(a.bytes, &this->buffer_recv[32*0], 32); memmove(aG.bytes, &this->buffer_recv[32*1], 32); #ifdef DEBUG_HWDEVICE a_x = hw::ledger::decrypt(a); rct::scalarmultBase(aG_x, a_x); hw::ledger::check32("mlsag_prepare", "AG", (char*)aG_x.bytes, (char*)aG.bytes); #endif return true; } bool device_ledger::mlsag_hash(const rct::keyV &long_message, rct::key &c) { AUTO_LOCK_CMD(); size_t cnt; #ifdef DEBUG_HWDEVICE const rct::keyV long_message_x = long_message; rct::key c_x; this->controle_device->mlsag_hash(long_message_x, c_x); #endif cnt = long_message.size(); for (size_t i = 0; ibuffer_send[offset] = (i==(cnt-1))?0x00:0x80; //last offset += 1; //msg part memmove(this->buffer_send+offset, long_message[i].bytes, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); } memmove(c.bytes, &this->buffer_recv[0], 32); #ifdef DEBUG_HWDEVICE hw::ledger::check32("mlsag_hash", "c", (char*)c_x.bytes, (char*)c.bytes); #endif return true; } bool device_ledger::mlsag_sign(const rct::key &c, const rct::keyV &xx, const rct::keyV &alpha, const size_t rows, const size_t dsRows, rct::keyV &ss) { AUTO_LOCK_CMD(); CHECK_AND_ASSERT_THROW_MES(dsRows<=rows, "dsRows greater than rows"); CHECK_AND_ASSERT_THROW_MES(xx.size() == rows, "xx size does not match rows"); CHECK_AND_ASSERT_THROW_MES(alpha.size() == rows, "alpha size does not match rows"); CHECK_AND_ASSERT_THROW_MES(ss.size() == rows, "ss size does not match rows"); #ifdef DEBUG_HWDEVICE const rct::key c_x = c; const rct::keyV xx_x = hw::ledger::decrypt(xx); const rct::keyV alpha_x = hw::ledger::decrypt(alpha); const int rows_x = rows; const int dsRows_x = dsRows; rct::keyV ss_x(ss.size()); this->controle_device->mlsag_sign(c_x, xx_x, alpha_x, rows_x, dsRows_x, ss_x); #endif for (size_t j = 0; j < dsRows; j++) { int offset = set_command_header(INS_MLSAG, 0x03, j+1); //options this->buffer_send[offset] = 0x00; if (j==(dsRows-1)) { this->buffer_send[offset] |= 0x80; //last } offset += 1; //xx memmove(this->buffer_send+offset, xx[j].bytes, 32); offset += 32; //alpa memmove(this->buffer_send+offset, alpha[j].bytes, 32); offset += 32; this->buffer_send[4] = offset-5; this->length_send = offset; this->exchange(); //ss memmove(ss[j].bytes, &this->buffer_recv[0], 32); } for (size_t j = dsRows; j < rows; j++) { sc_mulsub(ss[j].bytes, c.bytes, xx[j].bytes, alpha[j].bytes); } #ifdef DEBUG_HWDEVICE for (size_t j = 0; j < rows; j++) { hw::ledger::check32("mlsag_sign", "ss["+std::to_string(j)+"]", (char*)ss_x[j].bytes, (char*)ss[j].bytes); } #endif return true; } bool device_ledger::close_tx() { AUTO_LOCK_CMD(); send_simple(INS_CLOSE_TX); return true; } /* ---------------------------------------------------------- */ static device_ledger *legder_device = NULL; void register_all(std::map> ®istry) { if (!legder_device) { legder_device = new device_ledger(); legder_device->set_name("Ledger"); } registry.insert(std::make_pair("Ledger", std::unique_ptr(legder_device))); } #else //WITH_DEVICE_LEDGER void register_all(std::map> ®istry) { } #endif //WITH_DEVICE_LEDGER } }