// Copyright (c) 2014-2018, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers #include "base58.h" #include <assert.h> #include <string> #include <vector> #include "crypto/hash.h" #include "int-util.h" #include "util.h" #include "varint.h" namespace tools { namespace base58 { namespace { const char alphabet[] = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"; const size_t alphabet_size = sizeof(alphabet) - 1; const size_t encoded_block_sizes[] = {0, 2, 3, 5, 6, 7, 9, 10, 11}; const size_t full_block_size = sizeof(encoded_block_sizes) / sizeof(encoded_block_sizes[0]) - 1; const size_t full_encoded_block_size = encoded_block_sizes[full_block_size]; const size_t addr_checksum_size = 4; struct reverse_alphabet { reverse_alphabet() { m_data.resize(alphabet[alphabet_size - 1] - alphabet[0] + 1, -1); for (size_t i = 0; i < alphabet_size; ++i) { size_t idx = static_cast<size_t>(alphabet[i] - alphabet[0]); m_data[idx] = static_cast<int8_t>(i); } } int operator()(char letter) const { size_t idx = static_cast<size_t>(letter - alphabet[0]); return idx < m_data.size() ? m_data[idx] : -1; } static reverse_alphabet instance; private: std::vector<int8_t> m_data; }; reverse_alphabet reverse_alphabet::instance; struct decoded_block_sizes { decoded_block_sizes() { m_data.resize(encoded_block_sizes[full_block_size] + 1, -1); for (size_t i = 0; i <= full_block_size; ++i) { m_data[encoded_block_sizes[i]] = static_cast<int>(i); } } int operator()(size_t encoded_block_size) const { assert(encoded_block_size <= full_encoded_block_size); return m_data[encoded_block_size]; } static decoded_block_sizes instance; private: std::vector<int> m_data; }; decoded_block_sizes decoded_block_sizes::instance; uint64_t uint_8be_to_64(const uint8_t* data, size_t size) { assert(1 <= size && size <= sizeof(uint64_t)); uint64_t res = 0; switch (9 - size) { case 1: res |= *data++; /* FALLTHRU */ case 2: res <<= 8; res |= *data++; /* FALLTHRU */ case 3: res <<= 8; res |= *data++; /* FALLTHRU */ case 4: res <<= 8; res |= *data++; /* FALLTHRU */ case 5: res <<= 8; res |= *data++; /* FALLTHRU */ case 6: res <<= 8; res |= *data++; /* FALLTHRU */ case 7: res <<= 8; res |= *data++; /* FALLTHRU */ case 8: res <<= 8; res |= *data; break; default: assert(false); } return res; } void uint_64_to_8be(uint64_t num, size_t size, uint8_t* data) { assert(1 <= size && size <= sizeof(uint64_t)); uint64_t num_be = SWAP64BE(num); memcpy(data, reinterpret_cast<uint8_t*>(&num_be) + sizeof(uint64_t) - size, size); } void encode_block(const char* block, size_t size, char* res) { assert(1 <= size && size <= full_block_size); uint64_t num = uint_8be_to_64(reinterpret_cast<const uint8_t*>(block), size); int i = static_cast<int>(encoded_block_sizes[size]) - 1; while (0 < num) { uint64_t remainder = num % alphabet_size; num /= alphabet_size; res[i] = alphabet[remainder]; --i; } } bool decode_block(const char* block, size_t size, char* res) { assert(1 <= size && size <= full_encoded_block_size); int res_size = decoded_block_sizes::instance(size); if (res_size <= 0) return false; // Invalid block size uint64_t res_num = 0; uint64_t order = 1; for (size_t i = size - 1; i < size; --i) { int digit = reverse_alphabet::instance(block[i]); if (digit < 0) return false; // Invalid symbol uint64_t product_hi; uint64_t tmp = res_num + mul128(order, digit, &product_hi); if (tmp < res_num || 0 != product_hi) return false; // Overflow res_num = tmp; order *= alphabet_size; // Never overflows, 58^10 < 2^64 } if (static_cast<size_t>(res_size) < full_block_size && (UINT64_C(1) << (8 * res_size)) <= res_num) return false; // Overflow uint_64_to_8be(res_num, res_size, reinterpret_cast<uint8_t*>(res)); return true; } } std::string encode(const std::string& data) { if (data.empty()) return std::string(); size_t full_block_count = data.size() / full_block_size; size_t last_block_size = data.size() % full_block_size; size_t res_size = full_block_count * full_encoded_block_size + encoded_block_sizes[last_block_size]; std::string res(res_size, alphabet[0]); for (size_t i = 0; i < full_block_count; ++i) { encode_block(data.data() + i * full_block_size, full_block_size, &res[i * full_encoded_block_size]); } if (0 < last_block_size) { encode_block(data.data() + full_block_count * full_block_size, last_block_size, &res[full_block_count * full_encoded_block_size]); } return res; } bool decode(const std::string& enc, std::string& data) { if (enc.empty()) { data.clear(); return true; } size_t full_block_count = enc.size() / full_encoded_block_size; size_t last_block_size = enc.size() % full_encoded_block_size; int last_block_decoded_size = decoded_block_sizes::instance(last_block_size); if (last_block_decoded_size < 0) return false; // Invalid enc length size_t data_size = full_block_count * full_block_size + last_block_decoded_size; data.resize(data_size, 0); for (size_t i = 0; i < full_block_count; ++i) { if (!decode_block(enc.data() + i * full_encoded_block_size, full_encoded_block_size, &data[i * full_block_size])) return false; } if (0 < last_block_size) { if (!decode_block(enc.data() + full_block_count * full_encoded_block_size, last_block_size, &data[full_block_count * full_block_size])) return false; } return true; } std::string encode_addr(uint64_t tag, const std::string& data) { std::string buf = get_varint_data(tag); buf += data; crypto::hash hash = crypto::cn_fast_hash(buf.data(), buf.size()); const char* hash_data = reinterpret_cast<const char*>(&hash); buf.append(hash_data, addr_checksum_size); return encode(buf); } bool decode_addr(std::string addr, uint64_t& tag, std::string& data) { std::string addr_data; bool r = decode(addr, addr_data); if (!r) return false; if (addr_data.size() <= addr_checksum_size) return false; std::string checksum(addr_checksum_size, '\0'); checksum = addr_data.substr(addr_data.size() - addr_checksum_size); addr_data.resize(addr_data.size() - addr_checksum_size); crypto::hash hash = crypto::cn_fast_hash(addr_data.data(), addr_data.size()); std::string expected_checksum(reinterpret_cast<const char*>(&hash), addr_checksum_size); if (expected_checksum != checksum) return false; int read = tools::read_varint(addr_data.begin(), addr_data.end(), tag); if (read <= 0) return false; data = addr_data.substr(read); return true; } } }