Age | Commit message (Collapse) | Author | Files | Lines |
|
|
|
calls to wallet2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
not full)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This reverts commit b60f48f0e31c17638f771042887b2fffdbad15b4.
|
|
Makes it easier to debug leaks
|
|
Additional tx keys, amounts and fees were missing in some cases
|
|
|
|
|
|
addresses for getaddress
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Scheme by luigi1111:
Multisig for RingCT on Monero
2 of 2
User A (coordinator):
Spendkey b,B
Viewkey a,A (shared)
User B:
Spendkey c,C
Viewkey a,A (shared)
Public Address: C+B, A
Both have their own watch only wallet via C+B, a
A will coordinate spending process (though B could easily as well, coordinator is more needed for more participants)
A and B watch for incoming outputs
B creates "half" key images for discovered output D:
I2_D = (Hs(aR)+c) * Hp(D)
B also creates 1.5 random keypairs (one scalar and 2 pubkeys; one on base G and one on base Hp(D)) for each output, storing the scalar(k) (linked to D),
and sending the pubkeys with I2_D.
A also creates "half" key images:
I1_D = (Hs(aR)+b) * Hp(D)
Then I_D = I1_D + I2_D
Having I_D allows A to check spent status of course, but more importantly allows A to actually build a transaction prefix (and thus transaction).
A builds the transaction until most of the way through MLSAG_Gen, adding the 2 pubkeys (per input) provided with I2_D
to his own generated ones where they are needed (secret row L, R).
At this point, A has a mostly completed transaction (but with an invalid/incomplete signature). A sends over the tx and includes r,
which allows B (with the recipient's address) to verify the destination and amount (by reconstructing the stealth address and decoding ecdhInfo).
B then finishes the signature by computing ss[secret_index][0] = ss[secret_index][0] + k - cc[secret_index]*c (secret indices need to be passed as well).
B can then broadcast the tx, or send it back to A for broadcasting. Once B has completed the signing (and verified the tx to be valid), he can add the full I_D
to his cache, allowing him to verify spent status as well.
NOTE:
A and B *must* present key A and B to each other with a valid signature proving they know a and b respectively.
Otherwise, trickery like the following becomes possible:
A creates viewkey a,A, spendkey b,B, and sends a,A,B to B.
B creates a fake key C = zG - B. B sends C back to A.
The combined spendkey C+B then equals zG, allowing B to spend funds at any time!
The signature fixes this, because B does not know a c corresponding to C (and thus can't produce a signature).
2 of 3
User A (coordinator)
Shared viewkey a,A
"spendkey" j,J
User B
"spendkey" k,K
User C
"spendkey" m,M
A collects K and M from B and C
B collects J and M from A and C
C collects J and K from A and B
A computes N = nG, n = Hs(jK)
A computes O = oG, o = Hs(jM)
B anc C compute P = pG, p = Hs(kM) || Hs(mK)
B and C can also compute N and O respectively if they wish to be able to coordinate
Address: N+O+P, A
The rest follows as above. The coordinator possesses 2 of 3 needed keys; he can get the other
needed part of the signature/key images from either of the other two.
Alternatively, if secure communication exists between parties:
A gives j to B
B gives k to C
C gives m to A
Address: J+K+M, A
3 of 3
Identical to 2 of 2, except the coordinator must collect the key images from both of the others.
The transaction must also be passed an additional hop: A -> B -> C (or A -> C -> B), who can then broadcast it
or send it back to A.
N-1 of N
Generally the same as 2 of 3, except participants need to be arranged in a ring to pass their keys around
(using either the secure or insecure method).
For example (ignoring viewkey so letters line up):
[4 of 5]
User: spendkey
A: a
B: b
C: c
D: d
E: e
a -> B, b -> C, c -> D, d -> E, e -> A
Order of signing does not matter, it just must reach n-1 users. A "remaining keys" list must be passed around with
the transaction so the signers know if they should use 1 or both keys.
Collecting key image parts becomes a little messy, but basically every wallet sends over both of their parts with a tag for each.
Thia way the coordinating wallet can keep track of which images have been added and which wallet they come from. Reasoning:
1. The key images must be added only once (coordinator will get key images for key a from both A and B, he must add only one to get the proper key actual key image)
2. The coordinator must keep track of which helper pubkeys came from which wallet (discussed in 2 of 2 section). The coordinator
must choose only one set to use, then include his choice in the "remaining keys" list so the other wallets know which of their keys to use.
You can generalize it further to N-2 of N or even M of N, but I'm not sure there's legitimate demand to justify the complexity. It might
also be straightforward enough to support with minimal changes from N-1 format.
You basically just give each user additional keys for each additional "-1" you desire. N-2 would be 3 keys per user, N-3 4 keys, etc.
The process is somewhat cumbersome:
To create a N/N multisig wallet:
- each participant creates a normal wallet
- each participant runs "prepare_multisig", and sends the resulting string to every other participant
- each participant runs "make_multisig N A B C D...", with N being the threshold and A B C D... being the strings received from other participants (the threshold must currently equal N)
As txes are received, participants' wallets will need to synchronize so that those new outputs may be spent:
- each participant runs "export_multisig FILENAME", and sends the FILENAME file to every other participant
- each participant runs "import_multisig A B C D...", with A B C D... being the filenames received from other participants
Then, a transaction may be initiated:
- one of the participants runs "transfer ADDRESS AMOUNT"
- this partly signed transaction will be written to the "multisig_monero_tx" file
- the initiator sends this file to another participant
- that other participant runs "sign_multisig multisig_monero_tx"
- the resulting transaction is written to the "multisig_monero_tx" file again
- if the threshold was not reached, the file must be sent to another participant, until enough have signed
- the last participant to sign runs "submit_multisig multisig_monero_tx" to relay the transaction to the Monero network
|
|
|
|
|
|
It takes a full tx+metadata hex string as input
|
|
|
|
|
|
|
|
- refactoring: proof generation/checking code was moved from simplewallet.cpp to wallet2.cpp
- allow an arbitrary message to be signed together with txid
- introduce two types (outbound & inbound) of tx proofs; with the same syntax, inbound is selected when <address> belongs to this wallet, outbound otherwise. see GitHub thread for more discussion
- wallet RPC: added get_tx_key, check_tx_key, get_tx_proof, check_tx_proof
- wallet API: moved WalletManagerImpl::checkPayment to Wallet::checkTxKey, added Wallet::getTxProof/checkTxProof
- get_tx_key/check_tx_key: handle additional tx keys by concatenating them into a single string
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wallet2 is a library, and should not prompt for stdin. Instead,
pass a function so simplewallet can prompt on stdin, and a GUI
might display a window, etc.
|
|
This yields a clear error message rather then some possibly
confusing more technical errors down the line
|
|
Transactions in the txpool are marked when another transaction
is seen double spending one or more of its inputs.
This is then exposed wherever appropriate.
Note that being marked with this "double spend seen" flag does
NOT mean this transaction IS a double spend and will never be
mined: it just means that the network has seen at least another
transaction spending at least one of the same inputs, so care
should be taken to wait for a few confirmations before acting
upon that transaction (ie, mostly of use for merchants wanting
to accept unconfirmed transactions).
|
|
This branch fixes a file permission issue introduced by https://github.com/monero-project/monero/commit/69c37200aa87f100f731e755bdca7a0dc6ae820a
|
|
|
|
|
|
|
|
monero/src/cryptonote_protocol/block_queue.cpp:208:44: error:
suggest braces around initialization of subobject [-Werror,-Wmissing-braces]
static const boost::uuids::uuid uuid0 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
{ }
monero/src/wallet/wallet_rpc_server.cpp:1895:43: error:
lambda capture 'wal' is not used [-Werror,-Wunused-lambda-capture]
tools::signal_handler::install([&wrpc, &wal](int) {
^
monero/src/cryptonote_protocol/cryptonote_protocol_handler.inl:1616:40: error:
lambda capture 'arg' is not used [-Werror,-Wunused-lambda-capture]
m_p2p->for_each_connection([this, &arg, &fluffy_arg, &exclude_context, &fullConnections...
^
monero/src/cryptonote_protocol/cryptonote_protocol_handler.inl:1616:46: error:
lambda capture 'fluffy_arg' is not used [-Werror,-Wunused-lambda-capture]
m_p2p->for_each_connection([this, &arg, &fluffy_arg, &exclude_context, &fullConnections...
^
monero/src/blockchain_utilities/blockchain_export.cpp:181:3: error:
bool literal returned from 'main' [-Werror,-Wmain]
CHECK_AND_ASSERT_MES(r, false, "Failed to initialize source blockchain storage");
^ ~~~~~
monero/contrib/epee/include/misc_log_ex.h:180:97: note:
expanded from macro 'CHECK_AND_ASSERT_MES'
...fail_ret_val, message) do{if(!(expr)) {LOG_ERROR(message); return fail_ret_val;};}while(0)
^ ~~~~~~~~~~~~
monero/src/blockchain_utilities/blockchain_export.cpp:195:3: error:
bool literal returned from 'main' [-Werror,-Wmain]
CHECK_AND_ASSERT_MES(r, false, "Failed to export blockchain raw data");
^ ~~~~~
monero/contrib/epee/include/misc_log_ex.h:180:97: note:
expanded from macro 'CHECK_AND_ASSERT_MES'
...fail_ret_val, message) do{if(!(expr)) {LOG_ERROR(message); return fail_ret_val;};}while(0)
^ ~~~~~~~~~~~~
|
|
|
|
wallet-dir already exists.
|
|
|
|
CID 175281
|
|
CID 175279
|
|
CID 175305
|
|
|
|
|
|
|
|
|
|
|
|
also show it in simplewallet's show_transfer
|
|
Library code should definitely not ask for console input unless
it's clearly an input function. Delegating the user interaction
part to the caller means it can now be used by a GUI, or have a
decision algorithm better adapted to a particular caller.
|
|
also add do_not_relay flag to them, so it now becomes possible
to create a tx without sending it yet
|
|
|
|
|
|
|
|
It sweeps all outputs below the given threshold
This is available via the existing sweep_all RPC, by setting
amount_threshold the desired amount (in atomic units)
|
|
Reviewed and squashed. Open/Create is only allowed if no walletfile
was specified at startup.
|
|
|
|
|
|
Address book modification, setting tx nodes, importing key images
|
|
|
|
|
|
|
|
|
|
and remove trusted_daemon fields from transfer RPCs,
it is much friendlier on users
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This avoids indirectly leaking the real output to the daemon,
and is faster.
This will still happen for more complex cases, especially
when cancelling a tx and "re-rolling" it.
|
|
This replaces the epee and data_loggers logging systems with
a single one, and also adds filename:line and explicit severity
levels. Categories may be defined, and logging severity set
by category (or set of categories). epee style 0-4 log level
maps to a sensible severity configuration. Log files now also
rotate when reaching 100 MB.
To select which logs to output, use the MONERO_LOGS environment
variable, with a comma separated list of categories (globs are
supported), with their requested severity level after a colon.
If a log matches more than one such setting, the last one in
the configuration string applies. A few examples:
This one is (mostly) silent, only outputting fatal errors:
MONERO_LOGS=*:FATAL
This one is very verbose:
MONERO_LOGS=*:TRACE
This one is totally silent (logwise):
MONERO_LOGS=""
This one outputs all errors and warnings, except for the
"verify" category, which prints just fatal errors (the verify
category is used for logs about incoming transactions and
blocks, and it is expected that some/many will fail to verify,
hence we don't want the spam):
MONERO_LOGS=*:WARNING,verify:FATAL
Log levels are, in decreasing order of priority:
FATAL, ERROR, WARNING, INFO, DEBUG, TRACE
Subcategories may be added using prefixes and globs. This
example will output net.p2p logs at the TRACE level, but all
other net* logs only at INFO:
MONERO_LOGS=*:ERROR,net*:INFO,net.p2p:TRACE
Logs which are intended for the user (which Monero was using
a lot through epee, but really isn't a nice way to go things)
should use the "global" category. There are a few helper macros
for using this category, eg: MGINFO("this shows up by default")
or MGINFO_RED("this is red"), to try to keep a similar look
and feel for now.
Existing epee log macros still exist, and map to the new log
levels, but since they're used as a "user facing" UI element
as much as a logging system, they often don't map well to log
severities (ie, a log level 0 log may be an error, or may be
something we want the user to see, such as an important info).
In those cases, I tried to use the new macros. In other cases,
I left the existing macros in. When modifying logs, it is
probably best to switch to the new macros with explicit levels.
The --log-level options and set_log commands now also accept
category settings, in addition to the epee style log levels.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This is intended to catch traffic coming from a web browser,
so we avoid issues with a web page sending a transfer RPC to
the wallet. Requiring a particular user agent can act as a
simple password scheme, while we wait for 0MQ and proper
authentication to be merged.
|
|
We keep 1, 2, 3 multipliers till the fee decrase from 0.01/kB
to 0.002/kB, where we start using 1, 20, 166 multipliers.
This ensures the higher multiplier will compensate for the
block reward penalty when pushing past 100% of the past median.
The fee-multiplier wallet setting is now rename to priority,
since it keeps its [0..3] range, but maps to different multiplier
values.
|
|
It is useful, especially when requesting a random one
|
|
This allows the key to be not the same for two outputs sent to
the same address (eg, if you pay yourself, and also get change
back). Also remove the key amounts lists and return parameters
since we don't actually generate random ones, so we don't need
to save them as we can recalculate them when needed if we have
the correct keys.
|
|
Saves some substantial space.
Also avoid calculating tx hashes we don't need.
|
|
This ensures we get rct transactions when appropriate
|
|
|
|
|
|
It is not yet constrained to a fork, so don't use on the real network
or you'll be orphaned or rejected.
|
|
They are used to export a signed set of key images from a wallet
with a private spend key, so an auditor with the matching view key
may see which of those are spent, and which are not.
|
|
Shown in show_transfers simplewallet command, and get_transfers
RPC command, if req.pool is true.
|
|
Signing is done using the spend key, since the view key may
be shared. This could be extended later, to let the user choose
which key (even a per tx key).
simplewallet's sign/verify API uses a file. The RPC uses a
string (simplewallet can't easily do strings since commands
receive a tokenized set of arguments).
|
|
|
|
Fee can now be multiplied by 2 or 3, if users want to give
priority to their transactions. There are only three levels
to avoid too much fingerprinting. Default is 1 (minimum fee).
The default multiplier can be set by "set fee-multiplier X".
|
|
|
|
It allows a simple get_transfers (with default 0 min_height and
max_height) to return all transactions, instead of the unexpected
set of txes in block 0, which is probably none at all.
|
|
Allows getting in, out, pending, and failed transfers, similarly
to the show_transfers command.
|
|
|
|
This sends all outputs in a wallet to a given address, alleviating
the difficulty people have had trying to send all monero but
being left with some small amount left.
|
|
Add support for short/integrated/encrypted IDs to get_payments RPC
|
|
This now requests the set of outputs that can be mixed first,
to avoid trying non dust but unmixable outputs, which we know
will fail.
|
|
This will be slower, though more private.
New trusted_daemon parameter to the matching RPC call, false by default.
|
|
With the change in mixin rules for v2, the "annoying" outputs are
slightly changed. There is high correlation between dust and
unmixable, but no equivalence.
|
|
After the fork, normal transfer functions called via RPC
use the minimum mixin 2 if 0 or 1 is requested. While the
incoming transaction may be valid (eg, it has an unmixable
and at most a mixable input), it is a simple way to make
sure RPC users can't get a seemingly random accept/reject
behavior if they don't update their requested mixin.
|
|
Add support for short/integrated/encrypted IDs to get_payments RPC
|
|
|
|
Blockchain hashes and key images are flushed, and blocks are
pulled anew from the daemon.
The console command is shortened to match bc_height.
This should make it a lot easier on users who are currently
told to remove this particular cache file but keep the keys
one, etc, etc.
|
|
Reported by saddam
|
|
reported by saddam
|
|
|
|
|
|
|
|
To get the tx keys returned via RPC, set the "get_tx_key" or
"get_tx_keys" request field to true (defaults to false).
|
|
They are also stored in the cache file, to be retrieved using
a new get_tx_key command.
|
|
Pros:
- smaller on the blockchain
- shorter integrated addresses
Cons:
- less sparseness
- less ability to embed actual information
The boolean argument to encrypt payment ids is now gone from the
RPC calls, since the decision is made based on the length of the
payment id passed.
|
|
A payment ID may be encrypted using the tx secret key and the
receiver's public view key. The receiver can decrypt it with
the tx public key and the receiver's secret view key.
Using integrated addresses now cause the payment IDs to be
encrypted. Payment IDs used manually are not encrypted by default,
but can be encrypted using the new 'encrypt_payment_id' field
in the transfer and transfer_split RPC calls. It is not possible
to use an encrypted payment ID by specifying a manual simplewallet
transfer/transfer_new command, though this is just a limitation
due to input parsing.
|
|
It should avoid a lot of the issues sending more than half the
wallet's contents due to change.
Actual output selection is still random. Changing this would
improve the matching of transaction amounts to output sizes,
but may have non obvious effects on blockchain analysis.
Mapped to the new transfer_new command in simplewallet, and
transfer uses the existing algorithm.
To use in RPC, add "new_algorithm: true" in the transfer_split
JSON command. It is not used in the transfer command.
|
|
|
|
|
|
|
|
Daemon interactive mode is now working again.
RPC mapped calls in daemon and wallet have both had connection_context
removed as an argument as that argument was not being used anywhere.
|
|
|
|
It restricts RPC to a subset of "view only" commands. Kind of like
a poor man's view key replacement.
|
|
by giving an empty list of payment IDs.
|
|
|
|
|
|
|
|
|
|
only support mnemonic as key_type currently
|
|
|
|
|
|
|
|
wallet RPC now uses wallet2::create_transactions and wallet2::commit_tx instead
of wallet2::transfer. This made it possible to add the RPC call /transfer_split, which
will split transactions automatically if they are too large. The old call to
/transfer will return an error stating to use /transfer_split if multiple
transactions are needed to fulfill the request.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|