/* * services/mesh.c - deal with mesh of query states and handle events for that. * * Copyright (c) 2007, NLnet Labs. All rights reserved. * * This software is open source. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the NLNET LABS nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** * \file * * This file contains functions to assist in dealing with a mesh of * query states. This mesh is supposed to be thread-specific. * It consists of query states (per qname, qtype, qclass) and connections * between query states and the super and subquery states, and replies to * send back to clients. */ #include "config.h" #include "services/mesh.h" #include "services/outbound_list.h" #include "services/cache/dns.h" #include "util/log.h" #include "util/net_help.h" #include "util/module.h" #include "util/regional.h" #include "util/data/msgencode.h" #include "util/timehist.h" #include "util/fptr_wlist.h" #include "util/alloc.h" #include "util/config_file.h" #include "sldns/sbuffer.h" #include "sldns/wire2str.h" #include "services/localzone.h" #include "util/data/dname.h" #include "respip/respip.h" /** subtract timers and the values do not overflow or become negative */ static void timeval_subtract(struct timeval* d, const struct timeval* end, const struct timeval* start) { #ifndef S_SPLINT_S time_t end_usec = end->tv_usec; d->tv_sec = end->tv_sec - start->tv_sec; if(end_usec < start->tv_usec) { end_usec += 1000000; d->tv_sec--; } d->tv_usec = end_usec - start->tv_usec; #endif } /** add timers and the values do not overflow or become negative */ static void timeval_add(struct timeval* d, const struct timeval* add) { #ifndef S_SPLINT_S d->tv_sec += add->tv_sec; d->tv_usec += add->tv_usec; if(d->tv_usec > 1000000 ) { d->tv_usec -= 1000000; d->tv_sec++; } #endif } /** divide sum of timers to get average */ static void timeval_divide(struct timeval* avg, const struct timeval* sum, size_t d) { #ifndef S_SPLINT_S size_t leftover; if(d == 0) { avg->tv_sec = 0; avg->tv_usec = 0; return; } avg->tv_sec = sum->tv_sec / d; avg->tv_usec = sum->tv_usec / d; /* handle fraction from seconds divide */ leftover = sum->tv_sec - avg->tv_sec*d; avg->tv_usec += (leftover*1000000)/d; #endif } /** histogram compare of time values */ static int timeval_smaller(const struct timeval* x, const struct timeval* y) { #ifndef S_SPLINT_S if(x->tv_sec < y->tv_sec) return 1; else if(x->tv_sec == y->tv_sec) { if(x->tv_usec <= y->tv_usec) return 1; else return 0; } else return 0; #endif } /* * Compare two response-ip client info entries for the purpose of mesh state * compare. It returns 0 if ci_a and ci_b are considered equal; otherwise * 1 or -1 (they mean 'ci_a is larger/smaller than ci_b', respectively, but * in practice it should be only used to mean they are different). * We cannot share the mesh state for two queries if different response-ip * actions can apply in the end, even if those queries are otherwise identical. * For this purpose we compare tag lists and tag action lists; they should be * identical to share the same state. * For tag data, we don't look into the data content, as it can be * expensive; unless tag data are not defined for both or they point to the * exact same data in memory (i.e., they come from the same ACL entry), we * consider these data different. * Likewise, if the client info is associated with views, we don't look into * the views. They are considered different unless they are exactly the same * even if the views only differ in the names. */ static int client_info_compare(const struct respip_client_info* ci_a, const struct respip_client_info* ci_b) { int cmp; if(!ci_a && !ci_b) return 0; if(ci_a && !ci_b) return -1; if(!ci_a && ci_b) return 1; if(ci_a->taglen != ci_b->taglen) return (ci_a->taglen < ci_b->taglen) ? -1 : 1; cmp = memcmp(ci_a->taglist, ci_b->taglist, ci_a->taglen); if(cmp != 0) return cmp; if(ci_a->tag_actions_size != ci_b->tag_actions_size) return (ci_a->tag_actions_size < ci_b->tag_actions_size) ? -1 : 1; cmp = memcmp(ci_a->tag_actions, ci_b->tag_actions, ci_a->tag_actions_size); if(cmp != 0) return cmp; if(ci_a->tag_datas != ci_b->tag_datas) return ci_a->tag_datas < ci_b->tag_datas ? -1 : 1; if(ci_a->view != ci_b->view) return ci_a->view < ci_b->view ? -1 : 1; /* For the unbound daemon these should be non-NULL and identical, * but we check that just in case. */ if(ci_a->respip_set != ci_b->respip_set) return ci_a->respip_set < ci_b->respip_set ? -1 : 1; return 0; } int mesh_state_compare(const void* ap, const void* bp) { struct mesh_state* a = (struct mesh_state*)ap; struct mesh_state* b = (struct mesh_state*)bp; int cmp; if(a->unique < b->unique) return -1; if(a->unique > b->unique) return 1; if(a->s.is_priming && !b->s.is_priming) return -1; if(!a->s.is_priming && b->s.is_priming) return 1; if(a->s.is_valrec && !b->s.is_valrec) return -1; if(!a->s.is_valrec && b->s.is_valrec) return 1; if((a->s.query_flags&BIT_RD) && !(b->s.query_flags&BIT_RD)) return -1; if(!(a->s.query_flags&BIT_RD) && (b->s.query_flags&BIT_RD)) return 1; if((a->s.query_flags&BIT_CD) && !(b->s.query_flags&BIT_CD)) return -1; if(!(a->s.query_flags&BIT_CD) && (b->s.query_flags&BIT_CD)) return 1; cmp = query_info_compare(&a->s.qinfo, &b->s.qinfo); if(cmp != 0) return cmp; return client_info_compare(a->s.client_info, b->s.client_info); } int mesh_state_ref_compare(const void* ap, const void* bp) { struct mesh_state_ref* a = (struct mesh_state_ref*)ap; struct mesh_state_ref* b = (struct mesh_state_ref*)bp; return mesh_state_compare(a->s, b->s); } struct mesh_area* mesh_create(struct module_stack* stack, struct module_env* env) { struct mesh_area* mesh = calloc(1, sizeof(struct mesh_area)); if(!mesh) { log_err("mesh area alloc: out of memory"); return NULL; } mesh->histogram = timehist_setup(); mesh->qbuf_bak = sldns_buffer_new(env->cfg->msg_buffer_size); if(!mesh->histogram || !mesh->qbuf_bak) { free(mesh); log_err("mesh area alloc: out of memory"); return NULL; } mesh->mods = *stack; mesh->env = env; rbtree_init(&mesh->run, &mesh_state_compare); rbtree_init(&mesh->all, &mesh_state_compare); mesh->num_reply_addrs = 0; mesh->num_reply_states = 0; mesh->num_detached_states = 0; mesh->num_forever_states = 0; mesh->stats_jostled = 0; mesh->stats_dropped = 0; mesh->max_reply_states = env->cfg->num_queries_per_thread; mesh->max_forever_states = (mesh->max_reply_states+1)/2; #ifndef S_SPLINT_S mesh->jostle_max.tv_sec = (time_t)(env->cfg->jostle_time / 1000); mesh->jostle_max.tv_usec = (time_t)((env->cfg->jostle_time % 1000) *1000); #endif return mesh; } /** help mesh delete delete mesh states */ static void mesh_delete_helper(rbnode_type* n) { struct mesh_state* mstate = (struct mesh_state*)n->key; /* perform a full delete, not only 'cleanup' routine, * because other callbacks expect a clean state in the mesh. * For 're-entrant' calls */ mesh_state_delete(&mstate->s); /* but because these delete the items from the tree, postorder * traversal and rbtree rebalancing do not work together */ } void mesh_delete(struct mesh_area* mesh) { if(!mesh) return; /* free all query states */ while(mesh->all.count) mesh_delete_helper(mesh->all.root); timehist_delete(mesh->histogram); sldns_buffer_free(mesh->qbuf_bak); free(mesh); } void mesh_delete_all(struct mesh_area* mesh) { /* free all query states */ while(mesh->all.count) mesh_delete_helper(mesh->all.root); mesh->stats_dropped += mesh->num_reply_addrs; /* clear mesh area references */ rbtree_init(&mesh->run, &mesh_state_compare); rbtree_init(&mesh->all, &mesh_state_compare); mesh->num_reply_addrs = 0; mesh->num_reply_states = 0; mesh->num_detached_states = 0; mesh->num_forever_states = 0; mesh->forever_first = NULL; mesh->forever_last = NULL; mesh->jostle_first = NULL; mesh->jostle_last = NULL; } int mesh_make_new_space(struct mesh_area* mesh, sldns_buffer* qbuf) { struct mesh_state* m = mesh->jostle_first; /* free space is available */ if(mesh->num_reply_states < mesh->max_reply_states) return 1; /* try to kick out a jostle-list item */ if(m && m->reply_list && m->list_select == mesh_jostle_list) { /* how old is it? */ struct timeval age; timeval_subtract(&age, mesh->env->now_tv, &m->reply_list->start_time); if(timeval_smaller(&mesh->jostle_max, &age)) { /* its a goner */ log_nametypeclass(VERB_ALGO, "query jostled out to " "make space for a new one", m->s.qinfo.qname, m->s.qinfo.qtype, m->s.qinfo.qclass); /* backup the query */ if(qbuf) sldns_buffer_copy(mesh->qbuf_bak, qbuf); /* notify supers */ if(m->super_set.count > 0) { verbose(VERB_ALGO, "notify supers of failure"); m->s.return_msg = NULL; m->s.return_rcode = LDNS_RCODE_SERVFAIL; mesh_walk_supers(mesh, m); } mesh->stats_jostled ++; mesh_state_delete(&m->s); /* restore the query - note that the qinfo ptr to * the querybuffer is then correct again. */ if(qbuf) sldns_buffer_copy(qbuf, mesh->qbuf_bak); return 1; } } /* no space for new item */ return 0; } void mesh_new_client(struct mesh_area* mesh, struct query_info* qinfo, struct respip_client_info* cinfo, uint16_t qflags, struct edns_data* edns, struct comm_reply* rep, uint16_t qid) { struct mesh_state* s = NULL; int unique = unique_mesh_state(edns->opt_list, mesh->env); int was_detached = 0; int was_noreply = 0; int added = 0; if(!unique) s = mesh_area_find(mesh, cinfo, qinfo, qflags&(BIT_RD|BIT_CD), 0, 0); /* does this create a new reply state? */ if(!s || s->list_select == mesh_no_list) { if(!mesh_make_new_space(mesh, rep->c->buffer)) { verbose(VERB_ALGO, "Too many queries. dropping " "incoming query."); comm_point_drop_reply(rep); mesh->stats_dropped ++; return; } /* for this new reply state, the reply address is free, * so the limit of reply addresses does not stop reply states*/ } else { /* protect our memory usage from storing reply addresses */ if(mesh->num_reply_addrs > mesh->max_reply_states*16) { verbose(VERB_ALGO, "Too many requests queued. " "dropping incoming query."); mesh->stats_dropped++; comm_point_drop_reply(rep); return; } } /* see if it already exists, if not, create one */ if(!s) { #ifdef UNBOUND_DEBUG struct rbnode_type* n; #endif s = mesh_state_create(mesh->env, qinfo, cinfo, qflags&(BIT_RD|BIT_CD), 0, 0); if(!s) { log_err("mesh_state_create: out of memory; SERVFAIL"); if(!inplace_cb_reply_servfail_call(mesh->env, qinfo, NULL, NULL, LDNS_RCODE_SERVFAIL, edns, mesh->env->scratch)) edns->opt_list = NULL; error_encode(rep->c->buffer, LDNS_RCODE_SERVFAIL, qinfo, qid, qflags, edns); comm_point_send_reply(rep); return; } if(unique) mesh_state_make_unique(s); /* copy the edns options we got from the front */ if(edns->opt_list) { s->s.edns_opts_front_in = edns_opt_copy_region(edns->opt_list, s->s.region); if(!s->s.edns_opts_front_in) { log_err("mesh_state_create: out of memory; SERVFAIL"); if(!inplace_cb_reply_servfail_call(mesh->env, qinfo, NULL, NULL, LDNS_RCODE_SERVFAIL, edns, mesh->env->scratch)) edns->opt_list = NULL; error_encode(rep->c->buffer, LDNS_RCODE_SERVFAIL, qinfo, qid, qflags, edns); comm_point_send_reply(rep); return; } } #ifdef UNBOUND_DEBUG n = #else (void) #endif rbtree_insert(&mesh->all, &s->node); log_assert(n != NULL); /* set detached (it is now) */ mesh->num_detached_states++; added = 1; } if(!s->reply_list && !s->cb_list && s->super_set.count == 0) was_detached = 1; if(!s->reply_list && !s->cb_list) was_noreply = 1; /* add reply to s */ if(!mesh_state_add_reply(s, edns, rep, qid, qflags, qinfo)) { log_err("mesh_new_client: out of memory; SERVFAIL"); if(!inplace_cb_reply_servfail_call(mesh->env, qinfo, &s->s, NULL, LDNS_RCODE_SERVFAIL, edns, mesh->env->scratch)) edns->opt_list = NULL; error_encode(rep->c->buffer, LDNS_RCODE_SERVFAIL, qinfo, qid, qflags, edns); comm_point_send_reply(rep); if(added) mesh_state_delete(&s->s); return; } /* update statistics */ if(was_detached) { log_assert(mesh->num_detached_states > 0); mesh->num_detached_states--; } if(was_noreply) { mesh->num_reply_states ++; } mesh->num_reply_addrs++; if(s->list_select == mesh_no_list) { /* move to either the forever or the jostle_list */ if(mesh->num_forever_states < mesh->max_forever_states) { mesh->num_forever_states ++; mesh_list_insert(s, &mesh->forever_first, &mesh->forever_last); s->list_select = mesh_forever_list; } else { mesh_list_insert(s, &mesh->jostle_first, &mesh->jostle_last); s->list_select = mesh_jostle_list; } } if(added) mesh_run(mesh, s, module_event_new, NULL); } int mesh_new_callback(struct mesh_area* mesh, struct query_info* qinfo, uint16_t qflags, struct edns_data* edns, sldns_buffer* buf, uint16_t qid, mesh_cb_func_type cb, void* cb_arg) { struct mesh_state* s = NULL; int unique = unique_mesh_state(edns->opt_list, mesh->env); int was_detached = 0; int was_noreply = 0; int added = 0; if(!unique) s = mesh_area_find(mesh, NULL, qinfo, qflags&(BIT_RD|BIT_CD), 0, 0); /* there are no limits on the number of callbacks */ /* see if it already exists, if not, create one */ if(!s) { #ifdef UNBOUND_DEBUG struct rbnode_type* n; #endif s = mesh_state_create(mesh->env, qinfo, NULL, qflags&(BIT_RD|BIT_CD), 0, 0); if(!s) { return 0; } if(unique) mesh_state_make_unique(s); if(edns->opt_list) { s->s.edns_opts_front_in = edns_opt_copy_region(edns->opt_list, s->s.region); if(!s->s.edns_opts_front_in) { return 0; } } #ifdef UNBOUND_DEBUG n = #else (void) #endif rbtree_insert(&mesh->all, &s->node); log_assert(n != NULL); /* set detached (it is now) */ mesh->num_detached_states++; added = 1; } if(!s->reply_list && !s->cb_list && s->super_set.count == 0) was_detached = 1; if(!s->reply_list && !s->cb_list) was_noreply = 1; /* add reply to s */ if(!mesh_state_add_cb(s, edns, buf, cb, cb_arg, qid, qflags)) { if(added) mesh_state_delete(&s->s); return 0; } /* update statistics */ if(was_detached) { log_assert(mesh->num_detached_states > 0); mesh->num_detached_states--; } if(was_noreply) { mesh->num_reply_states ++; } mesh->num_reply_addrs++; if(added) mesh_run(mesh, s, module_event_new, NULL); return 1; } void mesh_new_prefetch(struct mesh_area* mesh, struct query_info* qinfo, uint16_t qflags, time_t leeway) { struct mesh_state* s = mesh_area_find(mesh, NULL, qinfo, qflags&(BIT_RD|BIT_CD), 0, 0); #ifdef UNBOUND_DEBUG struct rbnode_type* n; #endif /* already exists, and for a different purpose perhaps. * if mesh_no_list, keep it that way. */ if(s) { /* make it ignore the cache from now on */ if(!s->s.blacklist) sock_list_insert(&s->s.blacklist, NULL, 0, s->s.region); if(s->s.prefetch_leeway < leeway) s->s.prefetch_leeway = leeway; return; } if(!mesh_make_new_space(mesh, NULL)) { verbose(VERB_ALGO, "Too many queries. dropped prefetch."); mesh->stats_dropped ++; return; } s = mesh_state_create(mesh->env, qinfo, NULL, qflags&(BIT_RD|BIT_CD), 0, 0); if(!s) { log_err("prefetch mesh_state_create: out of memory"); return; } #ifdef UNBOUND_DEBUG n = #else (void) #endif rbtree_insert(&mesh->all, &s->node); log_assert(n != NULL); /* set detached (it is now) */ mesh->num_detached_states++; /* make it ignore the cache */ sock_list_insert(&s->s.blacklist, NULL, 0, s->s.region); s->s.prefetch_leeway = leeway; if(s->list_select == mesh_no_list) { /* move to either the forever or the jostle_list */ if(mesh->num_forever_states < mesh->max_forever_states) { mesh->num_forever_states ++; mesh_list_insert(s, &mesh->forever_first, &mesh->forever_last); s->list_select = mesh_forever_list; } else { mesh_list_insert(s, &mesh->jostle_first, &mesh->jostle_last); s->list_select = mesh_jostle_list; } } mesh_run(mesh, s, module_event_new, NULL); } void mesh_report_reply(struct mesh_area* mesh, struct outbound_entry* e, struct comm_reply* reply, int what) { enum module_ev event = module_event_reply; e->qstate->reply = reply; if(what != NETEVENT_NOERROR) { event = module_event_noreply; if(what == NETEVENT_CAPSFAIL) event = module_event_capsfail; } mesh_run(mesh, e->qstate->mesh_info, event, e); } struct mesh_state* mesh_state_create(struct module_env* env, struct query_info* qinfo, struct respip_client_info* cinfo, uint16_t qflags, int prime, int valrec) { struct regional* region = alloc_reg_obtain(env->alloc); struct mesh_state* mstate; int i; if(!region) return NULL; mstate = (struct mesh_state*)regional_alloc(region, sizeof(struct mesh_state)); if(!mstate) { alloc_reg_release(env->alloc, region); return NULL; } memset(mstate, 0, sizeof(*mstate)); mstate->node = *RBTREE_NULL; mstate->run_node = *RBTREE_NULL; mstate->node.key = mstate; mstate->run_node.key = mstate; mstate->reply_list = NULL; mstate->list_select = mesh_no_list; mstate->replies_sent = 0; rbtree_init(&mstate->super_set, &mesh_state_ref_compare); rbtree_init(&mstate->sub_set, &mesh_state_ref_compare); mstate->num_activated = 0; mstate->unique = NULL; /* init module qstate */ mstate->s.qinfo.qtype = qinfo->qtype; mstate->s.qinfo.qclass = qinfo->qclass; mstate->s.qinfo.local_alias = NULL; mstate->s.qinfo.qname_len = qinfo->qname_len; mstate->s.qinfo.qname = regional_alloc_init(region, qinfo->qname, qinfo->qname_len); if(!mstate->s.qinfo.qname) { alloc_reg_release(env->alloc, region); return NULL; } if(cinfo) { mstate->s.client_info = regional_alloc_init(region, cinfo, sizeof(*cinfo)); if(!mstate->s.client_info) { alloc_reg_release(env->alloc, region); return NULL; } } /* remove all weird bits from qflags */ mstate->s.query_flags = (qflags & (BIT_RD|BIT_CD)); mstate->s.is_priming = prime; mstate->s.is_valrec = valrec; mstate->s.reply = NULL; mstate->s.region = region; mstate->s.curmod = 0; mstate->s.return_msg = 0; mstate->s.return_rcode = LDNS_RCODE_NOERROR; mstate->s.env = env; mstate->s.mesh_info = mstate; mstate->s.prefetch_leeway = 0; mstate->s.no_cache_lookup = 0; mstate->s.no_cache_store = 0; /* init modules */ for(i=0; i<env->mesh->mods.num; i++) { mstate->s.minfo[i] = NULL; mstate->s.ext_state[i] = module_state_initial; } /* init edns option lists */ mstate->s.edns_opts_front_in = NULL; mstate->s.edns_opts_back_out = NULL; mstate->s.edns_opts_back_in = NULL; mstate->s.edns_opts_front_out = NULL; return mstate; } int mesh_state_is_unique(struct mesh_state* mstate) { return mstate->unique != NULL; } void mesh_state_make_unique(struct mesh_state* mstate) { mstate->unique = mstate; } void mesh_state_cleanup(struct mesh_state* mstate) { struct mesh_area* mesh; int i; if(!mstate) return; mesh = mstate->s.env->mesh; /* drop unsent replies */ if(!mstate->replies_sent) { struct mesh_reply* rep; struct mesh_cb* cb; for(rep=mstate->reply_list; rep; rep=rep->next) { comm_point_drop_reply(&rep->query_reply); mesh->num_reply_addrs--; } for(cb=mstate->cb_list; cb; cb=cb->next) { fptr_ok(fptr_whitelist_mesh_cb(cb->cb)); (*cb->cb)(cb->cb_arg, LDNS_RCODE_SERVFAIL, NULL, sec_status_unchecked, NULL); mesh->num_reply_addrs--; } } /* de-init modules */ for(i=0; i<mesh->mods.num; i++) { fptr_ok(fptr_whitelist_mod_clear(mesh->mods.mod[i]->clear)); (*mesh->mods.mod[i]->clear)(&mstate->s, i); mstate->s.minfo[i] = NULL; mstate->s.ext_state[i] = module_finished; } alloc_reg_release(mstate->s.env->alloc, mstate->s.region); } void mesh_state_delete(struct module_qstate* qstate) { struct mesh_area* mesh; struct mesh_state_ref* super, ref; struct mesh_state* mstate; if(!qstate) return; mstate = qstate->mesh_info; mesh = mstate->s.env->mesh; mesh_detach_subs(&mstate->s); if(mstate->list_select == mesh_forever_list) { mesh->num_forever_states --; mesh_list_remove(mstate, &mesh->forever_first, &mesh->forever_last); } else if(mstate->list_select == mesh_jostle_list) { mesh_list_remove(mstate, &mesh->jostle_first, &mesh->jostle_last); } if(!mstate->reply_list && !mstate->cb_list && mstate->super_set.count == 0) { log_assert(mesh->num_detached_states > 0); mesh->num_detached_states--; } if(mstate->reply_list || mstate->cb_list) { log_assert(mesh->num_reply_states > 0); mesh->num_reply_states--; } ref.node.key = &ref; ref.s = mstate; RBTREE_FOR(super, struct mesh_state_ref*, &mstate->super_set) { (void)rbtree_delete(&super->s->sub_set, &ref); } (void)rbtree_delete(&mesh->run, mstate); (void)rbtree_delete(&mesh->all, mstate); mesh_state_cleanup(mstate); } /** helper recursive rbtree find routine */ static int find_in_subsub(struct mesh_state* m, struct mesh_state* tofind, size_t *c) { struct mesh_state_ref* r; if((*c)++ > MESH_MAX_SUBSUB) return 1; RBTREE_FOR(r, struct mesh_state_ref*, &m->sub_set) { if(r->s == tofind || find_in_subsub(r->s, tofind, c)) return 1; } return 0; } /** find cycle for already looked up mesh_state */ static int mesh_detect_cycle_found(struct module_qstate* qstate, struct mesh_state* dep_m) { struct mesh_state* cyc_m = qstate->mesh_info; size_t counter = 0; if(!dep_m) return 0; if(dep_m == cyc_m || find_in_subsub(dep_m, cyc_m, &counter)) { if(counter > MESH_MAX_SUBSUB) return 2; return 1; } return 0; } void mesh_detach_subs(struct module_qstate* qstate) { struct mesh_area* mesh = qstate->env->mesh; struct mesh_state_ref* ref, lookup; #ifdef UNBOUND_DEBUG struct rbnode_type* n; #endif lookup.node.key = &lookup; lookup.s = qstate->mesh_info; RBTREE_FOR(ref, struct mesh_state_ref*, &qstate->mesh_info->sub_set) { #ifdef UNBOUND_DEBUG n = #else (void) #endif rbtree_delete(&ref->s->super_set, &lookup); log_assert(n != NULL); /* must have been present */ if(!ref->s->reply_list && !ref->s->cb_list && ref->s->super_set.count == 0) { mesh->num_detached_states++; log_assert(mesh->num_detached_states + mesh->num_reply_states <= mesh->all.count); } } rbtree_init(&qstate->mesh_info->sub_set, &mesh_state_ref_compare); } int mesh_attach_sub(struct module_qstate* qstate, struct query_info* qinfo, uint16_t qflags, int prime, int valrec, struct module_qstate** newq) { /* find it, if not, create it */ struct mesh_area* mesh = qstate->env->mesh; struct mesh_state* sub = mesh_area_find(mesh, NULL, qinfo, qflags, prime, valrec); int was_detached; if(mesh_detect_cycle_found(qstate, sub)) { verbose(VERB_ALGO, "attach failed, cycle detected"); return 0; } if(!sub) { #ifdef UNBOUND_DEBUG struct rbnode_type* n; #endif /* create a new one */ sub = mesh_state_create(qstate->env, qinfo, NULL, qflags, prime, valrec); if(!sub) { log_err("mesh_attach_sub: out of memory"); return 0; } #ifdef UNBOUND_DEBUG n = #else (void) #endif rbtree_insert(&mesh->all, &sub->node); log_assert(n != NULL); /* set detached (it is now) */ mesh->num_detached_states++; /* set new query state to run */ #ifdef UNBOUND_DEBUG n = #else (void) #endif rbtree_insert(&mesh->run, &sub->run_node); log_assert(n != NULL); *newq = &sub->s; } else *newq = NULL; was_detached = (sub->super_set.count == 0); if(!mesh_state_attachment(qstate->mesh_info, sub)) return 0; /* if it was a duplicate attachment, the count was not zero before */ if(!sub->reply_list && !sub->cb_list && was_detached && sub->super_set.count == 1) { /* it used to be detached, before this one got added */ log_assert(mesh->num_detached_states > 0); mesh->num_detached_states--; } /* *newq will be run when inited after the current module stops */ return 1; } int mesh_state_attachment(struct mesh_state* super, struct mesh_state* sub) { #ifdef UNBOUND_DEBUG struct rbnode_type* n; #endif struct mesh_state_ref* subref; /* points to sub, inserted in super */ struct mesh_state_ref* superref; /* points to super, inserted in sub */ if( !(subref = regional_alloc(super->s.region, sizeof(struct mesh_state_ref))) || !(superref = regional_alloc(sub->s.region, sizeof(struct mesh_state_ref))) ) { log_err("mesh_state_attachment: out of memory"); return 0; } superref->node.key = superref; superref->s = super; subref->node.key = subref; subref->s = sub; if(!rbtree_insert(&sub->super_set, &superref->node)) { /* this should not happen, iterator and validator do not * attach subqueries that are identical. */ /* already attached, we are done, nothing todo. * since superref and subref already allocated in region, * we cannot free them */ return 1; } #ifdef UNBOUND_DEBUG n = #else (void) #endif rbtree_insert(&super->sub_set, &subref->node); log_assert(n != NULL); /* we checked above if statement, the reverse administration should not fail now, unless they are out of sync */ return 1; } /** * callback results to mesh cb entry * @param m: mesh state to send it for. * @param rcode: if not 0, error code. * @param rep: reply to send (or NULL if rcode is set). * @param r: callback entry */ static void mesh_do_callback(struct mesh_state* m, int rcode, struct reply_info* rep, struct mesh_cb* r) { int secure; char* reason = NULL; /* bogus messages are not made into servfail, sec_status passed * to the callback function */ if(rep && rep->security == sec_status_secure) secure = 1; else secure = 0; if(!rep && rcode == LDNS_RCODE_NOERROR) rcode = LDNS_RCODE_SERVFAIL; if(!rcode && rep->security == sec_status_bogus) { if(!(reason = errinf_to_str(&m->s))) rcode = LDNS_RCODE_SERVFAIL; } /* send the reply */ if(rcode) { if(rcode == LDNS_RCODE_SERVFAIL) { if(!inplace_cb_reply_servfail_call(m->s.env, &m->s.qinfo, &m->s, rep, rcode, &r->edns, m->s.region)) r->edns.opt_list = NULL; } else { if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep, rcode, &r->edns, m->s.region)) r->edns.opt_list = NULL; } fptr_ok(fptr_whitelist_mesh_cb(r->cb)); (*r->cb)(r->cb_arg, rcode, r->buf, sec_status_unchecked, NULL); } else { size_t udp_size = r->edns.udp_size; sldns_buffer_clear(r->buf); r->edns.edns_version = EDNS_ADVERTISED_VERSION; r->edns.udp_size = EDNS_ADVERTISED_SIZE; r->edns.ext_rcode = 0; r->edns.bits &= EDNS_DO; if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep, LDNS_RCODE_NOERROR, &r->edns, m->s.region) || !reply_info_answer_encode(&m->s.qinfo, rep, r->qid, r->qflags, r->buf, 0, 1, m->s.env->scratch, udp_size, &r->edns, (int)(r->edns.bits & EDNS_DO), secure)) { fptr_ok(fptr_whitelist_mesh_cb(r->cb)); (*r->cb)(r->cb_arg, LDNS_RCODE_SERVFAIL, r->buf, sec_status_unchecked, NULL); } else { fptr_ok(fptr_whitelist_mesh_cb(r->cb)); (*r->cb)(r->cb_arg, LDNS_RCODE_NOERROR, r->buf, rep->security, reason); } } free(reason); m->s.env->mesh->num_reply_addrs--; } /** * Send reply to mesh reply entry * @param m: mesh state to send it for. * @param rcode: if not 0, error code. * @param rep: reply to send (or NULL if rcode is set). * @param r: reply entry * @param prev: previous reply, already has its answer encoded in buffer. */ static void mesh_send_reply(struct mesh_state* m, int rcode, struct reply_info* rep, struct mesh_reply* r, struct mesh_reply* prev) { struct timeval end_time; struct timeval duration; int secure; /* Copy the client's EDNS for later restore, to make sure the edns * compare is with the correct edns options. */ struct edns_data edns_bak = r->edns; /* examine security status */ if(m->s.env->need_to_validate && (!(r->qflags&BIT_CD) || m->s.env->cfg->ignore_cd) && rep && rep->security <= sec_status_bogus) { rcode = LDNS_RCODE_SERVFAIL; if(m->s.env->cfg->stat_extended) m->s.env->mesh->ans_bogus++; } if(rep && rep->security == sec_status_secure) secure = 1; else secure = 0; if(!rep && rcode == LDNS_RCODE_NOERROR) rcode = LDNS_RCODE_SERVFAIL; /* send the reply */ /* We don't reuse the encoded answer if either the previous or current * response has a local alias. We could compare the alias records * and still reuse the previous answer if they are the same, but that * would be complicated and error prone for the relatively minor case. * So we err on the side of safety. */ if(prev && prev->qflags == r->qflags && !prev->local_alias && !r->local_alias && prev->edns.edns_present == r->edns.edns_present && prev->edns.bits == r->edns.bits && prev->edns.udp_size == r->edns.udp_size && edns_opt_list_compare(prev->edns.opt_list, r->edns.opt_list) == 0) { /* if the previous reply is identical to this one, fix ID */ if(prev->query_reply.c->buffer != r->query_reply.c->buffer) sldns_buffer_copy(r->query_reply.c->buffer, prev->query_reply.c->buffer); sldns_buffer_write_at(r->query_reply.c->buffer, 0, &r->qid, sizeof(uint16_t)); sldns_buffer_write_at(r->query_reply.c->buffer, 12, r->qname, m->s.qinfo.qname_len); comm_point_send_reply(&r->query_reply); } else if(rcode) { m->s.qinfo.qname = r->qname; m->s.qinfo.local_alias = r->local_alias; if(rcode == LDNS_RCODE_SERVFAIL) { if(!inplace_cb_reply_servfail_call(m->s.env, &m->s.qinfo, &m->s, rep, rcode, &r->edns, m->s.region)) r->edns.opt_list = NULL; } else { if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep, rcode, &r->edns, m->s.region)) r->edns.opt_list = NULL; } error_encode(r->query_reply.c->buffer, rcode, &m->s.qinfo, r->qid, r->qflags, &r->edns); comm_point_send_reply(&r->query_reply); } else { size_t udp_size = r->edns.udp_size; r->edns.edns_version = EDNS_ADVERTISED_VERSION; r->edns.udp_size = EDNS_ADVERTISED_SIZE; r->edns.ext_rcode = 0; r->edns.bits &= EDNS_DO; m->s.qinfo.qname = r->qname; m->s.qinfo.local_alias = r->local_alias; if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep, LDNS_RCODE_NOERROR, &r->edns, m->s.region) || !reply_info_answer_encode(&m->s.qinfo, rep, r->qid, r->qflags, r->query_reply.c->buffer, 0, 1, m->s.env->scratch, udp_size, &r->edns, (int)(r->edns.bits & EDNS_DO), secure)) { if(!inplace_cb_reply_servfail_call(m->s.env, &m->s.qinfo, &m->s, rep, LDNS_RCODE_SERVFAIL, &r->edns, m->s.region)) r->edns.opt_list = NULL; error_encode(r->query_reply.c->buffer, LDNS_RCODE_SERVFAIL, &m->s.qinfo, r->qid, r->qflags, &r->edns); } r->edns = edns_bak; comm_point_send_reply(&r->query_reply); } /* account */ m->s.env->mesh->num_reply_addrs--; end_time = *m->s.env->now_tv; timeval_subtract(&duration, &end_time, &r->start_time); verbose(VERB_ALGO, "query took " ARG_LL "d.%6.6d sec", (long long)duration.tv_sec, (int)duration.tv_usec); m->s.env->mesh->replies_sent++; timeval_add(&m->s.env->mesh->replies_sum_wait, &duration); timehist_insert(m->s.env->mesh->histogram, &duration); if(m->s.env->cfg->stat_extended) { uint16_t rc = FLAGS_GET_RCODE(sldns_buffer_read_u16_at(r-> query_reply.c->buffer, 2)); if(secure) m->s.env->mesh->ans_secure++; m->s.env->mesh->ans_rcode[ rc ] ++; if(rc == 0 && LDNS_ANCOUNT(sldns_buffer_begin(r-> query_reply.c->buffer)) == 0) m->s.env->mesh->ans_nodata++; } /* Log reply sent */ if(m->s.env->cfg->log_replies) { log_reply_info(0, &m->s.qinfo, &r->query_reply.addr, r->query_reply.addrlen, duration, 0, r->query_reply.c->buffer); } } void mesh_query_done(struct mesh_state* mstate) { struct mesh_reply* r; struct mesh_reply* prev = NULL; struct mesh_cb* c; struct reply_info* rep = (mstate->s.return_msg? mstate->s.return_msg->rep:NULL); for(r = mstate->reply_list; r; r = r->next) { /* if a response-ip address block has been stored the * information should be logged for each client. */ if(mstate->s.respip_action_info && mstate->s.respip_action_info->addrinfo) { respip_inform_print(mstate->s.respip_action_info->addrinfo, r->qname, mstate->s.qinfo.qtype, mstate->s.qinfo.qclass, r->local_alias, &r->query_reply); } /* if this query is determined to be dropped during the * mesh processing, this is the point to take that action. */ if(mstate->s.is_drop) comm_point_drop_reply(&r->query_reply); else { mesh_send_reply(mstate, mstate->s.return_rcode, rep, r, prev); prev = r; } } mstate->replies_sent = 1; for(c = mstate->cb_list; c; c = c->next) { mesh_do_callback(mstate, mstate->s.return_rcode, rep, c); } } void mesh_walk_supers(struct mesh_area* mesh, struct mesh_state* mstate) { struct mesh_state_ref* ref; RBTREE_FOR(ref, struct mesh_state_ref*, &mstate->super_set) { /* make super runnable */ (void)rbtree_insert(&mesh->run, &ref->s->run_node); /* callback the function to inform super of result */ fptr_ok(fptr_whitelist_mod_inform_super( mesh->mods.mod[ref->s->s.curmod]->inform_super)); (*mesh->mods.mod[ref->s->s.curmod]->inform_super)(&mstate->s, ref->s->s.curmod, &ref->s->s); } } struct mesh_state* mesh_area_find(struct mesh_area* mesh, struct respip_client_info* cinfo, struct query_info* qinfo, uint16_t qflags, int prime, int valrec) { struct mesh_state key; struct mesh_state* result; key.node.key = &key; key.s.is_priming = prime; key.s.is_valrec = valrec; key.s.qinfo = *qinfo; key.s.query_flags = qflags; /* We are searching for a similar mesh state when we DO want to * aggregate the state. Thus unique is set to NULL. (default when we * desire aggregation).*/ key.unique = NULL; key.s.client_info = cinfo; result = (struct mesh_state*)rbtree_search(&mesh->all, &key); return result; } int mesh_state_add_cb(struct mesh_state* s, struct edns_data* edns, sldns_buffer* buf, mesh_cb_func_type cb, void* cb_arg, uint16_t qid, uint16_t qflags) { struct mesh_cb* r = regional_alloc(s->s.region, sizeof(struct mesh_cb)); if(!r) return 0; r->buf = buf; log_assert(fptr_whitelist_mesh_cb(cb)); /* early failure ifmissing*/ r->cb = cb; r->cb_arg = cb_arg; r->edns = *edns; if(edns->opt_list) { r->edns.opt_list = edns_opt_copy_region(edns->opt_list, s->s.region); if(!r->edns.opt_list) return 0; } r->qid = qid; r->qflags = qflags; r->next = s->cb_list; s->cb_list = r; return 1; } int mesh_state_add_reply(struct mesh_state* s, struct edns_data* edns, struct comm_reply* rep, uint16_t qid, uint16_t qflags, const struct query_info* qinfo) { struct mesh_reply* r = regional_alloc(s->s.region, sizeof(struct mesh_reply)); if(!r) return 0; r->query_reply = *rep; r->edns = *edns; if(edns->opt_list) { r->edns.opt_list = edns_opt_copy_region(edns->opt_list, s->s.region); if(!r->edns.opt_list) return 0; } r->qid = qid; r->qflags = qflags; r->start_time = *s->s.env->now_tv; r->next = s->reply_list; r->qname = regional_alloc_init(s->s.region, qinfo->qname, s->s.qinfo.qname_len); if(!r->qname) return 0; /* Data related to local alias stored in 'qinfo' (if any) is ephemeral * and can be different for different original queries (even if the * replaced query name is the same). So we need to make a deep copy * and store the copy for each reply info. */ if(qinfo->local_alias) { struct packed_rrset_data* d; struct packed_rrset_data* dsrc; r->local_alias = regional_alloc_zero(s->s.region, sizeof(*qinfo->local_alias)); if(!r->local_alias) return 0; r->local_alias->rrset = regional_alloc_init(s->s.region, qinfo->local_alias->rrset, sizeof(*qinfo->local_alias->rrset)); if(!r->local_alias->rrset) return 0; dsrc = qinfo->local_alias->rrset->entry.data; /* In the current implementation, a local alias must be * a single CNAME RR (see worker_handle_request()). */ log_assert(!qinfo->local_alias->next && dsrc->count == 1 && qinfo->local_alias->rrset->rk.type == htons(LDNS_RR_TYPE_CNAME)); /* Technically, we should make a local copy for the owner * name of the RRset, but in the case of the first (and * currently only) local alias RRset, the owner name should * point to the qname of the corresponding query, which should * be valid throughout the lifetime of this mesh_reply. So * we can skip copying. */ log_assert(qinfo->local_alias->rrset->rk.dname == sldns_buffer_at(rep->c->buffer, LDNS_HEADER_SIZE)); d = regional_alloc_init(s->s.region, dsrc, sizeof(struct packed_rrset_data) + sizeof(size_t) + sizeof(uint8_t*) + sizeof(time_t)); if(!d) return 0; r->local_alias->rrset->entry.data = d; d->rr_len = (size_t*)((uint8_t*)d + sizeof(struct packed_rrset_data)); d->rr_data = (uint8_t**)&(d->rr_len[1]); d->rr_ttl = (time_t*)&(d->rr_data[1]); d->rr_len[0] = dsrc->rr_len[0]; d->rr_ttl[0] = dsrc->rr_ttl[0]; d->rr_data[0] = regional_alloc_init(s->s.region, dsrc->rr_data[0], d->rr_len[0]); if(!d->rr_data[0]) return 0; } else r->local_alias = NULL; s->reply_list = r; return 1; } /** * Continue processing the mesh state at another module. * Handles module to modules tranfer of control. * Handles module finished. * @param mesh: the mesh area. * @param mstate: currently active mesh state. * Deleted if finished, calls _done and _supers to * send replies to clients and inform other mesh states. * This in turn may create additional runnable mesh states. * @param s: state at which the current module exited. * @param ev: the event sent to the module. * returned is the event to send to the next module. * @return true if continue processing at the new module. * false if not continued processing is needed. */ static int mesh_continue(struct mesh_area* mesh, struct mesh_state* mstate, enum module_ext_state s, enum module_ev* ev) { mstate->num_activated++; if(mstate->num_activated > MESH_MAX_ACTIVATION) { /* module is looping. Stop it. */ log_err("internal error: looping module stopped"); log_query_info(VERB_QUERY, "pass error for qstate", &mstate->s.qinfo); s = module_error; } if(s == module_wait_module || s == module_restart_next) { /* start next module */ mstate->s.curmod++; if(mesh->mods.num == mstate->s.curmod) { log_err("Cannot pass to next module; at last module"); log_query_info(VERB_QUERY, "pass error for qstate", &mstate->s.qinfo); mstate->s.curmod--; return mesh_continue(mesh, mstate, module_error, ev); } if(s == module_restart_next) { int curmod = mstate->s.curmod; for(; mstate->s.curmod < mesh->mods.num; mstate->s.curmod++) { fptr_ok(fptr_whitelist_mod_clear( mesh->mods.mod[mstate->s.curmod]->clear)); (*mesh->mods.mod[mstate->s.curmod]->clear) (&mstate->s, mstate->s.curmod); mstate->s.minfo[mstate->s.curmod] = NULL; } mstate->s.curmod = curmod; } *ev = module_event_pass; return 1; } if(s == module_wait_subquery && mstate->sub_set.count == 0) { log_err("module cannot wait for subquery, subquery list empty"); log_query_info(VERB_QUERY, "pass error for qstate", &mstate->s.qinfo); s = module_error; } if(s == module_error && mstate->s.return_rcode == LDNS_RCODE_NOERROR) { /* error is bad, handle pass back up below */ mstate->s.return_rcode = LDNS_RCODE_SERVFAIL; } if(s == module_error || s == module_finished) { if(mstate->s.curmod == 0) { mesh_query_done(mstate); mesh_walk_supers(mesh, mstate); mesh_state_delete(&mstate->s); return 0; } /* pass along the locus of control */ mstate->s.curmod --; *ev = module_event_moddone; return 1; } return 0; } void mesh_run(struct mesh_area* mesh, struct mesh_state* mstate, enum module_ev ev, struct outbound_entry* e) { enum module_ext_state s; verbose(VERB_ALGO, "mesh_run: start"); while(mstate) { /* run the module */ fptr_ok(fptr_whitelist_mod_operate( mesh->mods.mod[mstate->s.curmod]->operate)); (*mesh->mods.mod[mstate->s.curmod]->operate) (&mstate->s, ev, mstate->s.curmod, e); /* examine results */ mstate->s.reply = NULL; regional_free_all(mstate->s.env->scratch); s = mstate->s.ext_state[mstate->s.curmod]; verbose(VERB_ALGO, "mesh_run: %s module exit state is %s", mesh->mods.mod[mstate->s.curmod]->name, strextstate(s)); e = NULL; if(mesh_continue(mesh, mstate, s, &ev)) continue; /* run more modules */ ev = module_event_pass; if(mesh->run.count > 0) { /* pop random element off the runnable tree */ mstate = (struct mesh_state*)mesh->run.root->key; (void)rbtree_delete(&mesh->run, mstate); } else mstate = NULL; } if(verbosity >= VERB_ALGO) { mesh_stats(mesh, "mesh_run: end"); mesh_log_list(mesh); } } void mesh_log_list(struct mesh_area* mesh) { char buf[30]; struct mesh_state* m; int num = 0; RBTREE_FOR(m, struct mesh_state*, &mesh->all) { snprintf(buf, sizeof(buf), "%d%s%s%s%s%s%s mod%d %s%s", num++, (m->s.is_priming)?"p":"", /* prime */ (m->s.is_valrec)?"v":"", /* prime */ (m->s.query_flags&BIT_RD)?"RD":"", (m->s.query_flags&BIT_CD)?"CD":"", (m->super_set.count==0)?"d":"", /* detached */ (m->sub_set.count!=0)?"c":"", /* children */ m->s.curmod, (m->reply_list)?"rep":"", /*hasreply*/ (m->cb_list)?"cb":"" /* callbacks */ ); log_query_info(VERB_ALGO, buf, &m->s.qinfo); } } void mesh_stats(struct mesh_area* mesh, const char* str) { verbose(VERB_DETAIL, "%s %u recursion states (%u with reply, " "%u detached), %u waiting replies, %u recursion replies " "sent, %d replies dropped, %d states jostled out", str, (unsigned)mesh->all.count, (unsigned)mesh->num_reply_states, (unsigned)mesh->num_detached_states, (unsigned)mesh->num_reply_addrs, (unsigned)mesh->replies_sent, (unsigned)mesh->stats_dropped, (unsigned)mesh->stats_jostled); if(mesh->replies_sent > 0) { struct timeval avg; timeval_divide(&avg, &mesh->replies_sum_wait, mesh->replies_sent); log_info("average recursion processing time " ARG_LL "d.%6.6d sec", (long long)avg.tv_sec, (int)avg.tv_usec); log_info("histogram of recursion processing times"); timehist_log(mesh->histogram, "recursions"); } } void mesh_stats_clear(struct mesh_area* mesh) { if(!mesh) return; mesh->replies_sent = 0; mesh->replies_sum_wait.tv_sec = 0; mesh->replies_sum_wait.tv_usec = 0; mesh->stats_jostled = 0; mesh->stats_dropped = 0; timehist_clear(mesh->histogram); mesh->ans_secure = 0; mesh->ans_bogus = 0; memset(&mesh->ans_rcode[0], 0, sizeof(size_t)*16); mesh->ans_nodata = 0; } size_t mesh_get_mem(struct mesh_area* mesh) { struct mesh_state* m; size_t s = sizeof(*mesh) + sizeof(struct timehist) + sizeof(struct th_buck)*mesh->histogram->num + sizeof(sldns_buffer) + sldns_buffer_capacity(mesh->qbuf_bak); RBTREE_FOR(m, struct mesh_state*, &mesh->all) { /* all, including m itself allocated in qstate region */ s += regional_get_mem(m->s.region); } return s; } int mesh_detect_cycle(struct module_qstate* qstate, struct query_info* qinfo, uint16_t flags, int prime, int valrec) { struct mesh_area* mesh = qstate->env->mesh; struct mesh_state* dep_m = NULL; if(!mesh_state_is_unique(qstate->mesh_info)) dep_m = mesh_area_find(mesh, NULL, qinfo, flags, prime, valrec); return mesh_detect_cycle_found(qstate, dep_m); } void mesh_list_insert(struct mesh_state* m, struct mesh_state** fp, struct mesh_state** lp) { /* insert as last element */ m->prev = *lp; m->next = NULL; if(*lp) (*lp)->next = m; else *fp = m; *lp = m; } void mesh_list_remove(struct mesh_state* m, struct mesh_state** fp, struct mesh_state** lp) { if(m->next) m->next->prev = m->prev; else *lp = m->prev; if(m->prev) m->prev->next = m->next; else *fp = m->next; }