// Copyright (c) 2014-2015, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers #include "include_base_utils.h" using namespace epee; #include "cryptonote_format_utils.h" #include <boost/foreach.hpp> #include "cryptonote_config.h" #include "miner.h" #include "crypto/crypto.h" #include "crypto/hash.h" #define ENCRYPTED_PAYMENT_ID_TAIL 0x8d static const uint64_t valid_decomposed_outputs[] = { (uint64_t)1, (uint64_t)2, (uint64_t)3, (uint64_t)4, (uint64_t)5, (uint64_t)6, (uint64_t)7, (uint64_t)8, (uint64_t)9, // 1 piconero (uint64_t)10, (uint64_t)20, (uint64_t)30, (uint64_t)40, (uint64_t)50, (uint64_t)60, (uint64_t)70, (uint64_t)80, (uint64_t)90, (uint64_t)100, (uint64_t)200, (uint64_t)300, (uint64_t)400, (uint64_t)500, (uint64_t)600, (uint64_t)700, (uint64_t)800, (uint64_t)900, (uint64_t)1000, (uint64_t)2000, (uint64_t)3000, (uint64_t)4000, (uint64_t)5000, (uint64_t)6000, (uint64_t)7000, (uint64_t)8000, (uint64_t)9000, (uint64_t)10000, (uint64_t)20000, (uint64_t)30000, (uint64_t)40000, (uint64_t)50000, (uint64_t)60000, (uint64_t)70000, (uint64_t)80000, (uint64_t)90000, (uint64_t)100000, (uint64_t)200000, (uint64_t)300000, (uint64_t)400000, (uint64_t)500000, (uint64_t)600000, (uint64_t)700000, (uint64_t)800000, (uint64_t)900000, (uint64_t)1000000, (uint64_t)2000000, (uint64_t)3000000, (uint64_t)4000000, (uint64_t)5000000, (uint64_t)6000000, (uint64_t)7000000, (uint64_t)8000000, (uint64_t)9000000, // 1 micronero (uint64_t)10000000, (uint64_t)20000000, (uint64_t)30000000, (uint64_t)40000000, (uint64_t)50000000, (uint64_t)60000000, (uint64_t)70000000, (uint64_t)80000000, (uint64_t)90000000, (uint64_t)100000000, (uint64_t)200000000, (uint64_t)300000000, (uint64_t)400000000, (uint64_t)500000000, (uint64_t)600000000, (uint64_t)700000000, (uint64_t)800000000, (uint64_t)900000000, (uint64_t)1000000000, (uint64_t)2000000000, (uint64_t)3000000000, (uint64_t)4000000000, (uint64_t)5000000000, (uint64_t)6000000000, (uint64_t)7000000000, (uint64_t)8000000000, (uint64_t)9000000000, (uint64_t)10000000000, (uint64_t)20000000000, (uint64_t)30000000000, (uint64_t)40000000000, (uint64_t)50000000000, (uint64_t)60000000000, (uint64_t)70000000000, (uint64_t)80000000000, (uint64_t)90000000000, (uint64_t)100000000000, (uint64_t)200000000000, (uint64_t)300000000000, (uint64_t)400000000000, (uint64_t)500000000000, (uint64_t)600000000000, (uint64_t)700000000000, (uint64_t)800000000000, (uint64_t)900000000000, (uint64_t)1000000000000, (uint64_t)2000000000000, (uint64_t)3000000000000, (uint64_t)4000000000000, (uint64_t)5000000000000, (uint64_t)6000000000000, (uint64_t)7000000000000, (uint64_t)8000000000000, (uint64_t)9000000000000, // 1 monero (uint64_t)10000000000000, (uint64_t)20000000000000, (uint64_t)30000000000000, (uint64_t)40000000000000, (uint64_t)50000000000000, (uint64_t)60000000000000, (uint64_t)70000000000000, (uint64_t)80000000000000, (uint64_t)90000000000000, (uint64_t)100000000000000, (uint64_t)200000000000000, (uint64_t)300000000000000, (uint64_t)400000000000000, (uint64_t)500000000000000, (uint64_t)600000000000000, (uint64_t)700000000000000, (uint64_t)800000000000000, (uint64_t)900000000000000, (uint64_t)1000000000000000, (uint64_t)2000000000000000, (uint64_t)3000000000000000, (uint64_t)4000000000000000, (uint64_t)5000000000000000, (uint64_t)6000000000000000, (uint64_t)7000000000000000, (uint64_t)8000000000000000, (uint64_t)9000000000000000, (uint64_t)10000000000000000, (uint64_t)20000000000000000, (uint64_t)30000000000000000, (uint64_t)40000000000000000, (uint64_t)50000000000000000, (uint64_t)60000000000000000, (uint64_t)70000000000000000, (uint64_t)80000000000000000, (uint64_t)90000000000000000, (uint64_t)100000000000000000, (uint64_t)200000000000000000, (uint64_t)300000000000000000, (uint64_t)400000000000000000, (uint64_t)500000000000000000, (uint64_t)600000000000000000, (uint64_t)700000000000000000, (uint64_t)800000000000000000, (uint64_t)900000000000000000, (uint64_t)1000000000000000000, (uint64_t)2000000000000000000, (uint64_t)3000000000000000000, (uint64_t)4000000000000000000, (uint64_t)5000000000000000000, (uint64_t)6000000000000000000, (uint64_t)7000000000000000000, (uint64_t)8000000000000000000, (uint64_t)9000000000000000000, // 1 meganero (uint64_t)10000000000000000000ull }; namespace cryptonote { //--------------------------------------------------------------- void get_transaction_prefix_hash(const transaction_prefix& tx, crypto::hash& h) { std::ostringstream s; binary_archive<true> a(s); ::serialization::serialize(a, const_cast<transaction_prefix&>(tx)); crypto::cn_fast_hash(s.str().data(), s.str().size(), h); } //--------------------------------------------------------------- crypto::hash get_transaction_prefix_hash(const transaction_prefix& tx) { crypto::hash h = null_hash; get_transaction_prefix_hash(tx, h); return h; } //--------------------------------------------------------------- bool parse_and_validate_tx_from_blob(const blobdata& tx_blob, transaction& tx) { std::stringstream ss; ss << tx_blob; binary_archive<false> ba(ss); bool r = ::serialization::serialize(ba, tx); CHECK_AND_ASSERT_MES(r, false, "Failed to parse transaction from blob"); return true; } //--------------------------------------------------------------- bool parse_and_validate_tx_from_blob(const blobdata& tx_blob, transaction& tx, crypto::hash& tx_hash, crypto::hash& tx_prefix_hash) { std::stringstream ss; ss << tx_blob; binary_archive<false> ba(ss); bool r = ::serialization::serialize(ba, tx); CHECK_AND_ASSERT_MES(r, false, "Failed to parse transaction from blob"); //TODO: validate tx crypto::cn_fast_hash(tx_blob.data(), tx_blob.size(), tx_hash); get_transaction_prefix_hash(tx, tx_prefix_hash); return true; } //--------------------------------------------------------------- bool construct_miner_tx(size_t height, size_t median_size, uint64_t already_generated_coins, size_t current_block_size, uint64_t fee, const account_public_address &miner_address, transaction& tx, const blobdata& extra_nonce, size_t max_outs, uint8_t hard_fork_version) { tx.vin.clear(); tx.vout.clear(); tx.extra.clear(); keypair txkey = keypair::generate(); add_tx_pub_key_to_extra(tx, txkey.pub); if(!extra_nonce.empty()) if(!add_extra_nonce_to_tx_extra(tx.extra, extra_nonce)) return false; txin_gen in; in.height = height; uint64_t block_reward; if(!get_block_reward(median_size, current_block_size, already_generated_coins, block_reward, hard_fork_version)) { LOG_PRINT_L0("Block is too big"); return false; } // from hard fork 2, we cut out the low significant digits. This makes the tx smaller, and // keeps the paid amount almost the same. The unpaid remainder gets pushed back to the // emission schedule if (hard_fork_version >= 2) { block_reward = block_reward - block_reward % ::config::BASE_REWARD_CLAMP_THRESHOLD; } #if defined(DEBUG_CREATE_BLOCK_TEMPLATE) LOG_PRINT_L1("Creating block template: reward " << block_reward << ", fee " << fee) #endif block_reward += fee; std::vector<uint64_t> out_amounts; decompose_amount_into_digits(block_reward, hard_fork_version >= 2 ? 0 : ::config::DEFAULT_DUST_THRESHOLD, [&out_amounts](uint64_t a_chunk) { out_amounts.push_back(a_chunk); }, [&out_amounts](uint64_t a_dust) { out_amounts.push_back(a_dust); }); CHECK_AND_ASSERT_MES(1 <= max_outs, false, "max_out must be non-zero"); while (max_outs < out_amounts.size()) { out_amounts[out_amounts.size() - 2] += out_amounts.back(); out_amounts.resize(out_amounts.size() - 1); } uint64_t summary_amounts = 0; for (size_t no = 0; no < out_amounts.size(); no++) { crypto::key_derivation derivation = AUTO_VAL_INIT(derivation);; crypto::public_key out_eph_public_key = AUTO_VAL_INIT(out_eph_public_key); bool r = crypto::generate_key_derivation(miner_address.m_view_public_key, txkey.sec, derivation); CHECK_AND_ASSERT_MES(r, false, "while creating outs: failed to generate_key_derivation(" << miner_address.m_view_public_key << ", " << txkey.sec << ")"); r = crypto::derive_public_key(derivation, no, miner_address.m_spend_public_key, out_eph_public_key); CHECK_AND_ASSERT_MES(r, false, "while creating outs: failed to derive_public_key(" << derivation << ", " << no << ", "<< miner_address.m_spend_public_key << ")"); txout_to_key tk; tk.key = out_eph_public_key; tx_out out; summary_amounts += out.amount = out_amounts[no]; out.target = tk; tx.vout.push_back(out); } CHECK_AND_ASSERT_MES(summary_amounts == block_reward, false, "Failed to construct miner tx, summary_amounts = " << summary_amounts << " not equal block_reward = " << block_reward); tx.version = CURRENT_TRANSACTION_VERSION; //lock tx.unlock_time = height + CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW; tx.vin.push_back(in); //LOG_PRINT("MINER_TX generated ok, block_reward=" << print_money(block_reward) << "(" << print_money(block_reward - fee) << "+" << print_money(fee) // << "), current_block_size=" << current_block_size << ", already_generated_coins=" << already_generated_coins << ", tx_id=" << get_transaction_hash(tx), LOG_LEVEL_2); return true; } //--------------------------------------------------------------- bool generate_key_image_helper(const account_keys& ack, const crypto::public_key& tx_public_key, size_t real_output_index, keypair& in_ephemeral, crypto::key_image& ki) { crypto::key_derivation recv_derivation = AUTO_VAL_INIT(recv_derivation); bool r = crypto::generate_key_derivation(tx_public_key, ack.m_view_secret_key, recv_derivation); CHECK_AND_ASSERT_MES(r, false, "key image helper: failed to generate_key_derivation(" << tx_public_key << ", " << ack.m_view_secret_key << ")"); r = crypto::derive_public_key(recv_derivation, real_output_index, ack.m_account_address.m_spend_public_key, in_ephemeral.pub); CHECK_AND_ASSERT_MES(r, false, "key image helper: failed to derive_public_key(" << recv_derivation << ", " << real_output_index << ", " << ack.m_account_address.m_spend_public_key << ")"); crypto::derive_secret_key(recv_derivation, real_output_index, ack.m_spend_secret_key, in_ephemeral.sec); crypto::generate_key_image(in_ephemeral.pub, in_ephemeral.sec, ki); return true; } //--------------------------------------------------------------- uint64_t power_integral(uint64_t a, uint64_t b) { if(b == 0) return 1; uint64_t total = a; for(uint64_t i = 1; i != b; i++) total *= a; return total; } //--------------------------------------------------------------- bool parse_amount(uint64_t& amount, const std::string& str_amount_) { std::string str_amount = str_amount_; boost::algorithm::trim(str_amount); size_t point_index = str_amount.find_first_of('.'); size_t fraction_size; if (std::string::npos != point_index) { fraction_size = str_amount.size() - point_index - 1; while (CRYPTONOTE_DISPLAY_DECIMAL_POINT < fraction_size && '0' == str_amount.back()) { str_amount.erase(str_amount.size() - 1, 1); --fraction_size; } if (CRYPTONOTE_DISPLAY_DECIMAL_POINT < fraction_size) return false; str_amount.erase(point_index, 1); } else { fraction_size = 0; } if (str_amount.empty()) return false; if (fraction_size < CRYPTONOTE_DISPLAY_DECIMAL_POINT) { str_amount.append(CRYPTONOTE_DISPLAY_DECIMAL_POINT - fraction_size, '0'); } return string_tools::get_xtype_from_string(amount, str_amount); } //--------------------------------------------------------------- bool get_tx_fee(const transaction& tx, uint64_t & fee) { uint64_t amount_in = 0; uint64_t amount_out = 0; BOOST_FOREACH(auto& in, tx.vin) { CHECK_AND_ASSERT_MES(in.type() == typeid(txin_to_key), 0, "unexpected type id in transaction"); amount_in += boost::get<txin_to_key>(in).amount; } BOOST_FOREACH(auto& o, tx.vout) amount_out += o.amount; CHECK_AND_ASSERT_MES(amount_in >= amount_out, false, "transaction spend (" <<amount_in << ") more than it has (" << amount_out << ")"); fee = amount_in - amount_out; return true; } //--------------------------------------------------------------- uint64_t get_tx_fee(const transaction& tx) { uint64_t r = 0; if(!get_tx_fee(tx, r)) return 0; return r; } //--------------------------------------------------------------- bool parse_tx_extra(const std::vector<uint8_t>& tx_extra, std::vector<tx_extra_field>& tx_extra_fields) { tx_extra_fields.clear(); if(tx_extra.empty()) return true; std::string extra_str(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size()); std::istringstream iss(extra_str); binary_archive<false> ar(iss); bool eof = false; while (!eof) { tx_extra_field field; bool r = ::do_serialize(ar, field); CHECK_AND_NO_ASSERT_MES(r, false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size()))); tx_extra_fields.push_back(field); std::ios_base::iostate state = iss.rdstate(); eof = (EOF == iss.peek()); iss.clear(state); } CHECK_AND_NO_ASSERT_MES(::serialization::check_stream_state(ar), false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size()))); return true; } //--------------------------------------------------------------- crypto::public_key get_tx_pub_key_from_extra(const std::vector<uint8_t>& tx_extra) { std::vector<tx_extra_field> tx_extra_fields; parse_tx_extra(tx_extra, tx_extra_fields); tx_extra_pub_key pub_key_field; if(!find_tx_extra_field_by_type(tx_extra_fields, pub_key_field)) return null_pkey; return pub_key_field.pub_key; } //--------------------------------------------------------------- crypto::public_key get_tx_pub_key_from_extra(const transaction& tx) { return get_tx_pub_key_from_extra(tx.extra); } //--------------------------------------------------------------- bool add_tx_pub_key_to_extra(transaction& tx, const crypto::public_key& tx_pub_key) { tx.extra.resize(tx.extra.size() + 1 + sizeof(crypto::public_key)); tx.extra[tx.extra.size() - 1 - sizeof(crypto::public_key)] = TX_EXTRA_TAG_PUBKEY; *reinterpret_cast<crypto::public_key*>(&tx.extra[tx.extra.size() - sizeof(crypto::public_key)]) = tx_pub_key; return true; } //--------------------------------------------------------------- bool add_extra_nonce_to_tx_extra(std::vector<uint8_t>& tx_extra, const blobdata& extra_nonce) { CHECK_AND_ASSERT_MES(extra_nonce.size() <= TX_EXTRA_NONCE_MAX_COUNT, false, "extra nonce could be 255 bytes max"); size_t start_pos = tx_extra.size(); tx_extra.resize(tx_extra.size() + 2 + extra_nonce.size()); //write tag tx_extra[start_pos] = TX_EXTRA_NONCE; //write len ++start_pos; tx_extra[start_pos] = static_cast<uint8_t>(extra_nonce.size()); //write data ++start_pos; memcpy(&tx_extra[start_pos], extra_nonce.data(), extra_nonce.size()); return true; } //--------------------------------------------------------------- bool remove_extra_nonce_tx_extra(std::vector<uint8_t>& tx_extra) { std::string extra_str(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size()); std::istringstream iss(extra_str); binary_archive<false> ar(iss); std::ostringstream oss; binary_archive<true> newar(oss); bool eof = false; while (!eof) { tx_extra_field field; bool r = ::do_serialize(ar, field); CHECK_AND_NO_ASSERT_MES(r, false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size()))); if (field.type() != typeid(tx_extra_nonce)) ::do_serialize(newar, field); std::ios_base::iostate state = iss.rdstate(); eof = (EOF == iss.peek()); iss.clear(state); } CHECK_AND_NO_ASSERT_MES(::serialization::check_stream_state(ar), false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size()))); tx_extra.clear(); std::string s = oss.str(); tx_extra.reserve(s.size()); std::copy(s.begin(), s.end(), std::back_inserter(tx_extra)); return true; } //--------------------------------------------------------------- void set_payment_id_to_tx_extra_nonce(blobdata& extra_nonce, const crypto::hash& payment_id) { extra_nonce.clear(); extra_nonce.push_back(TX_EXTRA_NONCE_PAYMENT_ID); const uint8_t* payment_id_ptr = reinterpret_cast<const uint8_t*>(&payment_id); std::copy(payment_id_ptr, payment_id_ptr + sizeof(payment_id), std::back_inserter(extra_nonce)); } //--------------------------------------------------------------- void set_encrypted_payment_id_to_tx_extra_nonce(blobdata& extra_nonce, const crypto::hash8& payment_id) { extra_nonce.clear(); extra_nonce.push_back(TX_EXTRA_NONCE_ENCRYPTED_PAYMENT_ID); const uint8_t* payment_id_ptr = reinterpret_cast<const uint8_t*>(&payment_id); std::copy(payment_id_ptr, payment_id_ptr + sizeof(payment_id), std::back_inserter(extra_nonce)); } //--------------------------------------------------------------- bool get_payment_id_from_tx_extra_nonce(const blobdata& extra_nonce, crypto::hash& payment_id) { if(sizeof(crypto::hash) + 1 != extra_nonce.size()) return false; if(TX_EXTRA_NONCE_PAYMENT_ID != extra_nonce[0]) return false; payment_id = *reinterpret_cast<const crypto::hash*>(extra_nonce.data() + 1); return true; } //--------------------------------------------------------------- bool get_encrypted_payment_id_from_tx_extra_nonce(const blobdata& extra_nonce, crypto::hash8& payment_id) { if(sizeof(crypto::hash8) + 1 != extra_nonce.size()) return false; if (TX_EXTRA_NONCE_ENCRYPTED_PAYMENT_ID != extra_nonce[0]) return false; payment_id = *reinterpret_cast<const crypto::hash8*>(extra_nonce.data() + 1); return true; } //--------------------------------------------------------------- crypto::public_key get_destination_view_key_pub(const std::vector<tx_destination_entry> &destinations, const account_keys &sender_keys) { if (destinations.empty()) return null_pkey; for (size_t n = 1; n < destinations.size(); ++n) { if (!memcmp(&destinations[n].addr, &sender_keys.m_account_address, sizeof(destinations[0].addr))) continue; if (memcmp(&destinations[n].addr, &destinations[0].addr, sizeof(destinations[0].addr))) return null_pkey; } return destinations[0].addr.m_view_public_key; } //--------------------------------------------------------------- bool encrypt_payment_id(crypto::hash8 &payment_id, const crypto::public_key &public_key, const crypto::secret_key &secret_key) { crypto::key_derivation derivation; crypto::hash hash; char data[33]; /* A hash, and an extra byte */ if (!generate_key_derivation(public_key, secret_key, derivation)) return false; memcpy(data, &derivation, 32); data[32] = ENCRYPTED_PAYMENT_ID_TAIL; cn_fast_hash(data, 33, hash); for (size_t b = 0; b < 8; ++b) payment_id.data[b] ^= hash.data[b]; return true; } bool decrypt_payment_id(crypto::hash8 &payment_id, const crypto::public_key &public_key, const crypto::secret_key &secret_key) { // Encryption and decryption are the same operation (xor with a key) return encrypt_payment_id(payment_id, public_key, secret_key); } //--------------------------------------------------------------- bool construct_tx_and_get_tx_key(const account_keys& sender_account_keys, const std::vector<tx_source_entry>& sources, const std::vector<tx_destination_entry>& destinations, std::vector<uint8_t> extra, transaction& tx, uint64_t unlock_time, crypto::secret_key &tx_key) { tx.vin.clear(); tx.vout.clear(); tx.signatures.clear(); tx.version = CURRENT_TRANSACTION_VERSION; tx.unlock_time = unlock_time; tx.extra = extra; keypair txkey = keypair::generate(); add_tx_pub_key_to_extra(tx, txkey.pub); tx_key = txkey.sec; // if we have a stealth payment id, find it and encrypt it with the tx key now std::vector<tx_extra_field> tx_extra_fields; if (parse_tx_extra(tx.extra, tx_extra_fields)) { tx_extra_nonce extra_nonce; if (find_tx_extra_field_by_type(tx_extra_fields, extra_nonce)) { crypto::hash8 payment_id = null_hash8; if (get_encrypted_payment_id_from_tx_extra_nonce(extra_nonce.nonce, payment_id)) { LOG_PRINT_L2("Encrypting payment id " << payment_id); crypto::public_key view_key_pub = get_destination_view_key_pub(destinations, sender_account_keys); if (view_key_pub == null_pkey) { LOG_ERROR("Destinations have to have exactly one output to support encrypted payment ids"); return false; } if (!encrypt_payment_id(payment_id, view_key_pub, txkey.sec)) { LOG_ERROR("Failed to encrypt payment id"); return false; } std::string extra_nonce; set_encrypted_payment_id_to_tx_extra_nonce(extra_nonce, payment_id); remove_extra_nonce_tx_extra(tx.extra); if (!add_extra_nonce_to_tx_extra(tx.extra, extra_nonce)) { LOG_ERROR("Failed to add encrypted payment id to tx extra"); return false; } LOG_PRINT_L1("Encrypted payment ID: " << payment_id); } } } else { LOG_ERROR("Failed to parse tx extra"); return false; } struct input_generation_context_data { keypair in_ephemeral; }; std::vector<input_generation_context_data> in_contexts; uint64_t summary_inputs_money = 0; //fill inputs BOOST_FOREACH(const tx_source_entry& src_entr, sources) { if(src_entr.real_output >= src_entr.outputs.size()) { LOG_ERROR("real_output index (" << src_entr.real_output << ")bigger than output_keys.size()=" << src_entr.outputs.size()); return false; } summary_inputs_money += src_entr.amount; //key_derivation recv_derivation; in_contexts.push_back(input_generation_context_data()); keypair& in_ephemeral = in_contexts.back().in_ephemeral; crypto::key_image img; if(!generate_key_image_helper(sender_account_keys, src_entr.real_out_tx_key, src_entr.real_output_in_tx_index, in_ephemeral, img)) return false; //check that derivated key is equal with real output key if( !(in_ephemeral.pub == src_entr.outputs[src_entr.real_output].second) ) { LOG_ERROR("derived public key missmatch with output public key! "<< ENDL << "derived_key:" << string_tools::pod_to_hex(in_ephemeral.pub) << ENDL << "real output_public_key:" << string_tools::pod_to_hex(src_entr.outputs[src_entr.real_output].second) ); return false; } //put key image into tx input txin_to_key input_to_key; input_to_key.amount = src_entr.amount; input_to_key.k_image = img; //fill outputs array and use relative offsets BOOST_FOREACH(const tx_source_entry::output_entry& out_entry, src_entr.outputs) input_to_key.key_offsets.push_back(out_entry.first); input_to_key.key_offsets = absolute_output_offsets_to_relative(input_to_key.key_offsets); tx.vin.push_back(input_to_key); } // "Shuffle" outs std::vector<tx_destination_entry> shuffled_dsts(destinations); std::sort(shuffled_dsts.begin(), shuffled_dsts.end(), [](const tx_destination_entry& de1, const tx_destination_entry& de2) { return de1.amount < de2.amount; } ); uint64_t summary_outs_money = 0; //fill outputs size_t output_index = 0; BOOST_FOREACH(const tx_destination_entry& dst_entr, shuffled_dsts) { CHECK_AND_ASSERT_MES(dst_entr.amount > 0, false, "Destination with wrong amount: " << dst_entr.amount); crypto::key_derivation derivation; crypto::public_key out_eph_public_key; bool r = crypto::generate_key_derivation(dst_entr.addr.m_view_public_key, txkey.sec, derivation); CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to generate_key_derivation(" << dst_entr.addr.m_view_public_key << ", " << txkey.sec << ")"); r = crypto::derive_public_key(derivation, output_index, dst_entr.addr.m_spend_public_key, out_eph_public_key); CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to derive_public_key(" << derivation << ", " << output_index << ", "<< dst_entr.addr.m_spend_public_key << ")"); tx_out out; out.amount = dst_entr.amount; txout_to_key tk; tk.key = out_eph_public_key; out.target = tk; tx.vout.push_back(out); output_index++; summary_outs_money += dst_entr.amount; } //check money if(summary_outs_money > summary_inputs_money ) { LOG_ERROR("Transaction inputs money ("<< summary_inputs_money << ") less than outputs money (" << summary_outs_money << ")"); return false; } //generate ring signatures crypto::hash tx_prefix_hash; get_transaction_prefix_hash(tx, tx_prefix_hash); std::stringstream ss_ring_s; size_t i = 0; BOOST_FOREACH(const tx_source_entry& src_entr, sources) { ss_ring_s << "pub_keys:" << ENDL; std::vector<const crypto::public_key*> keys_ptrs; BOOST_FOREACH(const tx_source_entry::output_entry& o, src_entr.outputs) { keys_ptrs.push_back(&o.second); ss_ring_s << o.second << ENDL; } tx.signatures.push_back(std::vector<crypto::signature>()); std::vector<crypto::signature>& sigs = tx.signatures.back(); sigs.resize(src_entr.outputs.size()); crypto::generate_ring_signature(tx_prefix_hash, boost::get<txin_to_key>(tx.vin[i]).k_image, keys_ptrs, in_contexts[i].in_ephemeral.sec, src_entr.real_output, sigs.data()); ss_ring_s << "signatures:" << ENDL; std::for_each(sigs.begin(), sigs.end(), [&](const crypto::signature& s){ss_ring_s << s << ENDL;}); ss_ring_s << "prefix_hash:" << tx_prefix_hash << ENDL << "in_ephemeral_key: " << in_contexts[i].in_ephemeral.sec << ENDL << "real_output: " << src_entr.real_output; i++; } LOG_PRINT2("construct_tx.log", "transaction_created: " << get_transaction_hash(tx) << ENDL << obj_to_json_str(tx) << ENDL << ss_ring_s.str() , LOG_LEVEL_3); return true; } //--------------------------------------------------------------- bool construct_tx(const account_keys& sender_account_keys, const std::vector<tx_source_entry>& sources, const std::vector<tx_destination_entry>& destinations, std::vector<uint8_t> extra, transaction& tx, uint64_t unlock_time) { crypto::secret_key tx_key; return construct_tx_and_get_tx_key(sender_account_keys, sources, destinations, extra, tx, unlock_time, tx_key); } //--------------------------------------------------------------- bool get_inputs_money_amount(const transaction& tx, uint64_t& money) { money = 0; BOOST_FOREACH(const auto& in, tx.vin) { CHECKED_GET_SPECIFIC_VARIANT(in, const txin_to_key, tokey_in, false); money += tokey_in.amount; } return true; } //--------------------------------------------------------------- uint64_t get_block_height(const block& b) { CHECK_AND_ASSERT_MES(b.miner_tx.vin.size() == 1, 0, "wrong miner tx in block: " << get_block_hash(b) << ", b.miner_tx.vin.size() != 1"); CHECKED_GET_SPECIFIC_VARIANT(b.miner_tx.vin[0], const txin_gen, coinbase_in, 0); return coinbase_in.height; } //--------------------------------------------------------------- bool check_inputs_types_supported(const transaction& tx) { BOOST_FOREACH(const auto& in, tx.vin) { CHECK_AND_ASSERT_MES(in.type() == typeid(txin_to_key), false, "wrong variant type: " << in.type().name() << ", expected " << typeid(txin_to_key).name() << ", in transaction id=" << get_transaction_hash(tx)); } return true; } //----------------------------------------------------------------------------------------------- bool check_outs_valid(const transaction& tx) { BOOST_FOREACH(const tx_out& out, tx.vout) { CHECK_AND_ASSERT_MES(out.target.type() == typeid(txout_to_key), false, "wrong variant type: " << out.target.type().name() << ", expected " << typeid(txout_to_key).name() << ", in transaction id=" << get_transaction_hash(tx)); CHECK_AND_NO_ASSERT_MES(0 < out.amount, false, "zero amount ouput in transaction id=" << get_transaction_hash(tx)); if(!check_key(boost::get<txout_to_key>(out.target).key)) return false; } return true; } //----------------------------------------------------------------------------------------------- bool check_money_overflow(const transaction& tx) { return check_inputs_overflow(tx) && check_outs_overflow(tx); } //--------------------------------------------------------------- bool check_inputs_overflow(const transaction& tx) { uint64_t money = 0; BOOST_FOREACH(const auto& in, tx.vin) { CHECKED_GET_SPECIFIC_VARIANT(in, const txin_to_key, tokey_in, false); if(money > tokey_in.amount + money) return false; money += tokey_in.amount; } return true; } //--------------------------------------------------------------- bool check_outs_overflow(const transaction& tx) { uint64_t money = 0; BOOST_FOREACH(const auto& o, tx.vout) { if(money > o.amount + money) return false; money += o.amount; } return true; } //--------------------------------------------------------------- uint64_t get_outs_money_amount(const transaction& tx) { uint64_t outputs_amount = 0; BOOST_FOREACH(const auto& o, tx.vout) outputs_amount += o.amount; return outputs_amount; } //--------------------------------------------------------------- std::string short_hash_str(const crypto::hash& h) { std::string res = string_tools::pod_to_hex(h); CHECK_AND_ASSERT_MES(res.size() == 64, res, "wrong hash256 with string_tools::pod_to_hex conversion"); auto erased_pos = res.erase(8, 48); res.insert(8, "...."); return res; } //--------------------------------------------------------------- bool is_out_to_acc(const account_keys& acc, const txout_to_key& out_key, const crypto::public_key& tx_pub_key, size_t output_index) { crypto::key_derivation derivation; generate_key_derivation(tx_pub_key, acc.m_view_secret_key, derivation); crypto::public_key pk; derive_public_key(derivation, output_index, acc.m_account_address.m_spend_public_key, pk); return pk == out_key.key; } //--------------------------------------------------------------- bool lookup_acc_outs(const account_keys& acc, const transaction& tx, std::vector<size_t>& outs, uint64_t& money_transfered) { crypto::public_key tx_pub_key = get_tx_pub_key_from_extra(tx); if(null_pkey == tx_pub_key) return false; return lookup_acc_outs(acc, tx, tx_pub_key, outs, money_transfered); } //--------------------------------------------------------------- bool lookup_acc_outs(const account_keys& acc, const transaction& tx, const crypto::public_key& tx_pub_key, std::vector<size_t>& outs, uint64_t& money_transfered) { money_transfered = 0; size_t i = 0; BOOST_FOREACH(const tx_out& o, tx.vout) { CHECK_AND_ASSERT_MES(o.target.type() == typeid(txout_to_key), false, "wrong type id in transaction out" ); if(is_out_to_acc(acc, boost::get<txout_to_key>(o.target), tx_pub_key, i)) { outs.push_back(i); money_transfered += o.amount; } i++; } return true; } //--------------------------------------------------------------- void get_blob_hash(const blobdata& blob, crypto::hash& res) { cn_fast_hash(blob.data(), blob.size(), res); } //--------------------------------------------------------------- std::string print_money(uint64_t amount) { std::string s = std::to_string(amount); if(s.size() < CRYPTONOTE_DISPLAY_DECIMAL_POINT+1) { s.insert(0, CRYPTONOTE_DISPLAY_DECIMAL_POINT+1 - s.size(), '0'); } s.insert(s.size() - CRYPTONOTE_DISPLAY_DECIMAL_POINT, "."); return s; } //--------------------------------------------------------------- crypto::hash get_blob_hash(const blobdata& blob) { crypto::hash h = null_hash; get_blob_hash(blob, h); return h; } //--------------------------------------------------------------- crypto::hash get_transaction_hash(const transaction& t) { crypto::hash h = null_hash; size_t blob_size = 0; get_object_hash(t, h, blob_size); return h; } //--------------------------------------------------------------- bool get_transaction_hash(const transaction& t, crypto::hash& res) { size_t blob_size = 0; return get_object_hash(t, res, blob_size); } //--------------------------------------------------------------- bool get_transaction_hash(const transaction& t, crypto::hash& res, size_t& blob_size) { return get_object_hash(t, res, blob_size); } //--------------------------------------------------------------- blobdata get_block_hashing_blob(const block& b) { blobdata blob = t_serializable_object_to_blob(static_cast<block_header>(b)); crypto::hash tree_root_hash = get_tx_tree_hash(b); blob.append(reinterpret_cast<const char*>(&tree_root_hash), sizeof(tree_root_hash)); blob.append(tools::get_varint_data(b.tx_hashes.size()+1)); return blob; } //--------------------------------------------------------------- bool get_block_hash(const block& b, crypto::hash& res) { // EXCEPTION FOR BLOCK 202612 const std::string correct_blob_hash_202612 = "3a8a2b3a29b50fc86ff73dd087ea43c6f0d6b8f936c849194d5c84c737903966"; const std::string existing_block_id_202612 = "bbd604d2ba11ba27935e006ed39c9bfdd99b76bf4a50654bc1e1e61217962698"; crypto::hash block_blob_hash = get_blob_hash(block_to_blob(b)); if (string_tools::pod_to_hex(block_blob_hash) == correct_blob_hash_202612) { string_tools::hex_to_pod(existing_block_id_202612, res); return true; } bool hash_result = get_object_hash(get_block_hashing_blob(b), res); if (hash_result) { // make sure that we aren't looking at a block with the 202612 block id but not the correct blobdata if (string_tools::pod_to_hex(res) == existing_block_id_202612) { LOG_ERROR("Block with block id for 202612 but incorrect block blob hash found!"); res = null_hash; return false; } } return hash_result; } //--------------------------------------------------------------- crypto::hash get_block_hash(const block& b) { crypto::hash p = null_hash; get_block_hash(b, p); return p; } //--------------------------------------------------------------- bool generate_genesis_block( block& bl , std::string const & genesis_tx , uint32_t nonce ) { //genesis block bl = boost::value_initialized<block>(); account_public_address ac = boost::value_initialized<account_public_address>(); std::vector<size_t> sz; construct_miner_tx(0, 0, 0, 0, 0, ac, bl.miner_tx); // zero fee in genesis blobdata txb = tx_to_blob(bl.miner_tx); std::string hex_tx_represent = string_tools::buff_to_hex_nodelimer(txb); std::string genesis_coinbase_tx_hex = config::GENESIS_TX; blobdata tx_bl; string_tools::parse_hexstr_to_binbuff(genesis_coinbase_tx_hex, tx_bl); bool r = parse_and_validate_tx_from_blob(tx_bl, bl.miner_tx); CHECK_AND_ASSERT_MES(r, false, "failed to parse coinbase tx from hard coded blob"); bl.major_version = CURRENT_BLOCK_MAJOR_VERSION; bl.minor_version = CURRENT_BLOCK_MINOR_VERSION; bl.timestamp = 0; bl.nonce = nonce; miner::find_nonce_for_given_block(bl, 1, 0); return true; } //--------------------------------------------------------------- bool get_block_longhash(const block& b, crypto::hash& res, uint64_t height) { // block 202612 bug workaround const std::string longhash_202612 = "84f64766475d51837ac9efbef1926486e58563c95a19fef4aec3254f03000000"; if (height == 202612) { string_tools::hex_to_pod(longhash_202612, res); return true; } block b_local = b; //workaround to avoid const errors with do_serialize blobdata bd = get_block_hashing_blob(b); crypto::cn_slow_hash(bd.data(), bd.size(), res); return true; } //--------------------------------------------------------------- std::vector<uint64_t> relative_output_offsets_to_absolute(const std::vector<uint64_t>& off) { std::vector<uint64_t> res = off; for(size_t i = 1; i < res.size(); i++) res[i] += res[i-1]; return res; } //--------------------------------------------------------------- std::vector<uint64_t> absolute_output_offsets_to_relative(const std::vector<uint64_t>& off) { std::vector<uint64_t> res = off; if(!off.size()) return res; std::sort(res.begin(), res.end());//just to be sure, actually it is already should be sorted for(size_t i = res.size()-1; i != 0; i--) res[i] -= res[i-1]; return res; } //--------------------------------------------------------------- crypto::hash get_block_longhash(const block& b, uint64_t height) { crypto::hash p = null_hash; get_block_longhash(b, p, height); return p; } //--------------------------------------------------------------- bool parse_and_validate_block_from_blob(const blobdata& b_blob, block& b) { std::stringstream ss; ss << b_blob; binary_archive<false> ba(ss); bool r = ::serialization::serialize(ba, b); CHECK_AND_ASSERT_MES(r, false, "Failed to parse block from blob"); return true; } //--------------------------------------------------------------- blobdata block_to_blob(const block& b) { return t_serializable_object_to_blob(b); } //--------------------------------------------------------------- bool block_to_blob(const block& b, blobdata& b_blob) { return t_serializable_object_to_blob(b, b_blob); } //--------------------------------------------------------------- blobdata tx_to_blob(const transaction& tx) { return t_serializable_object_to_blob(tx); } //--------------------------------------------------------------- bool tx_to_blob(const transaction& tx, blobdata& b_blob) { return t_serializable_object_to_blob(tx, b_blob); } //--------------------------------------------------------------- void get_tx_tree_hash(const std::vector<crypto::hash>& tx_hashes, crypto::hash& h) { tree_hash(tx_hashes.data(), tx_hashes.size(), h); } //--------------------------------------------------------------- crypto::hash get_tx_tree_hash(const std::vector<crypto::hash>& tx_hashes) { crypto::hash h = null_hash; get_tx_tree_hash(tx_hashes, h); return h; } //--------------------------------------------------------------- crypto::hash get_tx_tree_hash(const block& b) { std::vector<crypto::hash> txs_ids; crypto::hash h = null_hash; size_t bl_sz = 0; get_transaction_hash(b.miner_tx, h, bl_sz); txs_ids.push_back(h); BOOST_FOREACH(auto& th, b.tx_hashes) txs_ids.push_back(th); return get_tx_tree_hash(txs_ids); } //--------------------------------------------------------------- bool is_valid_decomposed_amount(uint64_t amount) { const uint64_t *begin = valid_decomposed_outputs; const uint64_t *end = valid_decomposed_outputs + sizeof(valid_decomposed_outputs) / sizeof(valid_decomposed_outputs[0]); return std::binary_search(begin, end, amount); } //--------------------------------------------------------------- }