// Copyright (c) 2014-2018, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers #include #include #include #include #include #include #include #include #include #include #include "common/varint.h" #include "warnings.h" #include "crypto.h" #include "hash.h" namespace { static void local_abort(const char *msg) { fprintf(stderr, "%s\n", msg); #ifdef NDEBUG _exit(1); #else abort(); #endif } } namespace crypto { using std::abort; using std::int32_t; using std::int64_t; using std::size_t; using std::uint32_t; using std::uint64_t; extern "C" { #include "crypto-ops.h" #include "random.h" } static inline unsigned char *operator &(ec_point &point) { return &reinterpret_cast(point); } static inline const unsigned char *operator &(const ec_point &point) { return &reinterpret_cast(point); } static inline unsigned char *operator &(ec_scalar &scalar) { return &reinterpret_cast(scalar); } static inline const unsigned char *operator &(const ec_scalar &scalar) { return &reinterpret_cast(scalar); } void generate_random_bytes_thread_safe(size_t N, uint8_t *bytes) { static boost::mutex random_lock; boost::lock_guard lock(random_lock); generate_random_bytes_not_thread_safe(N, bytes); } static inline bool less32(const unsigned char *k0, const unsigned char *k1) { for (int n = 31; n >= 0; --n) { if (k0[n] < k1[n]) return true; if (k0[n] > k1[n]) return false; } return false; } void random32_unbiased(unsigned char *bytes) { // l = 2^252 + 27742317777372353535851937790883648493. // it fits 15 in 32 bytes static const unsigned char limit[32] = { 0xe3, 0x6a, 0x67, 0x72, 0x8b, 0xce, 0x13, 0x29, 0x8f, 0x30, 0x82, 0x8c, 0x0b, 0xa4, 0x10, 0x39, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf0 }; do { generate_random_bytes_thread_safe(32, bytes); } while (!less32(bytes, limit)); // should be good about 15/16 of the time sc_reduce32(bytes); } /* generate a random 32-byte (256-bit) integer and copy it to res */ static inline void random_scalar(ec_scalar &res) { random32_unbiased((unsigned char*)res.data); } void hash_to_scalar(const void *data, size_t length, ec_scalar &res) { cn_fast_hash(data, length, reinterpret_cast(res)); sc_reduce32(&res); } /* * generate public and secret keys from a random 256-bit integer * TODO: allow specifying random value (for wallet recovery) * */ secret_key crypto_ops::generate_keys(public_key &pub, secret_key &sec, const secret_key& recovery_key, bool recover) { ge_p3 point; secret_key rng; if (recover) { rng = recovery_key; } else { random_scalar(rng); } sec = rng; sc_reduce32(&unwrap(sec)); // reduce in case second round of keys (sendkeys) ge_scalarmult_base(&point, &unwrap(sec)); ge_p3_tobytes(&pub, &point); return rng; } bool crypto_ops::check_key(const public_key &key) { ge_p3 point; return ge_frombytes_vartime(&point, &key) == 0; } bool crypto_ops::secret_key_to_public_key(const secret_key &sec, public_key &pub) { ge_p3 point; if (sc_check(&unwrap(sec)) != 0) { return false; } ge_scalarmult_base(&point, &unwrap(sec)); ge_p3_tobytes(&pub, &point); return true; } bool crypto_ops::generate_key_derivation(const public_key &key1, const secret_key &key2, key_derivation &derivation) { ge_p3 point; ge_p2 point2; ge_p1p1 point3; assert(sc_check(&key2) == 0); if (ge_frombytes_vartime(&point, &key1) != 0) { return false; } ge_scalarmult(&point2, &unwrap(key2), &point); ge_mul8(&point3, &point2); ge_p1p1_to_p2(&point2, &point3); ge_tobytes(&derivation, &point2); return true; } void crypto_ops::derivation_to_scalar(const key_derivation &derivation, size_t output_index, ec_scalar &res) { struct { key_derivation derivation; char output_index[(sizeof(size_t) * 8 + 6) / 7]; } buf; char *end = buf.output_index; buf.derivation = derivation; tools::write_varint(end, output_index); assert(end <= buf.output_index + sizeof buf.output_index); hash_to_scalar(&buf, end - reinterpret_cast(&buf), res); } bool crypto_ops::derive_public_key(const key_derivation &derivation, size_t output_index, const public_key &base, public_key &derived_key) { ec_scalar scalar; ge_p3 point1; ge_p3 point2; ge_cached point3; ge_p1p1 point4; ge_p2 point5; if (ge_frombytes_vartime(&point1, &base) != 0) { return false; } derivation_to_scalar(derivation, output_index, scalar); ge_scalarmult_base(&point2, &scalar); ge_p3_to_cached(&point3, &point2); ge_add(&point4, &point1, &point3); ge_p1p1_to_p2(&point5, &point4); ge_tobytes(&derived_key, &point5); return true; } void crypto_ops::derive_secret_key(const key_derivation &derivation, size_t output_index, const secret_key &base, secret_key &derived_key) { ec_scalar scalar; assert(sc_check(&base) == 0); derivation_to_scalar(derivation, output_index, scalar); sc_add(&unwrap(derived_key), &unwrap(base), &scalar); } bool crypto_ops::derive_subaddress_public_key(const public_key &out_key, const key_derivation &derivation, std::size_t output_index, public_key &derived_key) { ec_scalar scalar; ge_p3 point1; ge_p3 point2; ge_cached point3; ge_p1p1 point4; ge_p2 point5; if (ge_frombytes_vartime(&point1, &out_key) != 0) { return false; } derivation_to_scalar(derivation, output_index, scalar); ge_scalarmult_base(&point2, &scalar); ge_p3_to_cached(&point3, &point2); ge_sub(&point4, &point1, &point3); ge_p1p1_to_p2(&point5, &point4); ge_tobytes(&derived_key, &point5); return true; } struct s_comm { hash h; ec_point key; ec_point comm; }; struct s_comm_2 { hash msg; ec_point D; ec_point X; ec_point Y; }; void crypto_ops::generate_signature(const hash &prefix_hash, const public_key &pub, const secret_key &sec, signature &sig) { ge_p3 tmp3; ec_scalar k; s_comm buf; #if !defined(NDEBUG) { ge_p3 t; public_key t2; assert(sc_check(&sec) == 0); ge_scalarmult_base(&t, &sec); ge_p3_tobytes(&t2, &t); assert(pub == t2); } #endif buf.h = prefix_hash; buf.key = pub; random_scalar(k); ge_scalarmult_base(&tmp3, &k); ge_p3_tobytes(&buf.comm, &tmp3); hash_to_scalar(&buf, sizeof(s_comm), sig.c); sc_mulsub(&sig.r, &sig.c, &unwrap(sec), &k); } bool crypto_ops::check_signature(const hash &prefix_hash, const public_key &pub, const signature &sig) { ge_p2 tmp2; ge_p3 tmp3; ec_scalar c; s_comm buf; assert(check_key(pub)); buf.h = prefix_hash; buf.key = pub; if (ge_frombytes_vartime(&tmp3, &pub) != 0) { return false; } if (sc_check(&sig.c) != 0 || sc_check(&sig.r) != 0) { return false; } ge_double_scalarmult_base_vartime(&tmp2, &sig.c, &tmp3, &sig.r); ge_tobytes(&buf.comm, &tmp2); hash_to_scalar(&buf, sizeof(s_comm), c); sc_sub(&c, &c, &sig.c); return sc_isnonzero(&c) == 0; } void crypto_ops::generate_tx_proof(const hash &prefix_hash, const public_key &R, const public_key &A, const boost::optional &B, const public_key &D, const secret_key &r, signature &sig) { // sanity check ge_p3 R_p3; ge_p3 A_p3; ge_p3 B_p3; ge_p3 D_p3; if (ge_frombytes_vartime(&R_p3, &R) != 0) throw std::runtime_error("tx pubkey is invalid"); if (ge_frombytes_vartime(&A_p3, &A) != 0) throw std::runtime_error("recipient view pubkey is invalid"); if (B && ge_frombytes_vartime(&B_p3, &*B) != 0) throw std::runtime_error("recipient spend pubkey is invalid"); if (ge_frombytes_vartime(&D_p3, &D) != 0) throw std::runtime_error("key derivation is invalid"); #if !defined(NDEBUG) { assert(sc_check(&r) == 0); // check R == r*G or R == r*B public_key dbg_R; if (B) { ge_p2 dbg_R_p2; ge_scalarmult(&dbg_R_p2, &r, &B_p3); ge_tobytes(&dbg_R, &dbg_R_p2); } else { ge_p3 dbg_R_p3; ge_scalarmult_base(&dbg_R_p3, &r); ge_p3_tobytes(&dbg_R, &dbg_R_p3); } assert(R == dbg_R); // check D == r*A ge_p2 dbg_D_p2; ge_scalarmult(&dbg_D_p2, &r, &A_p3); public_key dbg_D; ge_tobytes(&dbg_D, &dbg_D_p2); assert(D == dbg_D); } #endif // pick random k ec_scalar k; random_scalar(k); s_comm_2 buf; buf.msg = prefix_hash; buf.D = D; if (B) { // compute X = k*B ge_p2 X_p2; ge_scalarmult(&X_p2, &k, &B_p3); ge_tobytes(&buf.X, &X_p2); } else { // compute X = k*G ge_p3 X_p3; ge_scalarmult_base(&X_p3, &k); ge_p3_tobytes(&buf.X, &X_p3); } // compute Y = k*A ge_p2 Y_p2; ge_scalarmult(&Y_p2, &k, &A_p3); ge_tobytes(&buf.Y, &Y_p2); // sig.c = Hs(Msg || D || X || Y) hash_to_scalar(&buf, sizeof(buf), sig.c); // sig.r = k - sig.c*r sc_mulsub(&sig.r, &sig.c, &unwrap(r), &k); } bool crypto_ops::check_tx_proof(const hash &prefix_hash, const public_key &R, const public_key &A, const boost::optional &B, const public_key &D, const signature &sig) { // sanity check ge_p3 R_p3; ge_p3 A_p3; ge_p3 B_p3; ge_p3 D_p3; if (ge_frombytes_vartime(&R_p3, &R) != 0) return false; if (ge_frombytes_vartime(&A_p3, &A) != 0) return false; if (B && ge_frombytes_vartime(&B_p3, &*B) != 0) return false; if (ge_frombytes_vartime(&D_p3, &D) != 0) return false; if (sc_check(&sig.c) != 0 || sc_check(&sig.r) != 0) return false; // compute sig.c*R ge_p3 cR_p3; { ge_p2 cR_p2; ge_scalarmult(&cR_p2, &sig.c, &R_p3); public_key cR; ge_tobytes(&cR, &cR_p2); if (ge_frombytes_vartime(&cR_p3, &cR) != 0) return false; } ge_p1p1 X_p1p1; if (B) { // compute X = sig.c*R + sig.r*B ge_p2 rB_p2; ge_scalarmult(&rB_p2, &sig.r, &B_p3); public_key rB; ge_tobytes(&rB, &rB_p2); ge_p3 rB_p3; if (ge_frombytes_vartime(&rB_p3, &rB) != 0) return false; ge_cached rB_cached; ge_p3_to_cached(&rB_cached, &rB_p3); ge_add(&X_p1p1, &cR_p3, &rB_cached); } else { // compute X = sig.c*R + sig.r*G ge_p3 rG_p3; ge_scalarmult_base(&rG_p3, &sig.r); ge_cached rG_cached; ge_p3_to_cached(&rG_cached, &rG_p3); ge_add(&X_p1p1, &cR_p3, &rG_cached); } ge_p2 X_p2; ge_p1p1_to_p2(&X_p2, &X_p1p1); // compute sig.c*D ge_p2 cD_p2; ge_scalarmult(&cD_p2, &sig.c, &D_p3); // compute sig.r*A ge_p2 rA_p2; ge_scalarmult(&rA_p2, &sig.r, &A_p3); // compute Y = sig.c*D + sig.r*A public_key cD; public_key rA; ge_tobytes(&cD, &cD_p2); ge_tobytes(&rA, &rA_p2); ge_p3 cD_p3; ge_p3 rA_p3; if (ge_frombytes_vartime(&cD_p3, &cD) != 0) return false; if (ge_frombytes_vartime(&rA_p3, &rA) != 0) return false; ge_cached rA_cached; ge_p3_to_cached(&rA_cached, &rA_p3); ge_p1p1 Y_p1p1; ge_add(&Y_p1p1, &cD_p3, &rA_cached); ge_p2 Y_p2; ge_p1p1_to_p2(&Y_p2, &Y_p1p1); // compute c2 = Hs(Msg || D || X || Y) s_comm_2 buf; buf.msg = prefix_hash; buf.D = D; ge_tobytes(&buf.X, &X_p2); ge_tobytes(&buf.Y, &Y_p2); ec_scalar c2; hash_to_scalar(&buf, sizeof(s_comm_2), c2); // test if c2 == sig.c sc_sub(&c2, &c2, &sig.c); return sc_isnonzero(&c2) == 0; } static void hash_to_ec(const public_key &key, ge_p3 &res) { hash h; ge_p2 point; ge_p1p1 point2; cn_fast_hash(std::addressof(key), sizeof(public_key), h); ge_fromfe_frombytes_vartime(&point, reinterpret_cast(&h)); ge_mul8(&point2, &point); ge_p1p1_to_p3(&res, &point2); } void crypto_ops::generate_key_image(const public_key &pub, const secret_key &sec, key_image &image) { ge_p3 point; ge_p2 point2; assert(sc_check(&sec) == 0); hash_to_ec(pub, point); ge_scalarmult(&point2, &unwrap(sec), &point); ge_tobytes(&image, &point2); } PUSH_WARNINGS DISABLE_VS_WARNINGS(4200) struct ec_point_pair { ec_point a, b; }; struct rs_comm { hash h; struct ec_point_pair ab[]; }; POP_WARNINGS static inline size_t rs_comm_size(size_t pubs_count) { return sizeof(rs_comm) + pubs_count * sizeof(ec_point_pair); } void crypto_ops::generate_ring_signature(const hash &prefix_hash, const key_image &image, const public_key *const *pubs, size_t pubs_count, const secret_key &sec, size_t sec_index, signature *sig) { size_t i; ge_p3 image_unp; ge_dsmp image_pre; ec_scalar sum, k, h; boost::shared_ptr buf(reinterpret_cast(malloc(rs_comm_size(pubs_count))), free); if (!buf) local_abort("malloc failure"); assert(sec_index < pubs_count); #if !defined(NDEBUG) { ge_p3 t; public_key t2; key_image t3; assert(sc_check(&sec) == 0); ge_scalarmult_base(&t, &sec); ge_p3_tobytes(&t2, &t); assert(*pubs[sec_index] == t2); generate_key_image(*pubs[sec_index], sec, t3); assert(image == t3); for (i = 0; i < pubs_count; i++) { assert(check_key(*pubs[i])); } } #endif if (ge_frombytes_vartime(&image_unp, &image) != 0) { local_abort("invalid key image"); } ge_dsm_precomp(image_pre, &image_unp); sc_0(&sum); buf->h = prefix_hash; for (i = 0; i < pubs_count; i++) { ge_p2 tmp2; ge_p3 tmp3; if (i == sec_index) { random_scalar(k); ge_scalarmult_base(&tmp3, &k); ge_p3_tobytes(&buf->ab[i].a, &tmp3); hash_to_ec(*pubs[i], tmp3); ge_scalarmult(&tmp2, &k, &tmp3); ge_tobytes(&buf->ab[i].b, &tmp2); } else { random_scalar(sig[i].c); random_scalar(sig[i].r); if (ge_frombytes_vartime(&tmp3, &*pubs[i]) != 0) { local_abort("invalid pubkey"); } ge_double_scalarmult_base_vartime(&tmp2, &sig[i].c, &tmp3, &sig[i].r); ge_tobytes(&buf->ab[i].a, &tmp2); hash_to_ec(*pubs[i], tmp3); ge_double_scalarmult_precomp_vartime(&tmp2, &sig[i].r, &tmp3, &sig[i].c, image_pre); ge_tobytes(&buf->ab[i].b, &tmp2); sc_add(&sum, &sum, &sig[i].c); } } hash_to_scalar(buf.get(), rs_comm_size(pubs_count), h); sc_sub(&sig[sec_index].c, &h, &sum); sc_mulsub(&sig[sec_index].r, &sig[sec_index].c, &unwrap(sec), &k); } bool crypto_ops::check_ring_signature(const hash &prefix_hash, const key_image &image, const public_key *const *pubs, size_t pubs_count, const signature *sig) { size_t i; ge_p3 image_unp; ge_dsmp image_pre; ec_scalar sum, h; boost::shared_ptr buf(reinterpret_cast(malloc(rs_comm_size(pubs_count))), free); if (!buf) return false; #if !defined(NDEBUG) for (i = 0; i < pubs_count; i++) { assert(check_key(*pubs[i])); } #endif if (ge_frombytes_vartime(&image_unp, &image) != 0) { return false; } ge_dsm_precomp(image_pre, &image_unp); sc_0(&sum); buf->h = prefix_hash; for (i = 0; i < pubs_count; i++) { ge_p2 tmp2; ge_p3 tmp3; if (sc_check(&sig[i].c) != 0 || sc_check(&sig[i].r) != 0) { return false; } if (ge_frombytes_vartime(&tmp3, &*pubs[i]) != 0) { return false; } ge_double_scalarmult_base_vartime(&tmp2, &sig[i].c, &tmp3, &sig[i].r); ge_tobytes(&buf->ab[i].a, &tmp2); hash_to_ec(*pubs[i], tmp3); ge_double_scalarmult_precomp_vartime(&tmp2, &sig[i].r, &tmp3, &sig[i].c, image_pre); ge_tobytes(&buf->ab[i].b, &tmp2); sc_add(&sum, &sum, &sig[i].c); } hash_to_scalar(buf.get(), rs_comm_size(pubs_count), h); sc_sub(&h, &h, &sum); return sc_isnonzero(&h) == 0; } }