Age | Commit message (Collapse) | Author | Files | Lines |
|
|
|
|
|
This reverts commit 67b4a19edf7b9d6a407a79eca5c57819863bfd71.
|
|
|
|
- choice where to enter passphrase is now made on the host
- use wipeable string in the comm stack
- wipe passphrase memory
- protocol optimizations, prepare for new firmware version
- minor fixes and improvements
- tests fixes, HF12 support
|
|
|
|
Expects an account number, then the usual sweep_all options
Useful to move monero that was accidentally sent to a subaddress
with a very large account index.
|
|
|
|
|
|
|
|
The warning about spending more than one output with similar creation
time was skipped if print-ring-members was not set, and it defaults to
false, which means most people probably aren't getting this warning if
they spend correlated outputs.
Reported by SeventhAlpaca.
|
|
Cleaning up a little around the code base.
|
|
Also avoid rewriting the wallet if the setting is already was we need
|
|
|
|
|
|
|
|
|
|
account
|
|
|
|
This ensures we get asked for the password if needed
|
|
The highlight check was based on height, so would highlight
any output at that height, resulting in several matches if
a fake out was picked at the same height as the real spend
|
|
It was comparing source txids, but txids were empty,
so all checks triggered
|
|
|
|
|
|
|
|
|
|
As reported by Tramèr et al, timing of refresh requests can be used
to see whether a password was requested (and thus at least one output
received) since this will induce a delay in subsequent calls.
To avoid this, we schedule calls at a given time instead of sleeping
for a set time (which would make delays additive).
To further avoid a scheduled call being during the time in which a
password is prompted, the actual scheduled time is now randomized.
|
|
We get new pool txes before processing any tx, pool or not.
This ensures that if we're asked for a password, this does not
cause a measurable delay in the txpool query after the last
block query.
|
|
|
|
|
|
pointed out by coverity
|
|
Lists nodes exposing their RPC port for public use
|
|
Daemons intended for public use can be set up to require payment
in the form of hashes in exchange for RPC service. This enables
public daemons to receive payment for their work over a large
number of calls. This system behaves similarly to a pool, so
payment takes the form of valid blocks every so often, yielding
a large one off payment, rather than constant micropayments.
This system can also be used by third parties as a "paywall"
layer, where users of a service can pay for use by mining Monero
to the service provider's address. An example of this for web
site access is Primo, a Monero mining based website "paywall":
https://github.com/selene-kovri/primo
This has some advantages:
- incentive to run a node providing RPC services, thereby promoting the availability of third party nodes for those who can't run their own
- incentive to run your own node instead of using a third party's, thereby promoting decentralization
- decentralized: payment is done between a client and server, with no third party needed
- private: since the system is "pay as you go", you don't need to identify yourself to claim a long lived balance
- no payment occurs on the blockchain, so there is no extra transactional load
- one may mine with a beefy server, and use those credits from a phone, by reusing the client ID (at the cost of some privacy)
- no barrier to entry: anyone may run a RPC node, and your expected revenue depends on how much work you do
- Sybil resistant: if you run 1000 idle RPC nodes, you don't magically get more revenue
- no large credit balance maintained on servers, so they have no incentive to exit scam
- you can use any/many node(s), since there's little cost in switching servers
- market based prices: competition between servers to lower costs
- incentive for a distributed third party node system: if some public nodes are overused/slow, traffic can move to others
- increases network security
- helps counteract mining pools' share of the network hash rate
- zero incentive for a payer to "double spend" since a reorg does not give any money back to the miner
And some disadvantages:
- low power clients will have difficulty mining (but one can optionally mine in advance and/or with a faster machine)
- payment is "random", so a server might go a long time without a block before getting one
- a public node's overall expected payment may be small
Public nodes are expected to compete to find a suitable level for
cost of service.
The daemon can be set up this way to require payment for RPC services:
monerod --rpc-payment-address 4xxxxxx \
--rpc-payment-credits 250 --rpc-payment-difficulty 1000
These values are an example only.
The --rpc-payment-difficulty switch selects how hard each "share" should
be, similar to a mining pool. The higher the difficulty, the fewer
shares a client will find.
The --rpc-payment-credits switch selects how many credits are awarded
for each share a client finds.
Considering both options, clients will be awarded credits/difficulty
credits for every hash they calculate. For example, in the command line
above, 0.25 credits per hash. A client mining at 100 H/s will therefore
get an average of 25 credits per second.
For reference, in the current implementation, a credit is enough to
sync 20 blocks, so a 100 H/s client that's just starting to use Monero
and uses this daemon will be able to sync 500 blocks per second.
The wallet can be set to automatically mine if connected to a daemon
which requires payment for RPC usage. It will try to keep a balance
of 50000 credits, stopping mining when it's at this level, and starting
again as credits are spent. With the example above, a new client will
mine this much credits in about half an hour, and this target is enough
to sync 500000 blocks (currently about a third of the monero blockchain).
There are three new settings in the wallet:
- credits-target: this is the amount of credits a wallet will try to
reach before stopping mining. The default of 0 means 50000 credits.
- auto-mine-for-rpc-payment-threshold: this controls the minimum
credit rate which the wallet considers worth mining for. If the
daemon credits less than this ratio, the wallet will consider mining
to be not worth it. In the example above, the rate is 0.25
- persistent-rpc-client-id: if set, this allows the wallet to reuse
a client id across runs. This means a public node can tell a wallet
that's connecting is the same as one that connected previously, but
allows a wallet to keep their credit balance from one run to the
other. Since the wallet only mines to keep a small credit balance,
this is not normally worth doing. However, someone may want to mine
on a fast server, and use that credit balance on a low power device
such as a phone. If left unset, a new client ID is generated at
each wallet start, for privacy reasons.
To mine and use a credit balance on two different devices, you can
use the --rpc-client-secret-key switch. A wallet's client secret key
can be found using the new rpc_payments command in the wallet.
Note: anyone knowing your RPC client secret key is able to use your
credit balance.
The wallet has a few new commands too:
- start_mining_for_rpc: start mining to acquire more credits,
regardless of the auto mining settings
- stop_mining_for_rpc: stop mining to acquire more credits
- rpc_payments: display information about current credits with
the currently selected daemon
The node has an extra command:
- rpc_payments: display information about clients and their
balances
The node will forget about any balance for clients which have
been inactive for 6 months. Balances carry over on node restart.
|
|
|
|
|
|
|
|
It may be more intuitive for some people
|
|
|
|
since they're all locked for a fixed amount
|
|
https://github.com/aeonix/aeon/pull/131
|
|
Fixed a typo ("and -are- not visible to the world by default"), removed a few redundant commas, and capitalized words inside the URL.
|
|
|
|
One considers the blockchain, while the other considers the
blockchain and some recent actions, such as a recently created
transaction which spend some outputs, but isn't yet mined.
Typically, the "balance" command wants the latter, to reflect
the recent action, but things like proving ownership wants
the former.
This fixes a crash in get_reserve_proof, where a preliminary
check and the main code used two concepts of "balance".
|
|
the setting
|
|
|
|
|
|
|
|
New CLI wallet variable: export-format with options "binary" (the default),
or "ascii". "Binary" behaves as before, "ascii" forces the wallet to convert
data to ASCII using base64.
Reading files from the disk tries to auto detect what format has been
used (using a magic string added when exporting the data).
Implements https://github.com/monero-project/monero/issues/2859
|
|
|
|
|
|
|
|
|
|
send_message_config isn't used anywhere else in the code, and it is clear from the help command that it should be named send_signer_config.
|
|
|
|
|
|
This is likely to be done via a script
|
|
- Trezor: support for device address display (subaddress, integrated address)
- Wallet::API support added
- Simplewallet:
- address device [<index>]
- address new <label> // shows address on device also
- integrated_address [device] <payment_id|address> // new optional "device" arg to display also on the device
|
|
The wallet was ignoring --restore-height and --restore-date params and
prompting for them again.
|
|
Exceptions would otherwise terminate the process silently
|
|
also add a note when receiving the tx, because the user
might not notice the "XXX blocks to unlock" in the balance.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I saw one when landing on www.tribler.org, and it seemed
like a good idea to have something similar, alongside some
more general "what is monero" text.
|
|
displays total sent and received bytes
|
|
|
|
The setup-background-mining option can be used to select
background mining when a wallet loads. The user will be asked
the first time the wallet is created.
|
|
Useful when debugging, though not much for users
|
|
|
|
|
|
Enhance debug info
|
|
|
|
These commands let one freeze outputs by key image, so they
do not appear in balance, nor are considered when creating
a transaction, etc
This is helpful when receiving an output from a suspected spy,
who might try to track your other outputs by seeing with what
other outputs it gets spent.
The frozen command may be used without parameters to list all
currently frozen outputs.
|
|
- import only key images generated by cold signing process
- wallet_api: trezor methods added
- wallet: button request code added
- const added to methods
- wallet2::get_tx_key_device() tries to decrypt stored tx private keys using the device.
- simplewallet supports get_tx_key and get_tx_proof on hw device using the get_tx_key feature
- live refresh enables refresh with trezor i.e. computing key images on the fly. More convenient and efficient for users.
- device: has_ki_live_refresh added
- a thread is watching whether live refresh is being computed, if not for 30 seconds, it terminates the live refresh process - switches Trezor state
|
|
We want people to really realize it's bad for *their* privacy.
|
|
- enables to perform rescan_spent / ki sync with untrusted daemon. Spent check status involves RPC calls which require trusted daemon status as it leaks information. The new call performs soft reset while preserving key images thus a sequence: refresh, ki sync / import, rescan_bc keep_ki will correctly perform spent checking without need for trusted daemon.
- useful to detect spent outputs with untrusted daemon on watch_only / multisig / hw-cold wallets after expensive key image sync.
- cli: rescan_bc keep_ki
|
|
|
|
|
|
- return the right output data when offset is not zero
- do not consider import failed if result height is zero
(it can be 0 if unknown)
- select the right tx pubkey when using subaddresses (it's faster,
and we might select the wrong one if we got an output using one
of the additional tx keys)
- account for skipped outputs for spent/unspent balance info
"spent" is arguably wrong, since it will count spent change
multiple times as it goes through receive/spend cycles.
|
|
|
|
|
|
|
|
for long payment ids
|
|
RPC connections now have optional tranparent SSL.
An optional private key and certificate file can be passed,
using the --{rpc,daemon}-ssl-private-key and
--{rpc,daemon}-ssl-certificate options. Those have as
argument a path to a PEM format private private key and
certificate, respectively.
If not given, a temporary self signed certificate will be used.
SSL can be enabled or disabled using --{rpc}-ssl, which
accepts autodetect (default), disabled or enabled.
Access can be restricted to particular certificates using the
--rpc-ssl-allowed-certificates, which takes a list of
paths to PEM encoded certificates. This can allow a wallet to
connect to only the daemon they think they're connected to,
by forcing SSL and listing the paths to the known good
certificates.
To generate long term certificates:
openssl genrsa -out /tmp/KEY 4096
openssl req -new -key /tmp/KEY -out /tmp/REQ
openssl x509 -req -days 999999 -sha256 -in /tmp/REQ -signkey /tmp/KEY -out /tmp/CERT
/tmp/KEY is the private key, and /tmp/CERT is the certificate,
both in PEM format. /tmp/REQ can be removed. Adjust the last
command to set expiration date, etc, as needed. It doesn't
make a whole lot of sense for monero anyway, since most servers
will run with one time temporary self signed certificates anyway.
SSL support is transparent, so all communication is done on the
existing ports, with SSL autodetection. This means you can start
using an SSL daemon now, but you should not enforce SSL yet or
nothing will talk to you.
|
|
For better transaction uniformity, even though this wastes space.
|
|
|
|
|
|
|
|
|
|
|
|
unless --long-payment-id-support is used
|
|
|
|
This avoids the constant message about needed to run refresh
to enter a password.
Also mention the txpool when asking for the password if the
reason is a pool tx.
|
|
|
|
in case it returns 0, and other uses don't, plus it's a estimation anyway.
|
|
|
|
|
|
It seemed like a good idea at the time
|
|
Help messages describe the commands usage. When users run the command
with wrong arguments, it usually helpfully offers the usage, too.
Unfortunately, these two usage messages were duplicated in the code and
started to get out of sync.
Fixing with constant strings.
|
|
Also add the type back, as it was somehow weirdly split into
two different fields, one being a union...
|
|
Estimate restore height from given date
Check date format early, error out early if invalid
|
|
|
|
|
|
When doing a first refresh on HW-token based wallet KI sync is required if money were received. Received money may indicate wallet was already used before the restore I.e., some transaction could have been already sent from the wallet. The spent UTXO would not be detected as spent which could lead to double spending errors on submitting a new transaction.
Thus if the wallet is HW-token based with the cold signing protocol and the first refresh detected received money the user is asked to perform the key image sync.
|
|
- adds a new option `--hw-device-deriv-path` to the simple wallet. Enables to specify wallet derivation path / wallet code (path avoided so it can be misinterpreted as a file path).
- devices can use different derivation mechanisms. Trezor uses standard SLIP-10 mechanism with fixed SLIP-44 prefix for Monero
- Trezor: when empty, the default derivation mechanism is used with 44'/128'/0'. When entered the derivation path is 44'/128'/PATH.
- Trezor: the path is always taken as elements are hardened (1<<31 bit turned on)
|
|
- simple device callback object added. Device can request passphrase/PIN entry via the callback or notify user some action is required
- callback is routed to wallet2, which routes the callback to i_wallet_callback so CLI or GUI wallets can support passphrase entry for HW tokens
- wallet: device open needs wallet callback first - passphrase protected device needs wallet callback so user can enter passphrase
|
|
for show_transfers
Followup on #4728
|
|
|
|
Found by codacy.com
|
|
In some cases, it doesn't like it (I don't know the details).
Factor into a new epee function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
and disable annoying test that requires ridiculous amounts
of skullduggery every time some format changes
|
|
Followup on #4555
|
|
|
|
|
|
|
|
try_connect_to_daemon with silent=false already prints failure message
|
|
it doesn't display the details, which are already displayed
in show_transfer
|
|
Apparently some people seem to think it's a censorship list...
|
|
Describe the output format.
|
|
|
|
|
|
Co-authored-by: moneromooo-monero <moneromooo-monero@users.noreply.github.com>
|
|
|
|
Some strings were not detected by lupdate because "tr() cannot be called without
context".
|
|
* support in wallet2
* support in monero-wallet-cli
* support in monero-wallet-rpc
* support in wallet api
* support in monero-gen-trusted-multisig
* unit tests for multisig wallets creation
|
|
|
|
bcf3f6af fuzz_tests: catch unhandled exceptions (moneromooo-monero)
3ebd05d4 miner: restore stream flags after changing them (moneromooo-monero)
a093092e levin_protocol_handler_async: do not propagate exception through dtor (moneromooo-monero)
1eebb82b net_helper: do not propagate exceptions through dtor (moneromooo-monero)
fb6a3630 miner: do not propagate exceptions through dtor (moneromooo-monero)
2e2139ff epee: do not propagate exception through dtor (moneromooo-monero)
0749a8bd db_lmdb: do not propagate exceptions in dtor (moneromooo-monero)
1b0afeeb wallet_rpc_server: exit cleanly on unhandled exceptions (moneromooo-monero)
418a9936 unit_tests: catch unhandled exceptions (moneromooo-monero)
ea7f9543 threadpool: do not propagate exceptions through the dtor (moneromooo-monero)
6e855422 gen_multisig: nice exit on unhandled exception (moneromooo-monero)
53df2deb db_lmdb: catch error in mdb_stat calls during migration (moneromooo-monero)
e67016dd blockchain_blackball: catch failure to commit db transaction (moneromooo-monero)
661439f4 mlog: don't remove old logs if we failed to rename the current file (moneromooo-monero)
5fdcda50 easylogging++: test for NULL before dereference (moneromooo-monero)
7ece1550 performance_test: fix bad last argument calling add_arg (moneromooo-monero)
a085da32 unit_tests: add check for page size > 0 before dividing (moneromooo-monero)
d8b1ec8b unit_tests: use std::shared_ptr to shut coverity up about leaks (moneromooo-monero)
02563bf4 simplewallet: top level exception catcher to print nicer messages (moneromooo-monero)
c57a65b2 blockchain_blackball: fix shift range for 32 bit archs (moneromooo-monero)
|
|
174f31bf simplewallet: don't complain about payment id on pool mined blocks (moneromooo-monero)
|
|
Those use the extra nonce without a payment id
|
|
|
|
|
|
'outputs' option allows to specify the number of
separate outputs of smaller denomination that will
be created by sweep operation.
rebased by moneromooo
|
|
|
|
|
|
- device name is a new wallet property
- full device name is now a bit more structured so we can address particular device vendor + device path. Example: 'Ledger', 'Trezor:udp', 'Trezor:udp:127.0.0.1:21324', 'Trezor:bridge:usb01'. The part before ':' identifies HW device implementation, the optional part after ':' is device path to look for.
- new --hw-device parameter added to the wallet, can name the hardware device
- device reconnect added
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The secret spend key is kept encrypted in memory, and
decrypted on the fly when needed.
Both spend and view secret keys are kept encrypted in a JSON
field in the keys file. This avoids leaving the keys in
memory due to being manipulated by the JSON I/O API.
|
|
|
|
to match those used by the various transfer functions
|
|
|
|
Many people are using this as a "let's see what this does" command
when something doesn't work as they thought it should, and thus
destroying info that they might still need.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Subaddresses are better for privacy
|
|
avoids people thinking it's somehow a generic AE system
|
|
|
|
Takes advantage of caching
|
|
For some reason, this confuses and kills ASAN on startup
as it thinks const uint8_t ipv4_network_address::ID is
defined multiple times.
|
|
This is based on how much an attacking miner stands to lose in block
rewardy by mining a private chain which double spends a payment.
This is not foolproof, since mining is based on luck, and breaks
down as the attacking miner nears 50% of the network hash rate,
and the estimation is based on a constant block reward.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for privacy reasons, so an untrusted node can't easily track
wallets from IP address to IP address, etc. The granularity
is 1024 blocks, which is about a day and a half.
|
|
|
|
config::testnet::X : stagenet ? config::stagenet::X : config::X
|
|
|
|
|
|
|
|
Otherwise the previous daemon's trustedness would carry over.
If not specified, the local address check is performed again.
|
|
- unsigned_txset, signed_txset in transfer / submit_transfer / sign_transfer
- export_outputs, import_outputs
Squashed commits:
[f4d9f3d4] wallet-rpc: do_not_relay removed from submit_transfer
[5b16a86f] wallet-rpc: review-fix - method signature changes, renaming
[b7fbb10a] wallet-rpc: naming fixes (unsigned vs signed), consts renamed
[8c7d2727] wallet-rpc: sign_transfer added
[481d024a] wallet2: sign_tx splitted to work with strings and structs, more granular
[2a474db9] wallet-rpc: wallet2::load_unsigned_tx split to load from str, file
[b1e3a018] wallet-rpc: review fix, load_tx_from_str variable rename
[1f6373be] wallet-rpc: review fix: save_tx_to_{str,file}
[2a08eafc] wallet-rpc: review comments fixes
- redundant this removed from wallet2.cpp
- load_tx_from_str, load_tx_from_file
[43498052] wallet-rpc: submit_transfer added
[9c45d1ad] wallet-rpc: watch_only check, return unsigned_txset
[62831396] wallet2: added string variants to load_tx, save_tx
- analogously to save_multisig_tx
- required for monero-wallet-rpc to support watch-only wallet
|
|
|
|
|
|
wallet
|
|
|
|
|
|
given
|
|
Change the wallet's 'show_transfers' command to always output the transaction date with timestamp (24 hour UTC).
|
|
|
|
|
|
|
|
When creating/restoring wallet, if --restore-height option is not used the current estimate
height is used for starting the scan. In other words it is assume we are creating a new account.
|
|
|
|
|
|
|