// Copyright (c) 2014-2023, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers #include #include #include #include #include "hash-ops.h" /*** * Round to power of two, for count>=3 and for count being not too large (as reasonable for tree hash calculations) */ size_t tree_hash_cnt(size_t count) { // This algo has some bad history but all we are doing is 1 << floor(log2(count)) // There are _many_ ways to do log2, for some reason the one selected was the most obscure one, // and fixing it made it even more obscure. // // Iterative method implemented below aims for clarity over speed, if performance is needed // then my advice is to use the BSR instruction on x86 // // All the paranoid asserts have been removed since it is trivial to mathematically prove that // the return will always be a power of 2. // Problem space has been defined as 3 <= count <= 2^28. Of course quarter of a billion transactions // is not a sane upper limit for a block, so there will be tighter limits in other parts of the code assert( count >= 3 ); // cases for 0,1,2 are handled elsewhere assert( count <= 0x10000000 ); // sanity limit to 2^28, MSB=1 will cause an inf loop size_t pow = 2; while(pow < count) pow <<= 1; return pow >> 1; } void tree_hash(const char (*hashes)[HASH_SIZE], size_t count, char *root_hash) { // The blockchain block at height 202612 https://moneroblocks.info/block/202612 // contained 514 transactions, that triggered bad calculation of variable "cnt" in the original version of this function // as from CryptoNote code. // // This bug applies to all CN altcoins. // // Mathematical bug here was first published on 14:45:34 (GMT+2) 2014-09-04 by Rafal Freeman // https://github.com/rfree2monero/bitmonero/commit/b417abfb7a297d09f1bbb6de29030f8de9952ac8 // and soon also applied to CryptoNote (15:10 GMT+2), and BoolBerry used not fully correct work around: // the work around of sizeof(size_t)*8 or <<3 as used before in 2 coins and in BBL later was blocking // exploitation on normal platforms, how ever we strongly recommend the following fix because it removes // mistake in mathematical formula. assert(count > 0); if (count == 1) { memcpy(root_hash, hashes, HASH_SIZE); } else if (count == 2) { cn_fast_hash(hashes, 2 * HASH_SIZE, root_hash); } else { size_t i, j; size_t cnt = tree_hash_cnt( count ); char *ints = calloc(cnt, HASH_SIZE); // zero out as extra protection for using uninitialized mem assert(ints); memcpy(ints, hashes, (2 * cnt - count) * HASH_SIZE); for (i = 2 * cnt - count, j = 2 * cnt - count; j < cnt; i += 2, ++j) { cn_fast_hash(hashes[i], 64, ints + j * HASH_SIZE); } assert(i == count); while (cnt > 2) { cnt >>= 1; for (i = 0, j = 0; j < cnt; i += 2, ++j) { cn_fast_hash(ints + i * HASH_SIZE, 64, ints + j * HASH_SIZE); } } cn_fast_hash(ints, 64, root_hash); free(ints); } } bool tree_path(size_t count, size_t idx, uint32_t *path) { if (count == 0) return false; if (count == 1) { *path = 0; } else if (count == 2) { *path = idx == 0 ? 0 : 1; } else { size_t i, j; *path = 0; size_t cnt = tree_hash_cnt( count ); for (i = 2 * cnt - count, j = 2 * cnt - count; j < cnt; i += 2, ++j) { if (idx == i || idx == i+1) { *path = (*path << 1) | (idx == i ? 0 : 1); idx = j; } } assert(i == count); while (cnt > 2) { cnt >>= 1; for (i = 0, j = 0; j < cnt; i += 2, ++j) { if (idx == i || idx == i + 1) { *path = (*path << 1) | (idx == i ? 0 : 1); idx = j; } } } if (idx == 0 || idx == 1) { *path = (*path << 1) | (idx == 0 ? 0 : 1); idx = 0; } } return true; } bool tree_branch(const char (*hashes)[HASH_SIZE], size_t count, const char *hash, char (*branch)[HASH_SIZE], size_t *depth, uint32_t *path) { size_t idx; if (count == 0) return false; for (idx = 0; idx < count; ++idx) if (!memcmp(hash, hashes[idx], HASH_SIZE)) break; if (idx == count) return false; assert(count > 0); if (count == 1) { *depth = 0; *path = 0; } else if (count == 2) { *depth = 1; *path = idx == 0 ? 0 : 1; memcpy(branch[0], hashes[idx ^ 1], HASH_SIZE); } else { size_t i, j; *depth = 0; *path = 0; size_t cnt = tree_hash_cnt( count ); char *ints = calloc(cnt, HASH_SIZE); // zero out as extra protection for using uninitialized mem assert(ints); memcpy(ints, hashes, (2 * cnt - count) * HASH_SIZE); for (i = 2 * cnt - count, j = 2 * cnt - count; j < cnt; i += 2, ++j) { if (idx == i || idx == i+1) { memcpy(branch[*depth], hashes[idx == i ? i + 1 : i], HASH_SIZE); ++*depth; *path = (*path << 1) | (idx == i ? 0 : 1); idx = j; } cn_fast_hash(hashes[i], 64, ints + j * HASH_SIZE); } assert(i == count); while (cnt > 2) { cnt >>= 1; for (i = 0, j = 0; j < cnt; i += 2, ++j) { if (idx == i || idx == i + 1) { memcpy(branch[*depth], ints + (idx == i ? i + 1 : i) * HASH_SIZE, HASH_SIZE); ++*depth; *path = (*path << 1) | (idx == i ? 0 : 1); idx = j; } cn_fast_hash(ints + i * HASH_SIZE, 64, ints + j * HASH_SIZE); } } if (idx == 0 || idx == 1) { memcpy(branch[*depth], ints + (idx == 0 ? 1 : 0) * HASH_SIZE, HASH_SIZE); ++*depth; *path = (*path << 1) | (idx == 0 ? 0 : 1); idx = 0; } free(ints); } return true; } bool tree_branch_hash(const char hash[HASH_SIZE], const char (*branch)[HASH_SIZE], size_t depth, uint32_t path, char root[HASH_SIZE]) { size_t d; char partial[HASH_SIZE]; memcpy(partial, hash, HASH_SIZE); for (d = 0; d < depth; ++d) { char buffer[2 * HASH_SIZE]; if ((path >> (depth - d - 1)) & 1) { memcpy(buffer, branch[d], HASH_SIZE); memcpy(buffer + HASH_SIZE, partial, HASH_SIZE); } else { memcpy(buffer, partial, HASH_SIZE); memcpy(buffer + HASH_SIZE, branch[d], HASH_SIZE); } cn_fast_hash(buffer, 2 * HASH_SIZE, partial); } memcpy(root, partial, HASH_SIZE); return true; } bool is_branch_in_tree(const char hash[HASH_SIZE], const char root[HASH_SIZE], const char (*branch)[HASH_SIZE], size_t depth, uint32_t path) { char res[HASH_SIZE]; if (!tree_branch_hash(hash, branch, depth, path, res)) return false; return memcmp(res, root, HASH_SIZE) == 0; }