// Copyright (c) 2014-2019, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /* * The blake256_* and blake224_* functions are largely copied from * blake256_light.c and blake224_light.c from the BLAKE website: * * https://131002.net/blake/ * * The hmac_* functions implement HMAC-BLAKE-256 and HMAC-BLAKE-224. * HMAC is specified by RFC 2104. */ #include <string.h> #include <stdio.h> #include <stdint.h> #include "blake256.h" #define U8TO32(p) \ (((uint32_t)((p)[0]) << 24) | ((uint32_t)((p)[1]) << 16) | \ ((uint32_t)((p)[2]) << 8) | ((uint32_t)((p)[3]) )) #define U32TO8(p, v) \ (p)[0] = (uint8_t)((v) >> 24); (p)[1] = (uint8_t)((v) >> 16); \ (p)[2] = (uint8_t)((v) >> 8); (p)[3] = (uint8_t)((v) ); const uint8_t sigma[][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15}, {14,10, 4, 8, 9,15,13, 6, 1,12, 0, 2,11, 7, 5, 3}, {11, 8,12, 0, 5, 2,15,13,10,14, 3, 6, 7, 1, 9, 4}, { 7, 9, 3, 1,13,12,11,14, 2, 6, 5,10, 4, 0,15, 8}, { 9, 0, 5, 7, 2, 4,10,15,14, 1,11,12, 6, 8, 3,13}, { 2,12, 6,10, 0,11, 8, 3, 4,13, 7, 5,15,14, 1, 9}, {12, 5, 1,15,14,13, 4,10, 0, 7, 6, 3, 9, 2, 8,11}, {13,11, 7,14,12, 1, 3, 9, 5, 0,15, 4, 8, 6, 2,10}, { 6,15,14, 9,11, 3, 0, 8,12, 2,13, 7, 1, 4,10, 5}, {10, 2, 8, 4, 7, 6, 1, 5,15,11, 9,14, 3,12,13, 0}, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15}, {14,10, 4, 8, 9,15,13, 6, 1,12, 0, 2,11, 7, 5, 3}, {11, 8,12, 0, 5, 2,15,13,10,14, 3, 6, 7, 1, 9, 4}, { 7, 9, 3, 1,13,12,11,14, 2, 6, 5,10, 4, 0,15, 8} }; const uint32_t cst[16] = { 0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344, 0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89, 0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C, 0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917 }; static const uint8_t padding[] = { 0x80,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; void blake256_compress(state *S, const uint8_t *block) { uint32_t v[16], m[16], i; #define ROT(x,n) (((x)<<(32-n))|((x)>>(n))) #define G(a,b,c,d,e) \ v[a] += (m[sigma[i][e]] ^ cst[sigma[i][e+1]]) + v[b]; \ v[d] = ROT(v[d] ^ v[a],16); \ v[c] += v[d]; \ v[b] = ROT(v[b] ^ v[c],12); \ v[a] += (m[sigma[i][e+1]] ^ cst[sigma[i][e]])+v[b]; \ v[d] = ROT(v[d] ^ v[a], 8); \ v[c] += v[d]; \ v[b] = ROT(v[b] ^ v[c], 7); for (i = 0; i < 16; ++i) m[i] = U8TO32(block + i * 4); for (i = 0; i < 8; ++i) v[i] = S->h[i]; v[ 8] = S->s[0] ^ 0x243F6A88; v[ 9] = S->s[1] ^ 0x85A308D3; v[10] = S->s[2] ^ 0x13198A2E; v[11] = S->s[3] ^ 0x03707344; v[12] = 0xA4093822; v[13] = 0x299F31D0; v[14] = 0x082EFA98; v[15] = 0xEC4E6C89; if (S->nullt == 0) { v[12] ^= S->t[0]; v[13] ^= S->t[0]; v[14] ^= S->t[1]; v[15] ^= S->t[1]; } for (i = 0; i < 14; ++i) { G(0, 4, 8, 12, 0); G(1, 5, 9, 13, 2); G(2, 6, 10, 14, 4); G(3, 7, 11, 15, 6); G(3, 4, 9, 14, 14); G(2, 7, 8, 13, 12); G(0, 5, 10, 15, 8); G(1, 6, 11, 12, 10); } for (i = 0; i < 16; ++i) S->h[i % 8] ^= v[i]; for (i = 0; i < 8; ++i) S->h[i] ^= S->s[i % 4]; } void blake256_init(state *S) { S->h[0] = 0x6A09E667; S->h[1] = 0xBB67AE85; S->h[2] = 0x3C6EF372; S->h[3] = 0xA54FF53A; S->h[4] = 0x510E527F; S->h[5] = 0x9B05688C; S->h[6] = 0x1F83D9AB; S->h[7] = 0x5BE0CD19; S->t[0] = S->t[1] = S->buflen = S->nullt = 0; S->s[0] = S->s[1] = S->s[2] = S->s[3] = 0; } void blake224_init(state *S) { S->h[0] = 0xC1059ED8; S->h[1] = 0x367CD507; S->h[2] = 0x3070DD17; S->h[3] = 0xF70E5939; S->h[4] = 0xFFC00B31; S->h[5] = 0x68581511; S->h[6] = 0x64F98FA7; S->h[7] = 0xBEFA4FA4; S->t[0] = S->t[1] = S->buflen = S->nullt = 0; S->s[0] = S->s[1] = S->s[2] = S->s[3] = 0; } // datalen = number of bits void blake256_update(state *S, const uint8_t *data, uint64_t datalen) { int left = S->buflen >> 3; int fill = 64 - left; if (left && (((datalen >> 3)) >= (unsigned) fill)) { memcpy((void *) (S->buf + left), (void *) data, fill); S->t[0] += 512; if (S->t[0] == 0) S->t[1]++; blake256_compress(S, S->buf); data += fill; datalen -= (fill << 3); left = 0; } while (datalen >= 512) { S->t[0] += 512; if (S->t[0] == 0) S->t[1]++; blake256_compress(S, data); data += 64; datalen -= 512; } if (datalen > 0) { memcpy((void *) (S->buf + left), (void *) data, datalen >> 3); S->buflen = (left << 3) + datalen; } else { S->buflen = 0; } } // datalen = number of bits void blake224_update(state *S, const uint8_t *data, uint64_t datalen) { blake256_update(S, data, datalen); } void blake256_final_h(state *S, uint8_t *digest, uint8_t pa, uint8_t pb) { uint8_t msglen[8]; uint32_t lo = S->t[0] + S->buflen, hi = S->t[1]; if (lo < (unsigned) S->buflen) hi++; U32TO8(msglen + 0, hi); U32TO8(msglen + 4, lo); if (S->buflen == 440) { /* one padding byte */ S->t[0] -= 8; blake256_update(S, &pa, 8); } else { if (S->buflen < 440) { /* enough space to fill the block */ if (S->buflen == 0) S->nullt = 1; S->t[0] -= 440 - S->buflen; blake256_update(S, padding, 440 - S->buflen); } else { /* need 2 compressions */ S->t[0] -= 512 - S->buflen; blake256_update(S, padding, 512 - S->buflen); S->t[0] -= 440; blake256_update(S, padding + 1, 440); S->nullt = 1; } blake256_update(S, &pb, 8); S->t[0] -= 8; } S->t[0] -= 64; blake256_update(S, msglen, 64); U32TO8(digest + 0, S->h[0]); U32TO8(digest + 4, S->h[1]); U32TO8(digest + 8, S->h[2]); U32TO8(digest + 12, S->h[3]); U32TO8(digest + 16, S->h[4]); U32TO8(digest + 20, S->h[5]); U32TO8(digest + 24, S->h[6]); U32TO8(digest + 28, S->h[7]); } void blake256_final(state *S, uint8_t *digest) { blake256_final_h(S, digest, 0x81, 0x01); } void blake224_final(state *S, uint8_t *digest) { blake256_final_h(S, digest, 0x80, 0x00); } // inlen = number of bytes void blake256_hash(uint8_t *out, const uint8_t *in, uint64_t inlen) { state S; blake256_init(&S); blake256_update(&S, in, inlen * 8); blake256_final(&S, out); } // inlen = number of bytes void blake224_hash(uint8_t *out, const uint8_t *in, uint64_t inlen) { state S; blake224_init(&S); blake224_update(&S, in, inlen * 8); blake224_final(&S, out); } // keylen = number of bytes void hmac_blake256_init(hmac_state *S, const uint8_t *_key, uint64_t keylen) { const uint8_t *key = _key; uint8_t keyhash[32]; uint8_t pad[64]; uint64_t i; if (keylen > 64) { blake256_hash(keyhash, key, keylen); key = keyhash; keylen = 32; } blake256_init(&S->inner); memset(pad, 0x36, 64); for (i = 0; i < keylen; ++i) { pad[i] ^= key[i]; } blake256_update(&S->inner, pad, 512); blake256_init(&S->outer); memset(pad, 0x5c, 64); for (i = 0; i < keylen; ++i) { pad[i] ^= key[i]; } blake256_update(&S->outer, pad, 512); memset(keyhash, 0, 32); } // keylen = number of bytes void hmac_blake224_init(hmac_state *S, const uint8_t *_key, uint64_t keylen) { const uint8_t *key = _key; uint8_t keyhash[32]; uint8_t pad[64]; uint64_t i; if (keylen > 64) { blake256_hash(keyhash, key, keylen); key = keyhash; keylen = 28; } blake224_init(&S->inner); memset(pad, 0x36, 64); for (i = 0; i < keylen; ++i) { pad[i] ^= key[i]; } blake224_update(&S->inner, pad, 512); blake224_init(&S->outer); memset(pad, 0x5c, 64); for (i = 0; i < keylen; ++i) { pad[i] ^= key[i]; } blake224_update(&S->outer, pad, 512); memset(keyhash, 0, 32); } // datalen = number of bits void hmac_blake256_update(hmac_state *S, const uint8_t *data, uint64_t datalen) { // update the inner state blake256_update(&S->inner, data, datalen); } // datalen = number of bits void hmac_blake224_update(hmac_state *S, const uint8_t *data, uint64_t datalen) { // update the inner state blake224_update(&S->inner, data, datalen); } void hmac_blake256_final(hmac_state *S, uint8_t *digest) { uint8_t ihash[32]; blake256_final(&S->inner, ihash); blake256_update(&S->outer, ihash, 256); blake256_final(&S->outer, digest); memset(ihash, 0, 32); } void hmac_blake224_final(hmac_state *S, uint8_t *digest) { uint8_t ihash[32]; blake224_final(&S->inner, ihash); blake224_update(&S->outer, ihash, 224); blake224_final(&S->outer, digest); memset(ihash, 0, 32); } // keylen = number of bytes; inlen = number of bytes void hmac_blake256_hash(uint8_t *out, const uint8_t *key, uint64_t keylen, const uint8_t *in, uint64_t inlen) { hmac_state S; hmac_blake256_init(&S, key, keylen); hmac_blake256_update(&S, in, inlen * 8); hmac_blake256_final(&S, out); } // keylen = number of bytes; inlen = number of bytes void hmac_blake224_hash(uint8_t *out, const uint8_t *key, uint64_t keylen, const uint8_t *in, uint64_t inlen) { hmac_state S; hmac_blake224_init(&S, key, keylen); hmac_blake224_update(&S, in, inlen * 8); hmac_blake224_final(&S, out); }