// Copyright (c) 2014-2018, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers #include #include #include #include #include "tx_pool.h" #include "cryptonote_tx_utils.h" #include "cryptonote_basic/cryptonote_boost_serialization.h" #include "cryptonote_config.h" #include "blockchain.h" #include "blockchain_db/blockchain_db.h" #include "common/boost_serialization_helper.h" #include "common/int-util.h" #include "misc_language.h" #include "warnings.h" #include "common/perf_timer.h" #include "crypto/hash.h" #undef MONERO_DEFAULT_LOG_CATEGORY #define MONERO_DEFAULT_LOG_CATEGORY "txpool" DISABLE_VS_WARNINGS(4244 4345 4503) //'boost::foreach_detail_::or_' : decorated name length exceeded, name was truncated using namespace crypto; namespace cryptonote { namespace { //TODO: constants such as these should at least be in the header, // but probably somewhere more accessible to the rest of the // codebase. As it stands, it is at best nontrivial to test // whether or not changing these parameters (or adding new) // will work correctly. time_t const MIN_RELAY_TIME = (60 * 5); // only start re-relaying transactions after that many seconds time_t const MAX_RELAY_TIME = (60 * 60 * 4); // at most that many seconds between resends float const ACCEPT_THRESHOLD = 1.0f; // a kind of increasing backoff within min/max bounds uint64_t get_relay_delay(time_t now, time_t received) { time_t d = (now - received + MIN_RELAY_TIME) / MIN_RELAY_TIME * MIN_RELAY_TIME; if (d > MAX_RELAY_TIME) d = MAX_RELAY_TIME; return d; } uint64_t template_accept_threshold(uint64_t amount) { return amount * ACCEPT_THRESHOLD; } uint64_t get_transaction_size_limit(uint8_t version) { return get_min_block_size(version) - CRYPTONOTE_COINBASE_BLOB_RESERVED_SIZE; } // This class is meant to create a batch when none currently exists. // If a batch exists, it can't be from another thread, since we can // only be called with the txpool lock taken, and it is held during // the whole prepare/handle/cleanup incoming block sequence. class LockedTXN { public: LockedTXN(Blockchain &b): m_blockchain(b), m_batch(false) { m_batch = m_blockchain.get_db().batch_start(); } ~LockedTXN() { try { if (m_batch) { m_blockchain.get_db().batch_stop(); } } catch (const std::exception &e) { MWARNING("LockedTXN dtor filtering exception: " << e.what()); } } private: Blockchain &m_blockchain; bool m_batch; }; } //--------------------------------------------------------------------------------- //--------------------------------------------------------------------------------- tx_memory_pool::tx_memory_pool(Blockchain& bchs): m_blockchain(bchs), m_txpool_max_size(DEFAULT_TXPOOL_MAX_SIZE), m_txpool_size(0) { } //--------------------------------------------------------------------------------- bool tx_memory_pool::add_tx(transaction &tx, /*const crypto::hash& tx_prefix_hash,*/ const crypto::hash &id, size_t blob_size, tx_verification_context& tvc, bool kept_by_block, bool relayed, bool do_not_relay, uint8_t version) { // this should already be called with that lock, but let's make it explicit for clarity CRITICAL_REGION_LOCAL(m_transactions_lock); PERF_TIMER(add_tx); if (tx.version == 0) { // v0 never accepted LOG_PRINT_L1("transaction version 0 is invalid"); tvc.m_verifivation_failed = true; return false; } // we do not accept transactions that timed out before, unless they're // kept_by_block if (!kept_by_block && m_timed_out_transactions.find(id) != m_timed_out_transactions.end()) { // not clear if we should set that, since verifivation (sic) did not fail before, since // the tx was accepted before timing out. tvc.m_verifivation_failed = true; return false; } if(!check_inputs_types_supported(tx)) { tvc.m_verifivation_failed = true; tvc.m_invalid_input = true; return false; } // fee per kilobyte, size rounded up. uint64_t fee; if (tx.version == 1) { uint64_t inputs_amount = 0; if(!get_inputs_money_amount(tx, inputs_amount)) { tvc.m_verifivation_failed = true; return false; } uint64_t outputs_amount = get_outs_money_amount(tx); if(outputs_amount >= inputs_amount) { LOG_PRINT_L1("transaction use more money then it has: use " << print_money(outputs_amount) << ", have " << print_money(inputs_amount)); tvc.m_verifivation_failed = true; tvc.m_overspend = true; return false; } fee = inputs_amount - outputs_amount; } else { fee = tx.rct_signatures.txnFee; } if (!kept_by_block && !m_blockchain.check_fee(blob_size, fee)) { tvc.m_verifivation_failed = true; tvc.m_fee_too_low = true; return false; } size_t tx_size_limit = get_transaction_size_limit(version); if (!kept_by_block && blob_size >= tx_size_limit) { LOG_PRINT_L1("transaction is too big: " << blob_size << " bytes, maximum size: " << tx_size_limit); tvc.m_verifivation_failed = true; tvc.m_too_big = true; return false; } // if the transaction came from a block popped from the chain, // don't check if we have its key images as spent. // TODO: Investigate why not? if(!kept_by_block) { if(have_tx_keyimges_as_spent(tx)) { mark_double_spend(tx); LOG_PRINT_L1("Transaction with id= "<< id << " used already spent key images"); tvc.m_verifivation_failed = true; tvc.m_double_spend = true; return false; } } if (!m_blockchain.check_tx_outputs(tx, tvc)) { LOG_PRINT_L1("Transaction with id= "<< id << " has at least one invalid output"); tvc.m_verifivation_failed = true; tvc.m_invalid_output = true; return false; } // assume failure during verification steps until success is certain tvc.m_verifivation_failed = true; time_t receive_time = time(nullptr); crypto::hash max_used_block_id = null_hash; uint64_t max_used_block_height = 0; cryptonote::txpool_tx_meta_t meta; bool ch_inp_res = m_blockchain.check_tx_inputs(tx, max_used_block_height, max_used_block_id, tvc, kept_by_block); if(!ch_inp_res) { // if the transaction was valid before (kept_by_block), then it // may become valid again, so ignore the failed inputs check. if(kept_by_block) { meta.blob_size = blob_size; meta.fee = fee; meta.max_used_block_id = null_hash; meta.max_used_block_height = 0; meta.last_failed_height = 0; meta.last_failed_id = null_hash; meta.kept_by_block = kept_by_block; meta.receive_time = receive_time; meta.last_relayed_time = time(NULL); meta.relayed = relayed; meta.do_not_relay = do_not_relay; meta.double_spend_seen = have_tx_keyimges_as_spent(tx); memset(meta.padding, 0, sizeof(meta.padding)); try { CRITICAL_REGION_LOCAL1(m_blockchain); LockedTXN lock(m_blockchain); m_blockchain.add_txpool_tx(tx, meta); if (!insert_key_images(tx, kept_by_block)) return false; m_txs_by_fee_and_receive_time.emplace(std::pair(fee / (double)blob_size, receive_time), id); } catch (const std::exception &e) { MERROR("transaction already exists at inserting in memory pool: " << e.what()); return false; } tvc.m_verifivation_impossible = true; tvc.m_added_to_pool = true; }else { LOG_PRINT_L1("tx used wrong inputs, rejected"); tvc.m_verifivation_failed = true; tvc.m_invalid_input = true; return false; } }else { //update transactions container meta.blob_size = blob_size; meta.kept_by_block = kept_by_block; meta.fee = fee; meta.max_used_block_id = max_used_block_id; meta.max_used_block_height = max_used_block_height; meta.last_failed_height = 0; meta.last_failed_id = null_hash; meta.receive_time = receive_time; meta.last_relayed_time = time(NULL); meta.relayed = relayed; meta.do_not_relay = do_not_relay; meta.double_spend_seen = false; memset(meta.padding, 0, sizeof(meta.padding)); try { CRITICAL_REGION_LOCAL1(m_blockchain); LockedTXN lock(m_blockchain); m_blockchain.remove_txpool_tx(get_transaction_hash(tx)); m_blockchain.add_txpool_tx(tx, meta); if (!insert_key_images(tx, kept_by_block)) return false; m_txs_by_fee_and_receive_time.emplace(std::pair(fee / (double)blob_size, receive_time), id); } catch (const std::exception &e) { MERROR("internal error: transaction already exists at inserting in memorypool: " << e.what()); return false; } tvc.m_added_to_pool = true; if(meta.fee > 0 && !do_not_relay) tvc.m_should_be_relayed = true; } tvc.m_verifivation_failed = false; m_txpool_size += blob_size; MINFO("Transaction added to pool: txid " << id << " bytes: " << blob_size << " fee/byte: " << (fee / (double)blob_size)); prune(m_txpool_max_size); return true; } //--------------------------------------------------------------------------------- bool tx_memory_pool::add_tx(transaction &tx, tx_verification_context& tvc, bool keeped_by_block, bool relayed, bool do_not_relay, uint8_t version) { crypto::hash h = null_hash; size_t blob_size = 0; if (!get_transaction_hash(tx, h, blob_size) || blob_size == 0) return false; return add_tx(tx, h, blob_size, tvc, keeped_by_block, relayed, do_not_relay, version); } //--------------------------------------------------------------------------------- size_t tx_memory_pool::get_txpool_size() const { CRITICAL_REGION_LOCAL(m_transactions_lock); return m_txpool_size; } //--------------------------------------------------------------------------------- void tx_memory_pool::set_txpool_max_size(size_t bytes) { CRITICAL_REGION_LOCAL(m_transactions_lock); m_txpool_max_size = bytes; } //--------------------------------------------------------------------------------- void tx_memory_pool::prune(size_t bytes) { CRITICAL_REGION_LOCAL(m_transactions_lock); if (bytes == 0) bytes = m_txpool_max_size; CRITICAL_REGION_LOCAL1(m_blockchain); LockedTXN lock(m_blockchain); // this will never remove the first one, but we don't care auto it = --m_txs_by_fee_and_receive_time.end(); while (it != m_txs_by_fee_and_receive_time.begin()) { if (m_txpool_size <= bytes) break; try { const crypto::hash &txid = it->second; txpool_tx_meta_t meta; if (!m_blockchain.get_txpool_tx_meta(txid, meta)) { MERROR("Failed to find tx in txpool"); return; } // don't prune the kept_by_block ones, they're likely added because we're adding a block with those if (meta.kept_by_block) { --it; continue; } cryptonote::blobdata txblob = m_blockchain.get_txpool_tx_blob(txid); cryptonote::transaction tx; if (!parse_and_validate_tx_from_blob(txblob, tx)) { MERROR("Failed to parse tx from txpool"); return; } // remove first, in case this throws, so key images aren't removed MINFO("Pruning tx " << txid << " from txpool: size: " << it->first.second << ", fee/byte: " << it->first.first); m_blockchain.remove_txpool_tx(txid); m_txpool_size -= txblob.size(); remove_transaction_keyimages(tx); MINFO("Pruned tx " << txid << " from txpool: size: " << it->first.second << ", fee/byte: " << it->first.first); m_txs_by_fee_and_receive_time.erase(it--); } catch (const std::exception &e) { MERROR("Error while pruning txpool: " << e.what()); return; } } if (m_txpool_size > bytes) MINFO("Pool size after pruning is larger than limit: " << m_txpool_size << "/" << bytes); } //--------------------------------------------------------------------------------- bool tx_memory_pool::insert_key_images(const transaction &tx, bool kept_by_block) { for(const auto& in: tx.vin) { const crypto::hash id = get_transaction_hash(tx); CHECKED_GET_SPECIFIC_VARIANT(in, const txin_to_key, txin, false); std::unordered_set& kei_image_set = m_spent_key_images[txin.k_image]; CHECK_AND_ASSERT_MES(kept_by_block || kei_image_set.size() == 0, false, "internal error: kept_by_block=" << kept_by_block << ", kei_image_set.size()=" << kei_image_set.size() << ENDL << "txin.k_image=" << txin.k_image << ENDL << "tx_id=" << id ); auto ins_res = kei_image_set.insert(id); CHECK_AND_ASSERT_MES(ins_res.second, false, "internal error: try to insert duplicate iterator in key_image set"); } return true; } //--------------------------------------------------------------------------------- //FIXME: Can return early before removal of all of the key images. // At the least, need to make sure that a false return here // is treated properly. Should probably not return early, however. bool tx_memory_pool::remove_transaction_keyimages(const transaction& tx) { CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); // ND: Speedup // 1. Move transaction hash calcuation outside of loop. ._. crypto::hash actual_hash = get_transaction_hash(tx); for(const txin_v& vi: tx.vin) { CHECKED_GET_SPECIFIC_VARIANT(vi, const txin_to_key, txin, false); auto it = m_spent_key_images.find(txin.k_image); CHECK_AND_ASSERT_MES(it != m_spent_key_images.end(), false, "failed to find transaction input in key images. img=" << txin.k_image << ENDL << "transaction id = " << get_transaction_hash(tx)); std::unordered_set& key_image_set = it->second; CHECK_AND_ASSERT_MES(key_image_set.size(), false, "empty key_image set, img=" << txin.k_image << ENDL << "transaction id = " << actual_hash); auto it_in_set = key_image_set.find(actual_hash); CHECK_AND_ASSERT_MES(it_in_set != key_image_set.end(), false, "transaction id not found in key_image set, img=" << txin.k_image << ENDL << "transaction id = " << actual_hash); key_image_set.erase(it_in_set); if(!key_image_set.size()) { //it is now empty hash container for this key_image m_spent_key_images.erase(it); } } return true; } //--------------------------------------------------------------------------------- bool tx_memory_pool::take_tx(const crypto::hash &id, transaction &tx, size_t& blob_size, uint64_t& fee, bool &relayed, bool &do_not_relay, bool &double_spend_seen) { CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); auto sorted_it = find_tx_in_sorted_container(id); if (sorted_it == m_txs_by_fee_and_receive_time.end()) return false; try { LockedTXN lock(m_blockchain); txpool_tx_meta_t meta; if (!m_blockchain.get_txpool_tx_meta(id, meta)) { MERROR("Failed to find tx in txpool"); return false; } cryptonote::blobdata txblob = m_blockchain.get_txpool_tx_blob(id); if (!parse_and_validate_tx_from_blob(txblob, tx)) { MERROR("Failed to parse tx from txpool"); return false; } blob_size = meta.blob_size; fee = meta.fee; relayed = meta.relayed; do_not_relay = meta.do_not_relay; double_spend_seen = meta.double_spend_seen; // remove first, in case this throws, so key images aren't removed m_blockchain.remove_txpool_tx(id); m_txpool_size -= blob_size; remove_transaction_keyimages(tx); } catch (const std::exception &e) { MERROR("Failed to remove tx from txpool: " << e.what()); return false; } m_txs_by_fee_and_receive_time.erase(sorted_it); return true; } //--------------------------------------------------------------------------------- void tx_memory_pool::on_idle() { m_remove_stuck_tx_interval.do_call([this](){return remove_stuck_transactions();}); } //--------------------------------------------------------------------------------- sorted_tx_container::iterator tx_memory_pool::find_tx_in_sorted_container(const crypto::hash& id) const { return std::find_if( m_txs_by_fee_and_receive_time.begin(), m_txs_by_fee_and_receive_time.end() , [&](const sorted_tx_container::value_type& a){ return a.second == id; } ); } //--------------------------------------------------------------------------------- //TODO: investigate whether boolean return is appropriate bool tx_memory_pool::remove_stuck_transactions() { CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); std::unordered_set remove; m_blockchain.for_all_txpool_txes([this, &remove](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata*) { uint64_t tx_age = time(nullptr) - meta.receive_time; if((tx_age > CRYPTONOTE_MEMPOOL_TX_LIVETIME && !meta.kept_by_block) || (tx_age > CRYPTONOTE_MEMPOOL_TX_FROM_ALT_BLOCK_LIVETIME && meta.kept_by_block) ) { LOG_PRINT_L1("Tx " << txid << " removed from tx pool due to outdated, age: " << tx_age ); auto sorted_it = find_tx_in_sorted_container(txid); if (sorted_it == m_txs_by_fee_and_receive_time.end()) { LOG_PRINT_L1("Removing tx " << txid << " from tx pool, but it was not found in the sorted txs container!"); } else { m_txs_by_fee_and_receive_time.erase(sorted_it); } m_timed_out_transactions.insert(txid); remove.insert(txid); } return true; }, false); if (!remove.empty()) { LockedTXN lock(m_blockchain); for (const crypto::hash &txid: remove) { try { cryptonote::blobdata bd = m_blockchain.get_txpool_tx_blob(txid); cryptonote::transaction tx; if (!parse_and_validate_tx_from_blob(bd, tx)) { MERROR("Failed to parse tx from txpool"); // continue } else { // remove first, so we only remove key images if the tx removal succeeds m_blockchain.remove_txpool_tx(txid); m_txpool_size -= bd.size(); remove_transaction_keyimages(tx); } } catch (const std::exception &e) { MWARNING("Failed to remove stuck transaction: " << txid); // ignore error } } } return true; } //--------------------------------------------------------------------------------- //TODO: investigate whether boolean return is appropriate bool tx_memory_pool::get_relayable_transactions(std::list> &txs) const { CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); const uint64_t now = time(NULL); m_blockchain.for_all_txpool_txes([this, now, &txs](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata *){ // 0 fee transactions are never relayed if(meta.fee > 0 && !meta.do_not_relay && now - meta.last_relayed_time > get_relay_delay(now, meta.receive_time)) { // if the tx is older than half the max lifetime, we don't re-relay it, to avoid a problem // mentioned by smooth where nodes would flush txes at slightly different times, causing // flushed txes to be re-added when received from a node which was just about to flush it uint64_t max_age = meta.kept_by_block ? CRYPTONOTE_MEMPOOL_TX_FROM_ALT_BLOCK_LIVETIME : CRYPTONOTE_MEMPOOL_TX_LIVETIME; if (now - meta.receive_time <= max_age / 2) { try { cryptonote::blobdata bd = m_blockchain.get_txpool_tx_blob(txid); txs.push_back(std::make_pair(txid, bd)); } catch (const std::exception &e) { MERROR("Failed to get transaction blob from db"); // ignore error } } } return true; }, false); return true; } //--------------------------------------------------------------------------------- void tx_memory_pool::set_relayed(const std::list> &txs) { CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); const time_t now = time(NULL); LockedTXN lock(m_blockchain); for (auto it = txs.begin(); it != txs.end(); ++it) { try { txpool_tx_meta_t meta; if (m_blockchain.get_txpool_tx_meta(it->first, meta)) { meta.relayed = true; meta.last_relayed_time = now; m_blockchain.update_txpool_tx(it->first, meta); } } catch (const std::exception &e) { MERROR("Failed to update txpool transaction metadata: " << e.what()); // continue } } } //--------------------------------------------------------------------------------- size_t tx_memory_pool::get_transactions_count(bool include_unrelayed_txes) const { CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); return m_blockchain.get_txpool_tx_count(include_unrelayed_txes); } //--------------------------------------------------------------------------------- void tx_memory_pool::get_transactions(std::list& txs, bool include_unrelayed_txes) const { CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); m_blockchain.for_all_txpool_txes([&txs](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata *bd){ transaction tx; if (!parse_and_validate_tx_from_blob(*bd, tx)) { MERROR("Failed to parse tx from txpool"); // continue return true; } txs.push_back(tx); return true; }, true, include_unrelayed_txes); } //------------------------------------------------------------------ void tx_memory_pool::get_transaction_hashes(std::vector& txs, bool include_unrelayed_txes) const { CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); m_blockchain.for_all_txpool_txes([&txs](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata *bd){ txs.push_back(txid); return true; }, false, include_unrelayed_txes); } //------------------------------------------------------------------ void tx_memory_pool::get_transaction_backlog(std::vector& backlog, bool include_unrelayed_txes) const { CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); const uint64_t now = time(NULL); m_blockchain.for_all_txpool_txes([&backlog, now](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata *bd){ backlog.push_back({meta.blob_size, meta.fee, meta.receive_time - now}); return true; }, false, include_unrelayed_txes); } //------------------------------------------------------------------ void tx_memory_pool::get_transaction_stats(struct txpool_stats& stats, bool include_unrelayed_txes) const { CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); const uint64_t now = time(NULL); std::map agebytes; stats.txs_total = m_blockchain.get_txpool_tx_count(include_unrelayed_txes); std::vector sizes; sizes.reserve(stats.txs_total); m_blockchain.for_all_txpool_txes([&stats, &sizes, now, &agebytes](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata *bd){ sizes.push_back(meta.blob_size); stats.bytes_total += meta.blob_size; if (!stats.bytes_min || meta.blob_size < stats.bytes_min) stats.bytes_min = meta.blob_size; if (meta.blob_size > stats.bytes_max) stats.bytes_max = meta.blob_size; if (!meta.relayed) stats.num_not_relayed++; stats.fee_total += meta.fee; if (!stats.oldest || meta.receive_time < stats.oldest) stats.oldest = meta.receive_time; if (meta.receive_time < now - 600) stats.num_10m++; if (meta.last_failed_height) stats.num_failing++; uint64_t age = now - meta.receive_time + (now == meta.receive_time); agebytes[age].txs++; agebytes[age].bytes += meta.blob_size; if (meta.double_spend_seen) ++stats.num_double_spends; return true; }, false, include_unrelayed_txes); stats.bytes_med = epee::misc_utils::median(sizes); if (stats.txs_total > 1) { /* looking for 98th percentile */ size_t end = stats.txs_total * 0.02; uint64_t delta, factor; std::map::iterator it, i2; if (end) { /* If enough txs, spread the first 98% of results across * the first 9 bins, drop final 2% in last bin. */ it=agebytes.end(); for (size_t n=0; n <= end; n++, it--); stats.histo_98pc = it->first; factor = 9; delta = it->first; stats.histo.resize(10); } else { /* If not enough txs, don't reserve the last slot; * spread evenly across all 10 bins. */ stats.histo_98pc = 0; it = agebytes.end(); factor = stats.txs_total > 9 ? 10 : stats.txs_total; delta = now - stats.oldest; stats.histo.resize(factor); } if (!delta) delta = 1; for (i2 = agebytes.begin(); i2 != it; i2++) { size_t i = (i2->first * factor - 1) / delta; stats.histo[i].txs += i2->second.txs; stats.histo[i].bytes += i2->second.bytes; } for (; i2 != agebytes.end(); i2++) { stats.histo[factor].txs += i2->second.txs; stats.histo[factor].bytes += i2->second.bytes; } } } //------------------------------------------------------------------ //TODO: investigate whether boolean return is appropriate bool tx_memory_pool::get_transactions_and_spent_keys_info(std::vector& tx_infos, std::vector& key_image_infos, bool include_sensitive_data) const { CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); m_blockchain.for_all_txpool_txes([&tx_infos, key_image_infos, include_sensitive_data](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata *bd){ tx_info txi; txi.id_hash = epee::string_tools::pod_to_hex(txid); txi.tx_blob = *bd; transaction tx; if (!parse_and_validate_tx_from_blob(*bd, tx)) { MERROR("Failed to parse tx from txpool"); // continue return true; } txi.tx_json = obj_to_json_str(tx); txi.blob_size = meta.blob_size; txi.fee = meta.fee; txi.kept_by_block = meta.kept_by_block; txi.max_used_block_height = meta.max_used_block_height; txi.max_used_block_id_hash = epee::string_tools::pod_to_hex(meta.max_used_block_id); txi.last_failed_height = meta.last_failed_height; txi.last_failed_id_hash = epee::string_tools::pod_to_hex(meta.last_failed_id); // In restricted mode we do not include this data: txi.receive_time = include_sensitive_data ? meta.receive_time : 0; txi.relayed = meta.relayed; // In restricted mode we do not include this data: txi.last_relayed_time = include_sensitive_data ? meta.last_relayed_time : 0; txi.do_not_relay = meta.do_not_relay; txi.double_spend_seen = meta.double_spend_seen; tx_infos.push_back(txi); return true; }, true, include_sensitive_data); txpool_tx_meta_t meta; for (const key_images_container::value_type& kee : m_spent_key_images) { const crypto::key_image& k_image = kee.first; const std::unordered_set& kei_image_set = kee.second; spent_key_image_info ki; ki.id_hash = epee::string_tools::pod_to_hex(k_image); for (const crypto::hash& tx_id_hash : kei_image_set) { if (!include_sensitive_data) { try { if (!m_blockchain.get_txpool_tx_meta(tx_id_hash, meta)) { MERROR("Failed to get tx meta from txpool"); return false; } if (!meta.relayed) // Do not include that transaction if in restricted mode and it's not relayed continue; } catch (const std::exception &e) { MERROR("Failed to get tx meta from txpool: " << e.what()); return false; } } ki.txs_hashes.push_back(epee::string_tools::pod_to_hex(tx_id_hash)); } // Only return key images for which we have at least one tx that we can show for them if (!ki.txs_hashes.empty()) key_image_infos.push_back(ki); } return true; } //--------------------------------------------------------------------------------- bool tx_memory_pool::get_pool_for_rpc(std::vector& tx_infos, cryptonote::rpc::key_images_with_tx_hashes& key_image_infos) const { CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); m_blockchain.for_all_txpool_txes([&tx_infos, key_image_infos](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata *bd){ cryptonote::rpc::tx_in_pool txi; txi.tx_hash = txid; transaction tx; if (!parse_and_validate_tx_from_blob(*bd, tx)) { MERROR("Failed to parse tx from txpool"); // continue return true; } txi.tx = tx; txi.blob_size = meta.blob_size; txi.fee = meta.fee; txi.kept_by_block = meta.kept_by_block; txi.max_used_block_height = meta.max_used_block_height; txi.max_used_block_hash = meta.max_used_block_id; txi.last_failed_block_height = meta.last_failed_height; txi.last_failed_block_hash = meta.last_failed_id; txi.receive_time = meta.receive_time; txi.relayed = meta.relayed; txi.last_relayed_time = meta.last_relayed_time; txi.do_not_relay = meta.do_not_relay; txi.double_spend_seen = meta.double_spend_seen; tx_infos.push_back(txi); return true; }, true, false); for (const key_images_container::value_type& kee : m_spent_key_images) { std::vector tx_hashes; const std::unordered_set& kei_image_set = kee.second; for (const crypto::hash& tx_id_hash : kei_image_set) { tx_hashes.push_back(tx_id_hash); } const crypto::key_image& k_image = kee.first; key_image_infos[k_image] = tx_hashes; } return true; } //--------------------------------------------------------------------------------- bool tx_memory_pool::check_for_key_images(const std::vector& key_images, std::vector spent) const { CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); spent.clear(); for (const auto& image : key_images) { spent.push_back(m_spent_key_images.find(image) == m_spent_key_images.end() ? false : true); } return true; } //--------------------------------------------------------------------------------- bool tx_memory_pool::get_transaction(const crypto::hash& id, cryptonote::blobdata& txblob) const { CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); try { return m_blockchain.get_txpool_tx_blob(id, txblob); } catch (const std::exception &e) { return false; } } //--------------------------------------------------------------------------------- bool tx_memory_pool::on_blockchain_inc(uint64_t new_block_height, const crypto::hash& top_block_id) { return true; } //--------------------------------------------------------------------------------- bool tx_memory_pool::on_blockchain_dec(uint64_t new_block_height, const crypto::hash& top_block_id) { return true; } //--------------------------------------------------------------------------------- bool tx_memory_pool::have_tx(const crypto::hash &id) const { CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); return m_blockchain.get_db().txpool_has_tx(id); } //--------------------------------------------------------------------------------- bool tx_memory_pool::have_tx_keyimges_as_spent(const transaction& tx) const { CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); for(const auto& in: tx.vin) { CHECKED_GET_SPECIFIC_VARIANT(in, const txin_to_key, tokey_in, true);//should never fail if(have_tx_keyimg_as_spent(tokey_in.k_image)) return true; } return false; } //--------------------------------------------------------------------------------- bool tx_memory_pool::have_tx_keyimg_as_spent(const crypto::key_image& key_im) const { CRITICAL_REGION_LOCAL(m_transactions_lock); return m_spent_key_images.end() != m_spent_key_images.find(key_im); } //--------------------------------------------------------------------------------- void tx_memory_pool::lock() const { m_transactions_lock.lock(); } //--------------------------------------------------------------------------------- void tx_memory_pool::unlock() const { m_transactions_lock.unlock(); } //--------------------------------------------------------------------------------- bool tx_memory_pool::is_transaction_ready_to_go(txpool_tx_meta_t& txd, transaction &tx) const { //not the best implementation at this time, sorry :( //check is ring_signature already checked ? if(txd.max_used_block_id == null_hash) {//not checked, lets try to check if(txd.last_failed_id != null_hash && m_blockchain.get_current_blockchain_height() > txd.last_failed_height && txd.last_failed_id == m_blockchain.get_block_id_by_height(txd.last_failed_height)) return false;//we already sure that this tx is broken for this height tx_verification_context tvc; if(!m_blockchain.check_tx_inputs(tx, txd.max_used_block_height, txd.max_used_block_id, tvc)) { txd.last_failed_height = m_blockchain.get_current_blockchain_height()-1; txd.last_failed_id = m_blockchain.get_block_id_by_height(txd.last_failed_height); return false; } }else { if(txd.max_used_block_height >= m_blockchain.get_current_blockchain_height()) return false; if(true) { //if we already failed on this height and id, skip actual ring signature check if(txd.last_failed_id == m_blockchain.get_block_id_by_height(txd.last_failed_height)) return false; //check ring signature again, it is possible (with very small chance) that this transaction become again valid tx_verification_context tvc; if(!m_blockchain.check_tx_inputs(tx, txd.max_used_block_height, txd.max_used_block_id, tvc)) { txd.last_failed_height = m_blockchain.get_current_blockchain_height()-1; txd.last_failed_id = m_blockchain.get_block_id_by_height(txd.last_failed_height); return false; } } } //if we here, transaction seems valid, but, anyway, check for key_images collisions with blockchain, just to be sure if(m_blockchain.have_tx_keyimges_as_spent(tx)) { txd.double_spend_seen = true; return false; } //transaction is ok. return true; } //--------------------------------------------------------------------------------- bool tx_memory_pool::have_key_images(const std::unordered_set& k_images, const transaction& tx) { for(size_t i = 0; i!= tx.vin.size(); i++) { CHECKED_GET_SPECIFIC_VARIANT(tx.vin[i], const txin_to_key, itk, false); if(k_images.count(itk.k_image)) return true; } return false; } //--------------------------------------------------------------------------------- bool tx_memory_pool::append_key_images(std::unordered_set& k_images, const transaction& tx) { for(size_t i = 0; i!= tx.vin.size(); i++) { CHECKED_GET_SPECIFIC_VARIANT(tx.vin[i], const txin_to_key, itk, false); auto i_res = k_images.insert(itk.k_image); CHECK_AND_ASSERT_MES(i_res.second, false, "internal error: key images pool cache - inserted duplicate image in set: " << itk.k_image); } return true; } //--------------------------------------------------------------------------------- void tx_memory_pool::mark_double_spend(const transaction &tx) { CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); LockedTXN lock(m_blockchain); for(size_t i = 0; i!= tx.vin.size(); i++) { CHECKED_GET_SPECIFIC_VARIANT(tx.vin[i], const txin_to_key, itk, void()); const key_images_container::const_iterator it = m_spent_key_images.find(itk.k_image); if (it != m_spent_key_images.end()) { for (const crypto::hash &txid: it->second) { txpool_tx_meta_t meta; if (!m_blockchain.get_txpool_tx_meta(txid, meta)) { MERROR("Failed to find tx meta in txpool"); // continue, not fatal continue; } if (!meta.double_spend_seen) { MDEBUG("Marking " << txid << " as double spending " << itk.k_image); meta.double_spend_seen = true; try { m_blockchain.update_txpool_tx(txid, meta); } catch (const std::exception &e) { MERROR("Failed to update tx meta: " << e.what()); // continue, not fatal } } } } } } //--------------------------------------------------------------------------------- std::string tx_memory_pool::print_pool(bool short_format) const { std::stringstream ss; CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); m_blockchain.for_all_txpool_txes([&ss, short_format](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata *txblob) { ss << "id: " << txid << std::endl; if (!short_format) { cryptonote::transaction tx; if (!parse_and_validate_tx_from_blob(*txblob, tx)) { MERROR("Failed to parse tx from txpool"); return true; // continue } ss << obj_to_json_str(tx) << std::endl; } ss << "blob_size: " << meta.blob_size << std::endl << "fee: " << print_money(meta.fee) << std::endl << "kept_by_block: " << (meta.kept_by_block ? 'T' : 'F') << std::endl << "double_spend_seen: " << (meta.double_spend_seen ? 'T' : 'F') << std::endl << "max_used_block_height: " << meta.max_used_block_height << std::endl << "max_used_block_id: " << meta.max_used_block_id << std::endl << "last_failed_height: " << meta.last_failed_height << std::endl << "last_failed_id: " << meta.last_failed_id << std::endl; return true; }, !short_format); return ss.str(); } //--------------------------------------------------------------------------------- //TODO: investigate whether boolean return is appropriate bool tx_memory_pool::fill_block_template(block &bl, size_t median_size, uint64_t already_generated_coins, size_t &total_size, uint64_t &fee, uint64_t &expected_reward, uint8_t version) { // Warning: This function takes already_generated_ // coins as an argument and appears to do nothing // with it. CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); uint64_t best_coinbase = 0, coinbase = 0; total_size = 0; fee = 0; //baseline empty block get_block_reward(median_size, total_size, already_generated_coins, best_coinbase, version); size_t max_total_size_pre_v5 = (130 * median_size) / 100 - CRYPTONOTE_COINBASE_BLOB_RESERVED_SIZE; size_t max_total_size_v5 = 2 * median_size - CRYPTONOTE_COINBASE_BLOB_RESERVED_SIZE; size_t max_total_size = version >= 5 ? max_total_size_v5 : max_total_size_pre_v5; std::unordered_set k_images; LOG_PRINT_L2("Filling block template, median size " << median_size << ", " << m_txs_by_fee_and_receive_time.size() << " txes in the pool"); LockedTXN lock(m_blockchain); auto sorted_it = m_txs_by_fee_and_receive_time.begin(); while (sorted_it != m_txs_by_fee_and_receive_time.end()) { txpool_tx_meta_t meta; if (!m_blockchain.get_txpool_tx_meta(sorted_it->second, meta)) { MERROR(" failed to find tx meta"); continue; } LOG_PRINT_L2("Considering " << sorted_it->second << ", size " << meta.blob_size << ", current block size " << total_size << "/" << max_total_size << ", current coinbase " << print_money(best_coinbase)); // Can not exceed maximum block size if (max_total_size < total_size + meta.blob_size) { LOG_PRINT_L2(" would exceed maximum block size"); sorted_it++; continue; } // start using the optimal filling algorithm from v5 if (version >= 5) { // If we're getting lower coinbase tx, // stop including more tx uint64_t block_reward; if(!get_block_reward(median_size, total_size + meta.blob_size, already_generated_coins, block_reward, version)) { LOG_PRINT_L2(" would exceed maximum block size"); sorted_it++; continue; } coinbase = block_reward + fee + meta.fee; if (coinbase < template_accept_threshold(best_coinbase)) { LOG_PRINT_L2(" would decrease coinbase to " << print_money(coinbase)); sorted_it++; continue; } } else { // If we've exceeded the penalty free size, // stop including more tx if (total_size > median_size) { LOG_PRINT_L2(" would exceed median block size"); break; } } cryptonote::blobdata txblob = m_blockchain.get_txpool_tx_blob(sorted_it->second); cryptonote::transaction tx; if (!parse_and_validate_tx_from_blob(txblob, tx)) { MERROR("Failed to parse tx from txpool"); sorted_it++; continue; } // Skip transactions that are not ready to be // included into the blockchain or that are // missing key images const cryptonote::txpool_tx_meta_t original_meta = meta; bool ready = is_transaction_ready_to_go(meta, tx); if (memcmp(&original_meta, &meta, sizeof(meta))) { try { m_blockchain.update_txpool_tx(sorted_it->second, meta); } catch (const std::exception &e) { MERROR("Failed to update tx meta: " << e.what()); // continue, not fatal } } if (!ready) { LOG_PRINT_L2(" not ready to go"); sorted_it++; continue; } if (have_key_images(k_images, tx)) { LOG_PRINT_L2(" key images already seen"); sorted_it++; continue; } bl.tx_hashes.push_back(sorted_it->second); total_size += meta.blob_size; fee += meta.fee; best_coinbase = coinbase; append_key_images(k_images, tx); sorted_it++; LOG_PRINT_L2(" added, new block size " << total_size << "/" << max_total_size << ", coinbase " << print_money(best_coinbase)); } expected_reward = best_coinbase; LOG_PRINT_L2("Block template filled with " << bl.tx_hashes.size() << " txes, size " << total_size << "/" << max_total_size << ", coinbase " << print_money(best_coinbase) << " (including " << print_money(fee) << " in fees)"); return true; } //--------------------------------------------------------------------------------- size_t tx_memory_pool::validate(uint8_t version) { CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); size_t tx_size_limit = get_transaction_size_limit(version); std::unordered_set remove; m_txpool_size = 0; m_blockchain.for_all_txpool_txes([this, &remove, tx_size_limit](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata*) { m_txpool_size += meta.blob_size; if (meta.blob_size >= tx_size_limit) { LOG_PRINT_L1("Transaction " << txid << " is too big (" << meta.blob_size << " bytes), removing it from pool"); remove.insert(txid); } else if (m_blockchain.have_tx(txid)) { LOG_PRINT_L1("Transaction " << txid << " is in the blockchain, removing it from pool"); remove.insert(txid); } return true; }, false); size_t n_removed = 0; if (!remove.empty()) { LockedTXN lock(m_blockchain); for (const crypto::hash &txid: remove) { try { cryptonote::blobdata txblob = m_blockchain.get_txpool_tx_blob(txid); cryptonote::transaction tx; if (!parse_and_validate_tx_from_blob(txblob, tx)) { MERROR("Failed to parse tx from txpool"); continue; } // remove tx from db first m_blockchain.remove_txpool_tx(txid); m_txpool_size -= txblob.size(); remove_transaction_keyimages(tx); auto sorted_it = find_tx_in_sorted_container(txid); if (sorted_it == m_txs_by_fee_and_receive_time.end()) { LOG_PRINT_L1("Removing tx " << txid << " from tx pool, but it was not found in the sorted txs container!"); } else { m_txs_by_fee_and_receive_time.erase(sorted_it); } ++n_removed; } catch (const std::exception &e) { MERROR("Failed to remove invalid tx from pool"); // continue } } } return n_removed; } //--------------------------------------------------------------------------------- bool tx_memory_pool::init(size_t max_txpool_size) { CRITICAL_REGION_LOCAL(m_transactions_lock); CRITICAL_REGION_LOCAL1(m_blockchain); m_txpool_max_size = max_txpool_size ? max_txpool_size : DEFAULT_TXPOOL_MAX_SIZE; m_txs_by_fee_and_receive_time.clear(); m_spent_key_images.clear(); m_txpool_size = 0; std::vector remove; bool r = m_blockchain.for_all_txpool_txes([this, &remove](const crypto::hash &txid, const txpool_tx_meta_t &meta, const cryptonote::blobdata *bd) { cryptonote::transaction tx; if (!parse_and_validate_tx_from_blob(*bd, tx)) { MWARNING("Failed to parse tx from txpool, removing"); remove.push_back(txid); } if (!insert_key_images(tx, meta.kept_by_block)) { MFATAL("Failed to insert key images from txpool tx"); return false; } m_txs_by_fee_and_receive_time.emplace(std::pair(meta.fee / (double)meta.blob_size, meta.receive_time), txid); m_txpool_size += meta.blob_size; return true; }, true); if (!r) return false; if (!remove.empty()) { LockedTXN lock(m_blockchain); for (const auto &txid: remove) { try { m_blockchain.remove_txpool_tx(txid); } catch (const std::exception &e) { MWARNING("Failed to remove corrupt transaction: " << txid); // ignore error } } } return true; } //--------------------------------------------------------------------------------- bool tx_memory_pool::deinit() { return true; } }