// Copyright (c) 2017-2022, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // #include "device_default.hpp" #include "int-util.h" #include "crypto/wallet/crypto.h" #include "cryptonote_basic/account.h" #include "cryptonote_basic/subaddress_index.h" #include "cryptonote_core/cryptonote_tx_utils.h" #include "ringct/rctOps.h" #include "cryptonote_config.h" namespace hw { namespace core { device_default::device_default() { } device_default::~device_default() { } /* ===================================================================== */ /* === Misc ==== */ /* ===================================================================== */ static inline unsigned char *operator &(crypto::ec_scalar &scalar) { return &reinterpret_cast<unsigned char &>(scalar); } static inline const unsigned char *operator &(const crypto::ec_scalar &scalar) { return &reinterpret_cast<const unsigned char &>(scalar); } /* ======================================================================= */ /* SETUP/TEARDOWN */ /* ======================================================================= */ bool device_default::set_name(const std::string &name) { this->name = name; return true; } const std::string device_default::get_name() const { return this->name; } bool device_default::init(void) { return true; } bool device_default::release() { return true; } bool device_default::connect(void) { return true; } bool device_default::disconnect() { return true; } bool device_default::set_mode(device_mode mode) { return device::set_mode(mode); } /* ======================================================================= */ /* LOCKER */ /* ======================================================================= */ void device_default::lock() { } bool device_default::try_lock() { return true; } void device_default::unlock() { } /* ======================================================================= */ /* WALLET & ADDRESS */ /* ======================================================================= */ bool device_default::generate_chacha_key(const cryptonote::account_keys &keys, crypto::chacha_key &key, uint64_t kdf_rounds) { const crypto::secret_key &view_key = keys.m_view_secret_key; const crypto::secret_key &spend_key = keys.m_spend_secret_key; epee::mlocked<tools::scrubbed_arr<char, sizeof(view_key) + sizeof(spend_key) + 1>> data; memcpy(data.data(), &view_key, sizeof(view_key)); memcpy(data.data() + sizeof(view_key), &spend_key, sizeof(spend_key)); data[sizeof(data) - 1] = config::HASH_KEY_WALLET; crypto::generate_chacha_key(data.data(), sizeof(data), key, kdf_rounds); return true; } bool device_default::get_public_address(cryptonote::account_public_address &pubkey) { dfns(); } bool device_default::get_secret_keys(crypto::secret_key &viewkey , crypto::secret_key &spendkey) { dfns(); } /* ======================================================================= */ /* SUB ADDRESS */ /* ======================================================================= */ bool device_default::derive_subaddress_public_key(const crypto::public_key &out_key, const crypto::key_derivation &derivation, const std::size_t output_index, crypto::public_key &derived_key) { return crypto::wallet::derive_subaddress_public_key(out_key, derivation, output_index,derived_key); } crypto::public_key device_default::get_subaddress_spend_public_key(const cryptonote::account_keys& keys, const cryptonote::subaddress_index &index) { if (index.is_zero()) return keys.m_account_address.m_spend_public_key; // m = Hs(a || index_major || index_minor) crypto::secret_key m = get_subaddress_secret_key(keys.m_view_secret_key, index); // M = m*G crypto::public_key M; crypto::secret_key_to_public_key(m, M); // D = B + M crypto::public_key D = rct::rct2pk(rct::addKeys(rct::pk2rct(keys.m_account_address.m_spend_public_key), rct::pk2rct(M))); return D; } std::vector<crypto::public_key> device_default::get_subaddress_spend_public_keys(const cryptonote::account_keys &keys, uint32_t account, uint32_t begin, uint32_t end) { CHECK_AND_ASSERT_THROW_MES(begin <= end, "begin > end"); std::vector<crypto::public_key> pkeys; pkeys.reserve(end - begin); cryptonote::subaddress_index index = {account, begin}; ge_p3 p3; ge_cached cached; CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&p3, (const unsigned char*)keys.m_account_address.m_spend_public_key.data) == 0, "ge_frombytes_vartime failed to convert spend public key"); ge_p3_to_cached(&cached, &p3); for (uint32_t idx = begin; idx < end; ++idx) { index.minor = idx; if (index.is_zero()) { pkeys.push_back(keys.m_account_address.m_spend_public_key); continue; } crypto::secret_key m = get_subaddress_secret_key(keys.m_view_secret_key, index); // M = m*G ge_scalarmult_base(&p3, (const unsigned char*)m.data); // D = B + M crypto::public_key D; ge_p1p1 p1p1; ge_add(&p1p1, &p3, &cached); ge_p1p1_to_p3(&p3, &p1p1); ge_p3_tobytes((unsigned char*)D.data, &p3); pkeys.push_back(D); } return pkeys; } cryptonote::account_public_address device_default::get_subaddress(const cryptonote::account_keys& keys, const cryptonote::subaddress_index &index) { if (index.is_zero()) return keys.m_account_address; crypto::public_key D = get_subaddress_spend_public_key(keys, index); // C = a*D crypto::public_key C = rct::rct2pk(rct::scalarmultKey(rct::pk2rct(D), rct::sk2rct(keys.m_view_secret_key))); // result: (C, D) cryptonote::account_public_address address; address.m_view_public_key = C; address.m_spend_public_key = D; return address; } crypto::secret_key device_default::get_subaddress_secret_key(const crypto::secret_key &a, const cryptonote::subaddress_index &index) { char data[sizeof(config::HASH_KEY_SUBADDRESS) + sizeof(crypto::secret_key) + 2 * sizeof(uint32_t)]; memcpy(data, config::HASH_KEY_SUBADDRESS, sizeof(config::HASH_KEY_SUBADDRESS)); memcpy(data + sizeof(config::HASH_KEY_SUBADDRESS), &a, sizeof(crypto::secret_key)); uint32_t idx = SWAP32LE(index.major); memcpy(data + sizeof(config::HASH_KEY_SUBADDRESS) + sizeof(crypto::secret_key), &idx, sizeof(uint32_t)); idx = SWAP32LE(index.minor); memcpy(data + sizeof(config::HASH_KEY_SUBADDRESS) + sizeof(crypto::secret_key) + sizeof(uint32_t), &idx, sizeof(uint32_t)); crypto::secret_key m; crypto::hash_to_scalar(data, sizeof(data), m); return m; } /* ======================================================================= */ /* DERIVATION & KEY */ /* ======================================================================= */ bool device_default::verify_keys(const crypto::secret_key &secret_key, const crypto::public_key &public_key) { crypto::public_key calculated_pub; bool r = crypto::secret_key_to_public_key(secret_key, calculated_pub); return r && public_key == calculated_pub; } bool device_default::scalarmultKey(rct::key & aP, const rct::key &P, const rct::key &a) { rct::scalarmultKey(aP, P,a); return true; } bool device_default::scalarmultBase(rct::key &aG, const rct::key &a) { rct::scalarmultBase(aG,a); return true; } bool device_default::sc_secret_add(crypto::secret_key &r, const crypto::secret_key &a, const crypto::secret_key &b) { sc_add(&r, &a, &b); return true; } crypto::secret_key device_default::generate_keys(crypto::public_key &pub, crypto::secret_key &sec, const crypto::secret_key& recovery_key, bool recover) { return crypto::generate_keys(pub, sec, recovery_key, recover); } bool device_default::generate_key_derivation(const crypto::public_key &key1, const crypto::secret_key &key2, crypto::key_derivation &derivation) { return crypto::wallet::generate_key_derivation(key1, key2, derivation); } bool device_default::derivation_to_scalar(const crypto::key_derivation &derivation, const size_t output_index, crypto::ec_scalar &res){ crypto::derivation_to_scalar(derivation,output_index, res); return true; } bool device_default::derive_secret_key(const crypto::key_derivation &derivation, const std::size_t output_index, const crypto::secret_key &base, crypto::secret_key &derived_key){ crypto::derive_secret_key(derivation, output_index, base, derived_key); return true; } bool device_default::derive_public_key(const crypto::key_derivation &derivation, const std::size_t output_index, const crypto::public_key &base, crypto::public_key &derived_key){ return crypto::derive_public_key(derivation, output_index, base, derived_key); } bool device_default::secret_key_to_public_key(const crypto::secret_key &sec, crypto::public_key &pub) { return crypto::secret_key_to_public_key(sec,pub); } bool device_default::generate_key_image(const crypto::public_key &pub, const crypto::secret_key &sec, crypto::key_image &image){ crypto::generate_key_image(pub, sec,image); return true; } bool device_default::conceal_derivation(crypto::key_derivation &derivation, const crypto::public_key &tx_pub_key, const std::vector<crypto::public_key> &additional_tx_pub_keys, const crypto::key_derivation &main_derivation, const std::vector<crypto::key_derivation> &additional_derivations){ return true; } /* ======================================================================= */ /* TRANSACTION */ /* ======================================================================= */ void device_default::generate_tx_proof(const crypto::hash &prefix_hash, const crypto::public_key &R, const crypto::public_key &A, const boost::optional<crypto::public_key> &B, const crypto::public_key &D, const crypto::secret_key &r, crypto::signature &sig) { crypto::generate_tx_proof(prefix_hash, R, A, B, D, r, sig); } bool device_default::open_tx(crypto::secret_key &tx_key) { cryptonote::keypair txkey = cryptonote::keypair::generate(*this); tx_key = txkey.sec; return true; } void device_default::get_transaction_prefix_hash(const cryptonote::transaction_prefix& tx, crypto::hash& h) { cryptonote::get_transaction_prefix_hash(tx, h); } bool device_default::generate_output_ephemeral_keys(const size_t tx_version, const cryptonote::account_keys &sender_account_keys, const crypto::public_key &txkey_pub, const crypto::secret_key &tx_key, const cryptonote::tx_destination_entry &dst_entr, const boost::optional<cryptonote::account_public_address> &change_addr, const size_t output_index, const bool &need_additional_txkeys, const std::vector<crypto::secret_key> &additional_tx_keys, std::vector<crypto::public_key> &additional_tx_public_keys, std::vector<rct::key> &amount_keys, crypto::public_key &out_eph_public_key) { crypto::key_derivation derivation; // make additional tx pubkey if necessary cryptonote::keypair additional_txkey; if (need_additional_txkeys) { additional_txkey.sec = additional_tx_keys[output_index]; if (dst_entr.is_subaddress) additional_txkey.pub = rct::rct2pk(rct::scalarmultKey(rct::pk2rct(dst_entr.addr.m_spend_public_key), rct::sk2rct(additional_txkey.sec))); else additional_txkey.pub = rct::rct2pk(rct::scalarmultBase(rct::sk2rct(additional_txkey.sec))); } bool r; if (change_addr && dst_entr.addr == *change_addr) { // sending change to yourself; derivation = a*R r = generate_key_derivation(txkey_pub, sender_account_keys.m_view_secret_key, derivation); CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to generate_key_derivation(" << txkey_pub << ", " << sender_account_keys.m_view_secret_key << ")"); } else { // sending to the recipient; derivation = r*A (or s*C in the subaddress scheme) r = generate_key_derivation(dst_entr.addr.m_view_public_key, dst_entr.is_subaddress && need_additional_txkeys ? additional_txkey.sec : tx_key, derivation); CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to generate_key_derivation(" << dst_entr.addr.m_view_public_key << ", " << (dst_entr.is_subaddress && need_additional_txkeys ? additional_txkey.sec : tx_key) << ")"); } if (need_additional_txkeys) { additional_tx_public_keys.push_back(additional_txkey.pub); } if (tx_version > 1) { crypto::secret_key scalar1; derivation_to_scalar(derivation, output_index, scalar1); amount_keys.push_back(rct::sk2rct(scalar1)); } r = derive_public_key(derivation, output_index, dst_entr.addr.m_spend_public_key, out_eph_public_key); CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to derive_public_key(" << derivation << ", " << output_index << ", "<< dst_entr.addr.m_spend_public_key << ")"); return r; } bool device_default::encrypt_payment_id(crypto::hash8 &payment_id, const crypto::public_key &public_key, const crypto::secret_key &secret_key) { crypto::key_derivation derivation; crypto::hash hash; char data[33]; /* A hash, and an extra byte */ if (!generate_key_derivation(public_key, secret_key, derivation)) return false; memcpy(data, &derivation, 32); data[32] = config::HASH_KEY_ENCRYPTED_PAYMENT_ID; cn_fast_hash(data, 33, hash); for (size_t b = 0; b < 8; ++b) payment_id.data[b] ^= hash.data[b]; return true; } rct::key device_default::genCommitmentMask(const rct::key &amount_key) { return rct::genCommitmentMask(amount_key); } bool device_default::ecdhEncode(rct::ecdhTuple & unmasked, const rct::key & sharedSec, bool short_amount) { rct::ecdhEncode(unmasked, sharedSec, short_amount); return true; } bool device_default::ecdhDecode(rct::ecdhTuple & masked, const rct::key & sharedSec, bool short_amount) { rct::ecdhDecode(masked, sharedSec, short_amount); return true; } bool device_default::mlsag_prepare(const rct::key &H, const rct::key &xx, rct::key &a, rct::key &aG, rct::key &aHP, rct::key &II) { rct::skpkGen(a, aG); rct::scalarmultKey(aHP, H, a); rct::scalarmultKey(II, H, xx); return true; } bool device_default::mlsag_prepare(rct::key &a, rct::key &aG) { rct::skpkGen(a, aG); return true; } bool device_default::mlsag_prehash(const std::string &blob, size_t inputs_size, size_t outputs_size, const rct::keyV &hashes, const rct::ctkeyV &outPk, rct::key &prehash) { prehash = rct::cn_fast_hash(hashes); return true; } bool device_default::mlsag_hash(const rct::keyV &toHash, rct::key &c_old) { c_old = rct::hash_to_scalar(toHash); return true; } bool device_default::mlsag_sign(const rct::key &c, const rct::keyV &xx, const rct::keyV &alpha, const size_t rows, const size_t dsRows, rct::keyV &ss ) { CHECK_AND_ASSERT_THROW_MES(dsRows<=rows, "dsRows greater than rows"); CHECK_AND_ASSERT_THROW_MES(xx.size() == rows, "xx size does not match rows"); CHECK_AND_ASSERT_THROW_MES(alpha.size() == rows, "alpha size does not match rows"); CHECK_AND_ASSERT_THROW_MES(ss.size() == rows, "ss size does not match rows"); for (size_t j = 0; j < rows; j++) { sc_mulsub(ss[j].bytes, c.bytes, xx[j].bytes, alpha[j].bytes); } return true; } bool device_default::clsag_prepare(const rct::key &p, const rct::key &z, rct::key &I, rct::key &D, const rct::key &H, rct::key &a, rct::key &aG, rct::key &aH) { rct::skpkGen(a,aG); // aG = a*G rct::scalarmultKey(aH,H,a); // aH = a*H rct::scalarmultKey(I,H,p); // I = p*H rct::scalarmultKey(D,H,z); // D = z*H return true; } bool device_default::clsag_hash(const rct::keyV &data, rct::key &hash) { hash = rct::hash_to_scalar(data); return true; } bool device_default::clsag_sign(const rct::key &c, const rct::key &a, const rct::key &p, const rct::key &z, const rct::key &mu_P, const rct::key &mu_C, rct::key &s) { rct::key s0_p_mu_P; sc_mul(s0_p_mu_P.bytes,mu_P.bytes,p.bytes); rct::key s0_add_z_mu_C; sc_muladd(s0_add_z_mu_C.bytes,mu_C.bytes,z.bytes,s0_p_mu_P.bytes); sc_mulsub(s.bytes,c.bytes,s0_add_z_mu_C.bytes,a.bytes); return true; } bool device_default::close_tx() { return true; } /* ---------------------------------------------------------- */ static device_default *default_core_device = NULL; void register_all(std::map<std::string, std::unique_ptr<device>> ®istry) { if (!default_core_device) { default_core_device = new device_default(); default_core_device->set_name("default_core_device"); } registry.insert(std::make_pair("default", std::unique_ptr<device>(default_core_device))); } } }