// Copyright (c) 2014-2018, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers #include #include #include #include #include #include #include "common/int-util.h" #include "hash-ops.h" #include "oaes_lib.h" #include "variant2_int_sqrt.h" #define MEMORY (1 << 21) // 2MB scratchpad #define ITER (1 << 20) #define AES_BLOCK_SIZE 16 #define AES_KEY_SIZE 32 #define INIT_SIZE_BLK 8 #define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE) extern void aesb_single_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey); extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey); #define VARIANT1_1(p) \ do if (variant == 1) \ { \ const uint8_t tmp = ((const uint8_t*)(p))[11]; \ static const uint32_t table = 0x75310; \ const uint8_t index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; \ ((uint8_t*)(p))[11] = tmp ^ ((table >> index) & 0x30); \ } while(0) #define VARIANT1_2(p) \ do if (variant == 1) \ { \ xor64(p, tweak1_2); \ } while(0) #define VARIANT1_CHECK() \ do if (length < 43) \ { \ fprintf(stderr, "Cryptonight variant 1 needs at least 43 bytes of data"); \ _exit(1); \ } while(0) #define NONCE_POINTER (((const uint8_t*)data)+35) #define VARIANT1_PORTABLE_INIT() \ uint8_t tweak1_2[8]; \ do if (variant == 1) \ { \ VARIANT1_CHECK(); \ memcpy(&tweak1_2, &state.hs.b[192], sizeof(tweak1_2)); \ xor64(tweak1_2, NONCE_POINTER); \ } while(0) #define VARIANT1_INIT64() \ if (variant == 1) \ { \ VARIANT1_CHECK(); \ } \ const uint64_t tweak1_2 = (variant == 1) ? (state.hs.w[24] ^ (*((const uint64_t*)NONCE_POINTER))) : 0 #define VARIANT2_INIT64() \ uint64_t division_result = 0; \ uint64_t sqrt_result = 0; \ do if (variant >= 2) \ { \ U64(b)[2] = state.hs.w[8] ^ state.hs.w[10]; \ U64(b)[3] = state.hs.w[9] ^ state.hs.w[11]; \ division_result = state.hs.w[12]; \ sqrt_result = state.hs.w[13]; \ } while (0) #define VARIANT2_PORTABLE_INIT() \ uint64_t division_result = 0; \ uint64_t sqrt_result = 0; \ do if (variant >= 2) \ { \ memcpy(b + AES_BLOCK_SIZE, state.hs.b + 64, AES_BLOCK_SIZE); \ xor64(b + AES_BLOCK_SIZE, state.hs.b + 80); \ xor64(b + AES_BLOCK_SIZE + 8, state.hs.b + 88); \ division_result = state.hs.w[12]; \ sqrt_result = state.hs.w[13]; \ } while (0) #define VARIANT2_SHUFFLE_ADD_SSE2(base_ptr, offset) \ do if (variant >= 2) \ { \ const __m128i chunk1 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10))); \ const __m128i chunk2 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20))); \ const __m128i chunk3 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30))); \ _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10)), _mm_add_epi64(chunk3, _b1)); \ _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20)), _mm_add_epi64(chunk1, _b)); \ _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30)), _mm_add_epi64(chunk2, _a)); \ } while (0) #define VARIANT2_SHUFFLE_ADD_NEON(base_ptr, offset) \ do if (variant >= 2) \ { \ const uint64x2_t chunk1 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x10))); \ const uint64x2_t chunk2 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x20))); \ const uint64x2_t chunk3 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x30))); \ vst1q_u64(U64((base_ptr) + ((offset) ^ 0x10)), vaddq_u64(chunk3, vreinterpretq_u64_u8(_b1))); \ vst1q_u64(U64((base_ptr) + ((offset) ^ 0x20)), vaddq_u64(chunk1, vreinterpretq_u64_u8(_b))); \ vst1q_u64(U64((base_ptr) + ((offset) ^ 0x30)), vaddq_u64(chunk2, vreinterpretq_u64_u8(_a))); \ } while (0) #define VARIANT2_PORTABLE_SHUFFLE_ADD(base_ptr, offset) \ do if (variant >= 2) \ { \ uint64_t* chunk1 = U64((base_ptr) + ((offset) ^ 0x10)); \ uint64_t* chunk2 = U64((base_ptr) + ((offset) ^ 0x20)); \ uint64_t* chunk3 = U64((base_ptr) + ((offset) ^ 0x30)); \ \ const uint64_t chunk1_old[2] = { chunk1[0], chunk1[1] }; \ \ uint64_t b1[2]; \ memcpy(b1, b + 16, 16); \ chunk1[0] = chunk3[0] + b1[0]; \ chunk1[1] = chunk3[1] + b1[1]; \ \ uint64_t a0[2]; \ memcpy(a0, a, 16); \ chunk3[0] = chunk2[0] + a0[0]; \ chunk3[1] = chunk2[1] + a0[1]; \ \ uint64_t b0[2]; \ memcpy(b0, b, 16); \ chunk2[0] = chunk1_old[0] + b0[0]; \ chunk2[1] = chunk1_old[1] + b0[1]; \ } while (0) #define VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr) \ ((uint64_t*)(b))[0] ^= division_result ^ (sqrt_result << 32); \ { \ const uint64_t dividend = ((uint64_t*)(ptr))[1]; \ const uint32_t divisor = (((uint64_t*)(ptr))[0] + (uint32_t)(sqrt_result << 1)) | 0x80000001UL; \ division_result = ((uint32_t)(dividend / divisor)) + \ (((uint64_t)(dividend % divisor)) << 32); \ } \ const uint64_t sqrt_input = ((uint64_t*)(ptr))[0] + division_result #define VARIANT2_INTEGER_MATH_SSE2(b, ptr) \ do if (variant >= 2) \ { \ VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \ VARIANT2_INTEGER_MATH_SQRT_STEP_SSE2(); \ VARIANT2_INTEGER_MATH_SQRT_FIXUP(sqrt_result); \ } while(0) #if defined DBL_MANT_DIG && (DBL_MANT_DIG >= 50) // double precision floating point type has enough bits of precision on current platform #define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \ do if (variant >= 2) \ { \ VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \ VARIANT2_INTEGER_MATH_SQRT_STEP_FP64(); \ VARIANT2_INTEGER_MATH_SQRT_FIXUP(sqrt_result); \ } while (0) #else // double precision floating point type is not good enough on current platform // fall back to the reference code (integer only) #define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \ do if (variant >= 2) \ { \ VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \ VARIANT2_INTEGER_MATH_SQRT_STEP_REF(); \ } while (0) #endif #define VARIANT2_2_PORTABLE() \ if (variant >= 2) { \ xor_blocks(long_state + (j ^ 0x10), d); \ xor_blocks(d, long_state + (j ^ 0x20)); \ } #define VARIANT2_2() \ do if (variant >= 2) \ { \ *U64(hp_state + (j ^ 0x10)) ^= hi; \ *(U64(hp_state + (j ^ 0x10)) + 1) ^= lo; \ hi ^= *U64(hp_state + (j ^ 0x20)); \ lo ^= *(U64(hp_state + (j ^ 0x20)) + 1); \ } while (0) #if !defined NO_AES && (defined(__x86_64__) || (defined(_MSC_VER) && defined(_WIN64))) // Optimised code below, uses x86-specific intrinsics, SSE2, AES-NI // Fall back to more portable code is down at the bottom #include #if defined(_MSC_VER) #include #include #define STATIC #define INLINE __inline #if !defined(RDATA_ALIGN16) #define RDATA_ALIGN16 __declspec(align(16)) #endif #elif defined(__MINGW32__) #include #include #define STATIC static #define INLINE inline #if !defined(RDATA_ALIGN16) #define RDATA_ALIGN16 __attribute__ ((aligned(16))) #endif #else #include #include #define STATIC static #define INLINE inline #if !defined(RDATA_ALIGN16) #define RDATA_ALIGN16 __attribute__ ((aligned(16))) #endif #endif #if defined(__INTEL_COMPILER) #define ASM __asm__ #elif !defined(_MSC_VER) #define ASM __asm__ #else #define ASM __asm #endif #define TOTALBLOCKS (MEMORY / AES_BLOCK_SIZE) #define U64(x) ((uint64_t *) (x)) #define R128(x) ((__m128i *) (x)) #define state_index(x) (((*((uint64_t *)x) >> 4) & (TOTALBLOCKS - 1)) << 4) #if defined(_MSC_VER) #if !defined(_WIN64) #define __mul() lo = mul128(c[0], b[0], &hi); #else #define __mul() lo = _umul128(c[0], b[0], &hi); #endif #else #if defined(__x86_64__) #define __mul() ASM("mulq %3\n\t" : "=d"(hi), "=a"(lo) : "%a" (c[0]), "rm" (b[0]) : "cc"); #else #define __mul() lo = mul128(c[0], b[0], &hi); #endif #endif #define pre_aes() \ j = state_index(a); \ _c = _mm_load_si128(R128(&hp_state[j])); \ _a = _mm_load_si128(R128(a)); \ /* * An SSE-optimized implementation of the second half of CryptoNight step 3. * After using AES to mix a scratchpad value into _c (done by the caller), * this macro xors it with _b and stores the result back to the same index (j) that it * loaded the scratchpad value from. It then performs a second random memory * read/write from the scratchpad, but this time mixes the values using a 64 * bit multiply. * This code is based upon an optimized implementation by dga. */ #define post_aes() \ VARIANT2_SHUFFLE_ADD_SSE2(hp_state, j); \ _mm_store_si128(R128(c), _c); \ _mm_store_si128(R128(&hp_state[j]), _mm_xor_si128(_b, _c)); \ VARIANT1_1(&hp_state[j]); \ j = state_index(c); \ p = U64(&hp_state[j]); \ b[0] = p[0]; b[1] = p[1]; \ VARIANT2_INTEGER_MATH_SSE2(b, c); \ __mul(); \ VARIANT2_2(); \ VARIANT2_SHUFFLE_ADD_SSE2(hp_state, j); \ a[0] += hi; a[1] += lo; \ p = U64(&hp_state[j]); \ p[0] = a[0]; p[1] = a[1]; \ a[0] ^= b[0]; a[1] ^= b[1]; \ VARIANT1_2(p + 1); \ _b1 = _b; \ _b = _c; \ #if defined(_MSC_VER) #define THREADV __declspec(thread) #else #define THREADV __thread #endif #pragma pack(push, 1) union cn_slow_hash_state { union hash_state hs; struct { uint8_t k[64]; uint8_t init[INIT_SIZE_BYTE]; }; }; #pragma pack(pop) THREADV uint8_t *hp_state = NULL; THREADV int hp_allocated = 0; #if defined(_MSC_VER) #define cpuid(info,x) __cpuidex(info,x,0) #else void cpuid(int CPUInfo[4], int InfoType) { ASM __volatile__ ( "cpuid": "=a" (CPUInfo[0]), "=b" (CPUInfo[1]), "=c" (CPUInfo[2]), "=d" (CPUInfo[3]) : "a" (InfoType), "c" (0) ); } #endif /** * @brief a = (a xor b), where a and b point to 128 bit values */ STATIC INLINE void xor_blocks(uint8_t *a, const uint8_t *b) { U64(a)[0] ^= U64(b)[0]; U64(a)[1] ^= U64(b)[1]; } STATIC INLINE void xor64(uint64_t *a, const uint64_t b) { *a ^= b; } /** * @brief uses cpuid to determine if the CPU supports the AES instructions * @return true if the CPU supports AES, false otherwise */ STATIC INLINE int force_software_aes(void) { static int use = -1; if (use != -1) return use; const char *env = getenv("MONERO_USE_SOFTWARE_AES"); if (!env) { use = 0; } else if (!strcmp(env, "0") || !strcmp(env, "no")) { use = 0; } else { use = 1; } return use; } STATIC INLINE int check_aes_hw(void) { int cpuid_results[4]; static int supported = -1; if(supported >= 0) return supported; cpuid(cpuid_results,1); return supported = cpuid_results[2] & (1 << 25); } STATIC INLINE void aes_256_assist1(__m128i* t1, __m128i * t2) { __m128i t4; *t2 = _mm_shuffle_epi32(*t2, 0xff); t4 = _mm_slli_si128(*t1, 0x04); *t1 = _mm_xor_si128(*t1, t4); t4 = _mm_slli_si128(t4, 0x04); *t1 = _mm_xor_si128(*t1, t4); t4 = _mm_slli_si128(t4, 0x04); *t1 = _mm_xor_si128(*t1, t4); *t1 = _mm_xor_si128(*t1, *t2); } STATIC INLINE void aes_256_assist2(__m128i* t1, __m128i * t3) { __m128i t2, t4; t4 = _mm_aeskeygenassist_si128(*t1, 0x00); t2 = _mm_shuffle_epi32(t4, 0xaa); t4 = _mm_slli_si128(*t3, 0x04); *t3 = _mm_xor_si128(*t3, t4); t4 = _mm_slli_si128(t4, 0x04); *t3 = _mm_xor_si128(*t3, t4); t4 = _mm_slli_si128(t4, 0x04); *t3 = _mm_xor_si128(*t3, t4); *t3 = _mm_xor_si128(*t3, t2); } /** * @brief expands 'key' into a form it can be used for AES encryption. * * This is an SSE-optimized implementation of AES key schedule generation. It * expands the key into multiple round keys, each of which is used in one round * of the AES encryption used to fill (and later, extract randomness from) * the large 2MB buffer. Note that CryptoNight does not use a completely * standard AES encryption for its buffer expansion, so do not copy this * function outside of Monero without caution! This version uses the hardware * AESKEYGENASSIST instruction to speed key generation, and thus requires * CPU AES support. * For more information about these functions, see page 19 of Intel's AES instructions * white paper: * https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf * * @param key the input 128 bit key * @param expandedKey An output buffer to hold the generated key schedule */ STATIC INLINE void aes_expand_key(const uint8_t *key, uint8_t *expandedKey) { __m128i *ek = R128(expandedKey); __m128i t1, t2, t3; t1 = _mm_loadu_si128(R128(key)); t3 = _mm_loadu_si128(R128(key + 16)); ek[0] = t1; ek[1] = t3; t2 = _mm_aeskeygenassist_si128(t3, 0x01); aes_256_assist1(&t1, &t2); ek[2] = t1; aes_256_assist2(&t1, &t3); ek[3] = t3; t2 = _mm_aeskeygenassist_si128(t3, 0x02); aes_256_assist1(&t1, &t2); ek[4] = t1; aes_256_assist2(&t1, &t3); ek[5] = t3; t2 = _mm_aeskeygenassist_si128(t3, 0x04); aes_256_assist1(&t1, &t2); ek[6] = t1; aes_256_assist2(&t1, &t3); ek[7] = t3; t2 = _mm_aeskeygenassist_si128(t3, 0x08); aes_256_assist1(&t1, &t2); ek[8] = t1; aes_256_assist2(&t1, &t3); ek[9] = t3; t2 = _mm_aeskeygenassist_si128(t3, 0x10); aes_256_assist1(&t1, &t2); ek[10] = t1; } /** * @brief a "pseudo" round of AES (similar to but slightly different from normal AES encryption) * * To fill its 2MB scratch buffer, CryptoNight uses a nonstandard implementation * of AES encryption: It applies 10 rounds of the basic AES encryption operation * to an input 128 bit chunk of data . Unlike normal AES, however, this is * all it does; it does not perform the initial AddRoundKey step (this is done * in subsequent steps by aesenc_si128), and it does not use the simpler final round. * Hence, this is a "pseudo" round - though the function actually implements 10 rounds together. * * Note that unlike aesb_pseudo_round, this function works on multiple data chunks. * * @param in a pointer to nblocks * 128 bits of data to be encrypted * @param out a pointer to an nblocks * 128 bit buffer where the output will be stored * @param expandedKey the expanded AES key * @param nblocks the number of 128 blocks of data to be encrypted */ STATIC INLINE void aes_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey, int nblocks) { __m128i *k = R128(expandedKey); __m128i d; int i; for(i = 0; i < nblocks; i++) { d = _mm_loadu_si128(R128(in + i * AES_BLOCK_SIZE)); d = _mm_aesenc_si128(d, *R128(&k[0])); d = _mm_aesenc_si128(d, *R128(&k[1])); d = _mm_aesenc_si128(d, *R128(&k[2])); d = _mm_aesenc_si128(d, *R128(&k[3])); d = _mm_aesenc_si128(d, *R128(&k[4])); d = _mm_aesenc_si128(d, *R128(&k[5])); d = _mm_aesenc_si128(d, *R128(&k[6])); d = _mm_aesenc_si128(d, *R128(&k[7])); d = _mm_aesenc_si128(d, *R128(&k[8])); d = _mm_aesenc_si128(d, *R128(&k[9])); _mm_storeu_si128((R128(out + i * AES_BLOCK_SIZE)), d); } } /** * @brief aes_pseudo_round that loads data from *in and xors it with *xor first * * This function performs the same operations as aes_pseudo_round, but before * performing the encryption of each 128 bit block from , it xors * it with the corresponding block from . * * @param in a pointer to nblocks * 128 bits of data to be encrypted * @param out a pointer to an nblocks * 128 bit buffer where the output will be stored * @param expandedKey the expanded AES key * @param xor a pointer to an nblocks * 128 bit buffer that is xored into in before encryption (in is left unmodified) * @param nblocks the number of 128 blocks of data to be encrypted */ STATIC INLINE void aes_pseudo_round_xor(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey, const uint8_t *xor, int nblocks) { __m128i *k = R128(expandedKey); __m128i *x = R128(xor); __m128i d; int i; for(i = 0; i < nblocks; i++) { d = _mm_loadu_si128(R128(in + i * AES_BLOCK_SIZE)); d = _mm_xor_si128(d, *R128(x++)); d = _mm_aesenc_si128(d, *R128(&k[0])); d = _mm_aesenc_si128(d, *R128(&k[1])); d = _mm_aesenc_si128(d, *R128(&k[2])); d = _mm_aesenc_si128(d, *R128(&k[3])); d = _mm_aesenc_si128(d, *R128(&k[4])); d = _mm_aesenc_si128(d, *R128(&k[5])); d = _mm_aesenc_si128(d, *R128(&k[6])); d = _mm_aesenc_si128(d, *R128(&k[7])); d = _mm_aesenc_si128(d, *R128(&k[8])); d = _mm_aesenc_si128(d, *R128(&k[9])); _mm_storeu_si128((R128(out + i * AES_BLOCK_SIZE)), d); } } #if defined(_MSC_VER) || defined(__MINGW32__) BOOL SetLockPagesPrivilege(HANDLE hProcess, BOOL bEnable) { struct { DWORD count; LUID_AND_ATTRIBUTES privilege[1]; } info; HANDLE token; if(!OpenProcessToken(hProcess, TOKEN_ADJUST_PRIVILEGES, &token)) return FALSE; info.count = 1; info.privilege[0].Attributes = bEnable ? SE_PRIVILEGE_ENABLED : 0; if(!LookupPrivilegeValue(NULL, SE_LOCK_MEMORY_NAME, &(info.privilege[0].Luid))) return FALSE; if(!AdjustTokenPrivileges(token, FALSE, (PTOKEN_PRIVILEGES) &info, 0, NULL, NULL)) return FALSE; if (GetLastError() != ERROR_SUCCESS) return FALSE; CloseHandle(token); return TRUE; } #endif /** * @brief allocate the 2MB scratch buffer using OS support for huge pages, if available * * This function tries to allocate the 2MB scratch buffer using a single * 2MB "huge page" (instead of the usual 4KB page sizes) to reduce TLB misses * during the random accesses to the scratch buffer. This is one of the * important speed optimizations needed to make CryptoNight faster. * * No parameters. Updates a thread-local pointer, hp_state, to point to * the allocated buffer. */ void slow_hash_allocate_state(void) { if(hp_state != NULL) return; #if defined(_MSC_VER) || defined(__MINGW32__) SetLockPagesPrivilege(GetCurrentProcess(), TRUE); hp_state = (uint8_t *) VirtualAlloc(hp_state, MEMORY, MEM_LARGE_PAGES | MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); #else #if defined(__APPLE__) || defined(__FreeBSD__) || defined(__OpenBSD__) || \ defined(__DragonFly__) || defined(__NetBSD__) hp_state = mmap(0, MEMORY, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, 0, 0); #else hp_state = mmap(0, MEMORY, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, 0, 0); #endif if(hp_state == MAP_FAILED) hp_state = NULL; #endif hp_allocated = 1; if(hp_state == NULL) { hp_allocated = 0; hp_state = (uint8_t *) malloc(MEMORY); } } /** *@brief frees the state allocated by slow_hash_allocate_state */ void slow_hash_free_state(void) { if(hp_state == NULL) return; if(!hp_allocated) free(hp_state); else { #if defined(_MSC_VER) || defined(__MINGW32__) VirtualFree(hp_state, 0, MEM_RELEASE); #else munmap(hp_state, MEMORY); #endif } hp_state = NULL; hp_allocated = 0; } /** * @brief the hash function implementing CryptoNight, used for the Monero proof-of-work * * Computes the hash of (which consists of bytes), returning the * hash in . The CryptoNight hash operates by first using Keccak 1600, * the 1600 bit variant of the Keccak hash used in SHA-3, to create a 200 byte * buffer of pseudorandom data by hashing the supplied data. It then uses this * random data to fill a large 2MB buffer with pseudorandom data by iteratively * encrypting it using 10 rounds of AES per entry. After this initialization, * it executes 524,288 rounds of mixing through the random 2MB buffer using * AES (typically provided in hardware on modern CPUs) and a 64 bit multiply. * Finally, it re-mixes this large buffer back into * the 200 byte "text" buffer, and then hashes this buffer using one of four * pseudorandomly selected hash functions (Blake, Groestl, JH, or Skein) * to populate the output. * * The 2MB buffer and choice of functions for mixing are designed to make the * algorithm "CPU-friendly" (and thus, reduce the advantage of GPU, FPGA, * or ASIC-based implementations): the functions used are fast on modern * CPUs, and the 2MB size matches the typical amount of L3 cache available per * core on 2013-era CPUs. When available, this implementation will use hardware * AES support on x86 CPUs. * * A diagram of the inner loop of this function can be found at * https://www.cs.cmu.edu/~dga/crypto/xmr/cryptonight.png * * @param data the data to hash * @param length the length in bytes of the data * @param hash a pointer to a buffer in which the final 256 bit hash will be stored */ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed) { RDATA_ALIGN16 uint8_t expandedKey[240]; /* These buffers are aligned to use later with SSE functions */ uint8_t text[INIT_SIZE_BYTE]; RDATA_ALIGN16 uint64_t a[2]; RDATA_ALIGN16 uint64_t b[4]; RDATA_ALIGN16 uint64_t c[2]; union cn_slow_hash_state state; __m128i _a, _b, _b1, _c; uint64_t hi, lo; size_t i, j; uint64_t *p = NULL; oaes_ctx *aes_ctx = NULL; int useAes = !force_software_aes() && check_aes_hw(); static void (*const extra_hashes[4])(const void *, size_t, char *) = { hash_extra_blake, hash_extra_groestl, hash_extra_jh, hash_extra_skein }; // this isn't supposed to happen, but guard against it for now. if(hp_state == NULL) slow_hash_allocate_state(); /* CryptoNight Step 1: Use Keccak1600 to initialize the 'state' (and 'text') buffers from the data. */ if (prehashed) { memcpy(&state.hs, data, length); } else { hash_process(&state.hs, data, length); } memcpy(text, state.init, INIT_SIZE_BYTE); VARIANT1_INIT64(); VARIANT2_INIT64(); /* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill * the 2MB large random access buffer. */ if(useAes) { aes_expand_key(state.hs.b, expandedKey); for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) { aes_pseudo_round(text, text, expandedKey, INIT_SIZE_BLK); memcpy(&hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE); } } else { aes_ctx = (oaes_ctx *) oaes_alloc(); oaes_key_import_data(aes_ctx, state.hs.b, AES_KEY_SIZE); for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) { for(j = 0; j < INIT_SIZE_BLK; j++) aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data); memcpy(&hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE); } } U64(a)[0] = U64(&state.k[0])[0] ^ U64(&state.k[32])[0]; U64(a)[1] = U64(&state.k[0])[1] ^ U64(&state.k[32])[1]; U64(b)[0] = U64(&state.k[16])[0] ^ U64(&state.k[48])[0]; U64(b)[1] = U64(&state.k[16])[1] ^ U64(&state.k[48])[1]; /* CryptoNight Step 3: Bounce randomly 1,048,576 times (1<<20) through the mixing buffer, * using 524,288 iterations of the following mixing function. Each execution * performs two reads and writes from the mixing buffer. */ _b = _mm_load_si128(R128(b)); _b1 = _mm_load_si128(R128(b) + 1); // Two independent versions, one with AES, one without, to ensure that // the useAes test is only performed once, not every iteration. if(useAes) { for(i = 0; i < ITER / 2; i++) { pre_aes(); _c = _mm_aesenc_si128(_c, _a); post_aes(); } } else { for(i = 0; i < ITER / 2; i++) { pre_aes(); aesb_single_round((uint8_t *) &_c, (uint8_t *) &_c, (uint8_t *) &_a); post_aes(); } } /* CryptoNight Step 4: Sequentially pass through the mixing buffer and use 10 rounds * of AES encryption to mix the random data back into the 'text' buffer. 'text' * was originally created with the output of Keccak1600. */ memcpy(text, state.init, INIT_SIZE_BYTE); if(useAes) { aes_expand_key(&state.hs.b[32], expandedKey); for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) { // add the xor to the pseudo round aes_pseudo_round_xor(text, text, expandedKey, &hp_state[i * INIT_SIZE_BYTE], INIT_SIZE_BLK); } } else { oaes_key_import_data(aes_ctx, &state.hs.b[32], AES_KEY_SIZE); for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) { for(j = 0; j < INIT_SIZE_BLK; j++) { xor_blocks(&text[j * AES_BLOCK_SIZE], &hp_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]); aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data); } } oaes_free((OAES_CTX **) &aes_ctx); } /* CryptoNight Step 5: Apply Keccak to the state again, and then * use the resulting data to select which of four finalizer * hash functions to apply to the data (Blake, Groestl, JH, or Skein). * Use this hash to squeeze the state array down * to the final 256 bit hash output. */ memcpy(state.init, text, INIT_SIZE_BYTE); hash_permutation(&state.hs); extra_hashes[state.hs.b[0] & 3](&state, 200, hash); } #elif !defined NO_AES && (defined(__arm__) || defined(__aarch64__)) void slow_hash_allocate_state(void) { // Do nothing, this is just to maintain compatibility with the upgraded slow-hash.c return; } void slow_hash_free_state(void) { // As above return; } #if defined(__GNUC__) #define RDATA_ALIGN16 __attribute__ ((aligned(16))) #define STATIC static #define INLINE inline #else #define RDATA_ALIGN16 #define STATIC static #define INLINE #endif #define U64(x) ((uint64_t *) (x)) STATIC INLINE void xor64(uint64_t *a, const uint64_t b) { *a ^= b; } #pragma pack(push, 1) union cn_slow_hash_state { union hash_state hs; struct { uint8_t k[64]; uint8_t init[INIT_SIZE_BYTE]; }; }; #pragma pack(pop) #if defined(__aarch64__) && defined(__ARM_FEATURE_CRYPTO) /* ARMv8-A optimized with NEON and AES instructions. * Copied from the x86-64 AES-NI implementation. It has much the same * characteristics as x86-64: there's no 64x64=128 multiplier for vectors, * and moving between vector and regular registers stalls the pipeline. */ #include #define TOTALBLOCKS (MEMORY / AES_BLOCK_SIZE) #define state_index(x) (((*((uint64_t *)x) >> 4) & (TOTALBLOCKS - 1)) << 4) #define __mul() __asm__("mul %0, %1, %2\n\t" : "=r"(lo) : "r"(c[0]), "r"(b[0]) ); \ __asm__("umulh %0, %1, %2\n\t" : "=r"(hi) : "r"(c[0]), "r"(b[0]) ); #define pre_aes() \ j = state_index(a); \ _c = vld1q_u8(&hp_state[j]); \ _a = vld1q_u8((const uint8_t *)a); \ #define post_aes() \ VARIANT2_SHUFFLE_ADD_NEON(hp_state, j); \ vst1q_u8((uint8_t *)c, _c); \ vst1q_u8(&hp_state[j], veorq_u8(_b, _c)); \ VARIANT1_1(&hp_state[j]); \ j = state_index(c); \ p = U64(&hp_state[j]); \ b[0] = p[0]; b[1] = p[1]; \ VARIANT2_PORTABLE_INTEGER_MATH(b, c); \ __mul(); \ VARIANT2_2(); \ VARIANT2_SHUFFLE_ADD_NEON(hp_state, j); \ a[0] += hi; a[1] += lo; \ p = U64(&hp_state[j]); \ p[0] = a[0]; p[1] = a[1]; \ a[0] ^= b[0]; a[1] ^= b[1]; \ VARIANT1_2(p + 1); \ _b1 = _b; \ _b = _c; \ /* Note: this was based on a standard 256bit key schedule but * it's been shortened since Cryptonight doesn't use the full * key schedule. Don't try to use this for vanilla AES. */ static void aes_expand_key(const uint8_t *key, uint8_t *expandedKey) { static const int rcon[] = { 0x01,0x01,0x01,0x01, 0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d, // rotate-n-splat 0x1b,0x1b,0x1b,0x1b }; __asm__( " eor v0.16b,v0.16b,v0.16b\n" " ld1 {v3.16b},[%0],#16\n" " ld1 {v1.4s,v2.4s},[%2],#32\n" " ld1 {v4.16b},[%0]\n" " mov w2,#5\n" " st1 {v3.4s},[%1],#16\n" "\n" "1:\n" " tbl v6.16b,{v4.16b},v2.16b\n" " ext v5.16b,v0.16b,v3.16b,#12\n" " st1 {v4.4s},[%1],#16\n" " aese v6.16b,v0.16b\n" " subs w2,w2,#1\n" "\n" " eor v3.16b,v3.16b,v5.16b\n" " ext v5.16b,v0.16b,v5.16b,#12\n" " eor v3.16b,v3.16b,v5.16b\n" " ext v5.16b,v0.16b,v5.16b,#12\n" " eor v6.16b,v6.16b,v1.16b\n" " eor v3.16b,v3.16b,v5.16b\n" " shl v1.16b,v1.16b,#1\n" " eor v3.16b,v3.16b,v6.16b\n" " st1 {v3.4s},[%1],#16\n" " b.eq 2f\n" "\n" " dup v6.4s,v3.s[3] // just splat\n" " ext v5.16b,v0.16b,v4.16b,#12\n" " aese v6.16b,v0.16b\n" "\n" " eor v4.16b,v4.16b,v5.16b\n" " ext v5.16b,v0.16b,v5.16b,#12\n" " eor v4.16b,v4.16b,v5.16b\n" " ext v5.16b,v0.16b,v5.16b,#12\n" " eor v4.16b,v4.16b,v5.16b\n" "\n" " eor v4.16b,v4.16b,v6.16b\n" " b 1b\n" "\n" "2:\n" : : "r"(key), "r"(expandedKey), "r"(rcon)); } /* An ordinary AES round is a sequence of SubBytes, ShiftRows, MixColumns, AddRoundKey. There * is also an InitialRound which consists solely of AddRoundKey. The ARM instructions slice * this sequence differently; the aese instruction performs AddRoundKey, SubBytes, ShiftRows. * The aesmc instruction does the MixColumns. Since the aese instruction moves the AddRoundKey * up front, and Cryptonight's hash skips the InitialRound step, we have to kludge it here by * feeding in a vector of zeros for our first step. Also we have to do our own Xor explicitly * at the last step, to provide the AddRoundKey that the ARM instructions omit. */ STATIC INLINE void aes_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey, int nblocks) { const uint8x16_t *k = (const uint8x16_t *)expandedKey, zero = {0}; uint8x16_t tmp; int i; for (i=0; ikey->exp_data, aes_ctx->key->exp_data_len); for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) { for(j = 0; j < INIT_SIZE_BLK; j++) aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], expandedKey); memcpy(&long_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE); } U64(a)[0] = U64(&state.k[0])[0] ^ U64(&state.k[32])[0]; U64(a)[1] = U64(&state.k[0])[1] ^ U64(&state.k[32])[1]; U64(b)[0] = U64(&state.k[16])[0] ^ U64(&state.k[48])[0]; U64(b)[1] = U64(&state.k[16])[1] ^ U64(&state.k[48])[1]; for(i = 0; i < ITER / 2; i++) { #define MASK ((uint32_t)(((MEMORY / AES_BLOCK_SIZE) - 1) << 4)) #define state_index(x) ((*(uint32_t *) x) & MASK) // Iteration 1 j = state_index(a); p = &long_state[j]; aesb_single_round(p, p, a); copy_block(c1, p); VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j); xor_blocks(p, b); VARIANT1_1(p); // Iteration 2 j = state_index(c1); p = &long_state[j]; copy_block(c, p); VARIANT2_PORTABLE_INTEGER_MATH(c, c1); mul(c1, c, d); VARIANT2_2_PORTABLE(); VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j); sum_half_blocks(a, d); swap_blocks(a, c); xor_blocks(a, c); VARIANT1_2(U64(c) + 1); copy_block(p, c); if (variant >= 2) { copy_block(b + AES_BLOCK_SIZE, b); } copy_block(b, c1); } memcpy(text, state.init, INIT_SIZE_BYTE); oaes_key_import_data(aes_ctx, &state.hs.b[32], AES_KEY_SIZE); memcpy(expandedKey, aes_ctx->key->exp_data, aes_ctx->key->exp_data_len); for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) { for(j = 0; j < INIT_SIZE_BLK; j++) { xor_blocks(&text[j * AES_BLOCK_SIZE], &long_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]); aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], expandedKey); } } oaes_free((OAES_CTX **) &aes_ctx); memcpy(state.init, text, INIT_SIZE_BYTE); hash_permutation(&state.hs); extra_hashes[state.hs.b[0] & 3](&state, 200, hash); #ifdef FORCE_USE_HEAP free(long_state); #endif } #endif /* !aarch64 || !crypto */ #else // Portable implementation as a fallback void slow_hash_allocate_state(void) { // Do nothing, this is just to maintain compatibility with the upgraded slow-hash.c return; } void slow_hash_free_state(void) { // As above return; } static void (*const extra_hashes[4])(const void *, size_t, char *) = { hash_extra_blake, hash_extra_groestl, hash_extra_jh, hash_extra_skein }; static size_t e2i(const uint8_t* a, size_t count) { return (*((uint64_t*)a) / AES_BLOCK_SIZE) & (count - 1); } static void mul(const uint8_t* a, const uint8_t* b, uint8_t* res) { uint64_t a0, b0; uint64_t hi, lo; a0 = SWAP64LE(((uint64_t*)a)[0]); b0 = SWAP64LE(((uint64_t*)b)[0]); lo = mul128(a0, b0, &hi); ((uint64_t*)res)[0] = SWAP64LE(hi); ((uint64_t*)res)[1] = SWAP64LE(lo); } static void sum_half_blocks(uint8_t* a, const uint8_t* b) { uint64_t a0, a1, b0, b1; a0 = SWAP64LE(((uint64_t*)a)[0]); a1 = SWAP64LE(((uint64_t*)a)[1]); b0 = SWAP64LE(((uint64_t*)b)[0]); b1 = SWAP64LE(((uint64_t*)b)[1]); a0 += b0; a1 += b1; ((uint64_t*)a)[0] = SWAP64LE(a0); ((uint64_t*)a)[1] = SWAP64LE(a1); } #define U64(x) ((uint64_t *) (x)) static void copy_block(uint8_t* dst, const uint8_t* src) { memcpy(dst, src, AES_BLOCK_SIZE); } static void swap_blocks(uint8_t *a, uint8_t *b){ uint64_t t[2]; U64(t)[0] = U64(a)[0]; U64(t)[1] = U64(a)[1]; U64(a)[0] = U64(b)[0]; U64(a)[1] = U64(b)[1]; U64(b)[0] = U64(t)[0]; U64(b)[1] = U64(t)[1]; } static void xor_blocks(uint8_t* a, const uint8_t* b) { size_t i; for (i = 0; i < AES_BLOCK_SIZE; i++) { a[i] ^= b[i]; } } static void xor64(uint8_t* left, const uint8_t* right) { size_t i; for (i = 0; i < 8; ++i) { left[i] ^= right[i]; } } #pragma pack(push, 1) union cn_slow_hash_state { union hash_state hs; struct { uint8_t k[64]; uint8_t init[INIT_SIZE_BYTE]; }; }; #pragma pack(pop) void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed) { #ifndef FORCE_USE_HEAP uint8_t long_state[MEMORY]; #else uint8_t *long_state = (uint8_t *)malloc(MEMORY); #endif union cn_slow_hash_state state; uint8_t text[INIT_SIZE_BYTE]; uint8_t a[AES_BLOCK_SIZE]; uint8_t b[AES_BLOCK_SIZE * 2]; uint8_t c1[AES_BLOCK_SIZE]; uint8_t c2[AES_BLOCK_SIZE]; uint8_t d[AES_BLOCK_SIZE]; size_t i, j; uint8_t aes_key[AES_KEY_SIZE]; oaes_ctx *aes_ctx; if (prehashed) { memcpy(&state.hs, data, length); } else { hash_process(&state.hs, data, length); } memcpy(text, state.init, INIT_SIZE_BYTE); memcpy(aes_key, state.hs.b, AES_KEY_SIZE); aes_ctx = (oaes_ctx *) oaes_alloc(); VARIANT1_PORTABLE_INIT(); VARIANT2_PORTABLE_INIT(); oaes_key_import_data(aes_ctx, aes_key, AES_KEY_SIZE); for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) { for (j = 0; j < INIT_SIZE_BLK; j++) { aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data); } memcpy(&long_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE); } for (i = 0; i < AES_BLOCK_SIZE; i++) { a[i] = state.k[ i] ^ state.k[AES_BLOCK_SIZE * 2 + i]; b[i] = state.k[AES_BLOCK_SIZE + i] ^ state.k[AES_BLOCK_SIZE * 3 + i]; } for (i = 0; i < ITER / 2; i++) { /* Dependency chain: address -> read value ------+ * written value <-+ hard function (AES or MUL) <+ * next address <-+ */ /* Iteration 1 */ j = e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE; copy_block(c1, &long_state[j]); aesb_single_round(c1, c1, a); VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j); copy_block(&long_state[j], c1); xor_blocks(&long_state[j], b); assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE); VARIANT1_1(&long_state[j]); /* Iteration 2 */ j = e2i(c1, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE; copy_block(c2, &long_state[j]); VARIANT2_PORTABLE_INTEGER_MATH(c2, c1); mul(c1, c2, d); VARIANT2_2_PORTABLE(); VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j); swap_blocks(a, c1); sum_half_blocks(c1, d); swap_blocks(c1, c2); xor_blocks(c1, c2); VARIANT1_2(c2 + 8); copy_block(&long_state[j], c2); assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE); if (variant >= 2) { copy_block(b + AES_BLOCK_SIZE, b); } copy_block(b, a); copy_block(a, c1); } memcpy(text, state.init, INIT_SIZE_BYTE); oaes_key_import_data(aes_ctx, &state.hs.b[32], AES_KEY_SIZE); for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) { for (j = 0; j < INIT_SIZE_BLK; j++) { xor_blocks(&text[j * AES_BLOCK_SIZE], &long_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]); aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data); } } memcpy(state.init, text, INIT_SIZE_BYTE); hash_permutation(&state.hs); /*memcpy(hash, &state, 32);*/ extra_hashes[state.hs.b[0] & 3](&state, 200, hash); oaes_free((OAES_CTX **) &aes_ctx); #ifdef FORCE_USE_HEAP free(long_state); #endif } #endif