Age | Commit message (Collapse) | Author | Files | Lines |
|
1bc5f9fa bulletproofs: speed up vector_power_sum (moneromooo-monero)
|
|
This was an early ringct field, which was never used in production
|
|
saves space in the tx and is safe
Found by knaccc
|
|
Found by knaccc
|
|
Found by luigi1111
|
|
This makes it easier to modify the bulletproof format
|
|
found by sarang
|
|
07cb574c ringct: remove duplicate rv.mixRing = mixRing; in genRctSimple (stoffu)
|
|
|
|
|
|
6456cb41 Bulletproof: Initialize members in default construtor. (Tadeas Moravec)
|
|
ac665418 ringct: fix dummy bulletproofs on ledger in fake mode (moneromooo-monero)
|
|
aee7a4e3 wallet_rpc_server: do not use RPC data if the call failed (moneromooo-monero)
1a0733e5 windows_service: fix memory leak (moneromooo-monero)
0dac3c64 unit_tests: do not rethrow a copy of an exception (moneromooo-monero)
5d9915ab cryptonote: fix get_unit for non default settings (moneromooo-monero)
d4f50cb1 remove some unused code (moneromooo-monero)
61163971 a few minor (but easy) performance tweaks (moneromooo-monero)
30023074 tests: slow_memmem now returns size_t (moneromooo-monero)
|
|
c28e3d2d rctOps: add braces to suppress warnings (stoffu)
|
|
bd98e99c Removed a lot of unnecessary includes (Martijn Otto)
|
|
Fixing a build warning on g++ 7.3.0
|
|
Ledger does some basic checks on them
|
|
2c7195d8 bulletproofs: avoid std::vector allocations for slice (moneromooo-monero)
|
|
Found by codacy.com
|
|
|
|
6a1062f5 bulletproofs: reserve vector memory when known in advance (moneromooo-monero)
|
|
00907c39 rct: speedup commit a little (moneromooo-monero)
|
|
5d7c2316 rct: add a zeroCommit cache for common pre-rct case (moneromooo-monero)
|
|
|
|
|
|
|
|
saves a conversion, and uses a double scalarmult instead of
two scalarmults
|
|
74fb3d88 multiexp: some minor speedups (moneromooo-monero)
a6d2e246 bulletproofs: only enable profiling on request (moneromooo-monero)
a110e6aa multiexp: tune which variants to use for which number of points (moneromooo-monero)
8b476722 bulletproofs: speedup prover (moneromooo-monero)
6f9ae5b6 multiexp: handle pippenger multiexps with part precalc (moneromooo-monero)
10e5a927 bulletproofs: maintain -z4, -z5, and -y0 to avoid subtractions (moneromooo-monero)
8629a42c bulletproofs: rework flow to use sarang's fast batch inversion code (moneromooo-monero)
fc9f7d9c bulletproofs: merge multiexps as per sarang's new python code (moneromooo-monero)
4061960a multiexp: pack the digits table when STRAUS_C is 4 (moneromooo-monero)
bf8e4b98 bulletproofs: some more minor speedup (moneromooo-monero)
c415df97 performance_tests: sc_check and ge_dsm_precomp (moneromooo-monero)
a281b950 bulletproofs: remove single value prover (moneromooo-monero)
484155d0 bulletproofs: some more speedup (moneromooo-monero)
a621d6c8 bulletproofs: random minor speedups (moneromooo-monero)
a49a1761 bulletproofs: shave off a lot of scalar muls from the g/h construction (moneromooo-monero)
4564a5d1 bulletproofs: speedup PROVE (moneromooo-monero)
|
|
This is called for every pre-rct output at blockchain sync time,
and a lot of them wil hit the cache, saving a scalarmult each.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Spotted by stoffu
|
|
|
|
It is now expressed in terms of the array prover
|
|
|
|
|
|
|
|
|
|
instead of merging that with other scalar multiplications
where possible for speed, since this is not actually safe
|
|
607301bf rct: avoid repeated unnecessary conversions when accummulating (moneromooo-monero)
|
|
|
|
|
|
Apparently needed for openssl 1.1.x
|
|
|
|
|
|
|
|
Reported by QuarksLab.
|
|
Reported by QuarksLab.
|
|
Reported by QuarksLab.
|
|
Reported by QuarksLab.
|
|
Reported by QuarksLab.
|
|
Reported by QuarksLab.
|
|
Also try again when we're generate a proof with those characteristics
Reported by QuarksLab.
|
|
|
|
- fix integer overflow in n_bulletproof_amounts
- check input scalars are in range
- remove use of environment variable to tweak straus performance
- do not use implementation defined signed shift for signum
|
|
|
|
|
|
|
|
Based on sarang's python code
|
|
|
|
|
|
|
|
Also constrains bulletproofs to simple rct, for simplicity
|
|
- use a raw memory block to store cache
- use aligned memory
- use doubling API where appropriate
- calculate straus in bands
|
|
Ported from sarang's java code
|
|
|
|
|
|
|
|
|
|
|
|
Use double mults where possible, avoid conversions, simplify
|
|
|
|
This might avoid unnecessary copies.
Reported by stoffu
|
|
1f2409e Do memwipe for critical secret keys copied to rct::key (stoffu)
|
|
|
|
4616cf2 Fixed ZMQ-RPC for transactions and GET_BLOCKS_FAST (vtnerd)
|
|
|
|
|
|
61caab8 crypto: remove slight bias in key generation due to modulo (moneromooo-monero)
|
|
7cdd147 Changed URLs to HTTPS (einsteinsfool)
|
|
|
|
Decrease the number of worker threads by one to account
for the fact the calling thread acts as a worker thread now
|
|
|
|
|
|
|
|
c3e23b2d ringct: 17% improvement in Borromean signature verification (moneromooo-monero)
|
|
When #3303 was merged, a cyclic dependency chain was generated:
libdevice <- libcncrypto <- libringct <- libdevice
This was because libdevice needs access to a set of basic crypto operations
implemented in libringct such as scalarmultBase(), while libringct also needs
access to abstracted crypto operations implemented in libdevice such as
ecdhEncode(). To untangle this cyclic dependency chain, this patch splits libringct
into libringct_basic and libringct, where the basic crypto ops previously in
libringct are moved into libringct_basic. The cyclic dependency is now resolved
thanks to this separation:
libcncrypto <- libringct_basic <- libdevice <- libcryptonote_basic <- libringct
This eliminates the need for crypto_device.cpp and rctOps_device.cpp.
Also, many abstracted interfaces of hw::device such as encrypt_payment_id() and
get_subaddress_secret_key() were previously implemented in libcryptonote_basic
(cryptonote_format_utils.cpp) and were then called from hw::core::device_default,
which is odd because libdevice is supposed to be independent of libcryptonote_basic.
Therefore, those functions were moved to device_default.cpp.
|
|
|
|
c95dddd2 remove unused function keyImageV (h908714124)
|
|
34a2a085 rctSigs - loop invariant code removed from the loop (Dusan Klinec)
|
|
|
|
The basic approach it to delegate all sensitive data (master key, secret
ephemeral key, key derivation, ....) and related operations to the device.
As device has low memory, it does not keep itself the values
(except for view/spend keys) but once computed there are encrypted (with AES
are equivalent) and return back to monero-wallet-cli. When they need to be
manipulated by the device, they are decrypted on receive.
Moreover, using the client for storing the value in encrypted form limits
the modification in the client code. Those values are transfered from one
C-structure to another one as previously.
The code modification has been done with the wishes to be open to any
other hardware wallet. To achieve that a C++ class hw::Device has been
introduced. Two initial implementations are provided: the "default", which
remaps all calls to initial Monero code, and the "Ledger", which delegates
all calls to Ledger device.
|
|
|
|
e4646379 keccak: fix mdlen bounds sanity checking (moneromooo-monero)
2e3e90ac pass large parameters by const ref, not value (moneromooo-monero)
61defd89 blockchain: sanity check number of precomputed hash of hash blocks (moneromooo-monero)
9af6b2d1 ringct: fix infinite loop in unused h2b function (moneromooo-monero)
8cea8d0c simplewallet: double check a new multisig wallet is multisig (moneromooo-monero)
9b98a6ac threadpool: catch exceptions in dtor, to avoid terminate (moneromooo-monero)
24803ed9 blockchain_export: fix buffer overflow in exporter (moneromooo-monero)
f3f7da62 perf_timer: rewrite to make it clear there is no division by zero (moneromooo-monero)
c6ea3df0 performance_tests: remove add_arg call stray extra param (moneromooo-monero)
fa6b4566 fuzz_tests: fix an uninitialized var in setup (moneromooo-monero)
03887f11 keccak: fix sanity check bounds test (moneromooo-monero)
ad11db91 blockchain_db: initialize m_open in base class ctor (moneromooo-monero)
bece67f9 miner: restore std::cout precision after modification (moneromooo-monero)
1aabd14c db_lmdb: check hard fork info drop succeeded (moneromooo-monero)
|
|
3f1a3fac bulletproofs: more robust challenge computation (moneromooo-monero)
|
|
Coverity 146775
|
|
Changes from sarang, from a recommendation by an anonymous reviewer
|
|
Saves 64 bytes non prunable data per typical tx
This breaks v7 consensus, will require a testnet reorg from v6
|
|
|
|
|
|
|
|
2d17feb0 factor STL container serialization (moneromooo-monero)
|
|
|
|
|
|
|
|
Scheme by luigi1111:
Multisig for RingCT on Monero
2 of 2
User A (coordinator):
Spendkey b,B
Viewkey a,A (shared)
User B:
Spendkey c,C
Viewkey a,A (shared)
Public Address: C+B, A
Both have their own watch only wallet via C+B, a
A will coordinate spending process (though B could easily as well, coordinator is more needed for more participants)
A and B watch for incoming outputs
B creates "half" key images for discovered output D:
I2_D = (Hs(aR)+c) * Hp(D)
B also creates 1.5 random keypairs (one scalar and 2 pubkeys; one on base G and one on base Hp(D)) for each output, storing the scalar(k) (linked to D),
and sending the pubkeys with I2_D.
A also creates "half" key images:
I1_D = (Hs(aR)+b) * Hp(D)
Then I_D = I1_D + I2_D
Having I_D allows A to check spent status of course, but more importantly allows A to actually build a transaction prefix (and thus transaction).
A builds the transaction until most of the way through MLSAG_Gen, adding the 2 pubkeys (per input) provided with I2_D
to his own generated ones where they are needed (secret row L, R).
At this point, A has a mostly completed transaction (but with an invalid/incomplete signature). A sends over the tx and includes r,
which allows B (with the recipient's address) to verify the destination and amount (by reconstructing the stealth address and decoding ecdhInfo).
B then finishes the signature by computing ss[secret_index][0] = ss[secret_index][0] + k - cc[secret_index]*c (secret indices need to be passed as well).
B can then broadcast the tx, or send it back to A for broadcasting. Once B has completed the signing (and verified the tx to be valid), he can add the full I_D
to his cache, allowing him to verify spent status as well.
NOTE:
A and B *must* present key A and B to each other with a valid signature proving they know a and b respectively.
Otherwise, trickery like the following becomes possible:
A creates viewkey a,A, spendkey b,B, and sends a,A,B to B.
B creates a fake key C = zG - B. B sends C back to A.
The combined spendkey C+B then equals zG, allowing B to spend funds at any time!
The signature fixes this, because B does not know a c corresponding to C (and thus can't produce a signature).
2 of 3
User A (coordinator)
Shared viewkey a,A
"spendkey" j,J
User B
"spendkey" k,K
User C
"spendkey" m,M
A collects K and M from B and C
B collects J and M from A and C
C collects J and K from A and B
A computes N = nG, n = Hs(jK)
A computes O = oG, o = Hs(jM)
B anc C compute P = pG, p = Hs(kM) || Hs(mK)
B and C can also compute N and O respectively if they wish to be able to coordinate
Address: N+O+P, A
The rest follows as above. The coordinator possesses 2 of 3 needed keys; he can get the other
needed part of the signature/key images from either of the other two.
Alternatively, if secure communication exists between parties:
A gives j to B
B gives k to C
C gives m to A
Address: J+K+M, A
3 of 3
Identical to 2 of 2, except the coordinator must collect the key images from both of the others.
The transaction must also be passed an additional hop: A -> B -> C (or A -> C -> B), who can then broadcast it
or send it back to A.
N-1 of N
Generally the same as 2 of 3, except participants need to be arranged in a ring to pass their keys around
(using either the secure or insecure method).
For example (ignoring viewkey so letters line up):
[4 of 5]
User: spendkey
A: a
B: b
C: c
D: d
E: e
a -> B, b -> C, c -> D, d -> E, e -> A
Order of signing does not matter, it just must reach n-1 users. A "remaining keys" list must be passed around with
the transaction so the signers know if they should use 1 or both keys.
Collecting key image parts becomes a little messy, but basically every wallet sends over both of their parts with a tag for each.
Thia way the coordinating wallet can keep track of which images have been added and which wallet they come from. Reasoning:
1. The key images must be added only once (coordinator will get key images for key a from both A and B, he must add only one to get the proper key actual key image)
2. The coordinator must keep track of which helper pubkeys came from which wallet (discussed in 2 of 2 section). The coordinator
must choose only one set to use, then include his choice in the "remaining keys" list so the other wallets know which of their keys to use.
You can generalize it further to N-2 of N or even M of N, but I'm not sure there's legitimate demand to justify the complexity. It might
also be straightforward enough to support with minimal changes from N-1 format.
You basically just give each user additional keys for each additional "-1" you desire. N-2 would be 3 keys per user, N-3 4 keys, etc.
The process is somewhat cumbersome:
To create a N/N multisig wallet:
- each participant creates a normal wallet
- each participant runs "prepare_multisig", and sends the resulting string to every other participant
- each participant runs "make_multisig N A B C D...", with N being the threshold and A B C D... being the strings received from other participants (the threshold must currently equal N)
As txes are received, participants' wallets will need to synchronize so that those new outputs may be spent:
- each participant runs "export_multisig FILENAME", and sends the FILENAME file to every other participant
- each participant runs "import_multisig A B C D...", with A B C D... being the filenames received from other participants
Then, a transaction may be initiated:
- one of the participants runs "transfer ADDRESS AMOUNT"
- this partly signed transaction will be written to the "multisig_monero_tx" file
- the initiator sends this file to another participant
- that other participant runs "sign_multisig multisig_monero_tx"
- the resulting transaction is written to the "multisig_monero_tx" file again
- if the threshold was not reached, the file must be sent to another participant, until enough have signed
- the last participant to sign runs "submit_multisig multisig_monero_tx" to relay the transaction to the Monero network
|
|
|
|
|
|
Those are not serialized, but are restored from the outPk masks,
so depending on what tries to validate the tx, those commitments
may or may not be filled with valid data at the time. The outPk
masks are already hashed as part of the rctSigBase field.
|
|
|
|
Changes from sarang
|
|
|
|
Based on Java code from Sarang Noether
|
|
|
|
|
|
It's nasty, and actually breaks on Solaris, where if.h fails to
build due to:
struct map *if_memmap;
|
|
|
|
Instead of constantly creating and destroying threads
|
|
fix a cmakelist
|
|
|
|
- Performance improvements
- Added `span` for zero-copy pointer+length arguments
- Added `std::ostream` overload for direct writing to output buffers
- Removal of unused `string_tools::buff_to_hex`
|
|
Avoids scaring people when seeing some invalid txes
|
|
These fields aren't used, and they'll actually be pruned in
some cases
|
|
|
|
|
|
|
|
Easily fixed by moving a C++ header out of 'extern "C" {...}'.
When building with CC=clang CXX=clang++ make,
[ 21%] Building CXX object src/ringct/CMakeFiles/obj_ringct.dir/rctTypes.cpp.o
In file included from /home/tdprime/bitmonero/src/ringct/rctTypes.cpp:31:
In file included from /home/tdprime/bitmonero/src/ringct/rctTypes.h:43:
In file included from /home/tdprime/bitmonero/src/crypto/generic-ops.h:34:
/usr/bin/../lib/gcc/x86_64-linux-gnu/5.4.0/../../../../include/c++/5.4.0/cstring:100:3: error: conflicting types for 'memchr'
memchr(void* __s, int __c, size_t __n)
^
/usr/include/string.h:92:14: note: previous declaration is here
extern void *memchr (const void *__s, int __c, size_t __n)
^
... and 4 more similar errors
|
|
|
|
This replaces the epee and data_loggers logging systems with
a single one, and also adds filename:line and explicit severity
levels. Categories may be defined, and logging severity set
by category (or set of categories). epee style 0-4 log level
maps to a sensible severity configuration. Log files now also
rotate when reaching 100 MB.
To select which logs to output, use the MONERO_LOGS environment
variable, with a comma separated list of categories (globs are
supported), with their requested severity level after a colon.
If a log matches more than one such setting, the last one in
the configuration string applies. A few examples:
This one is (mostly) silent, only outputting fatal errors:
MONERO_LOGS=*:FATAL
This one is very verbose:
MONERO_LOGS=*:TRACE
This one is totally silent (logwise):
MONERO_LOGS=""
This one outputs all errors and warnings, except for the
"verify" category, which prints just fatal errors (the verify
category is used for logs about incoming transactions and
blocks, and it is expected that some/many will fail to verify,
hence we don't want the spam):
MONERO_LOGS=*:WARNING,verify:FATAL
Log levels are, in decreasing order of priority:
FATAL, ERROR, WARNING, INFO, DEBUG, TRACE
Subcategories may be added using prefixes and globs. This
example will output net.p2p logs at the TRACE level, but all
other net* logs only at INFO:
MONERO_LOGS=*:ERROR,net*:INFO,net.p2p:TRACE
Logs which are intended for the user (which Monero was using
a lot through epee, but really isn't a nice way to go things)
should use the "global" category. There are a few helper macros
for using this category, eg: MGINFO("this shows up by default")
or MGINFO_RED("this is red"), to try to keep a similar look
and feel for now.
Existing epee log macros still exist, and map to the new log
levels, but since they're used as a "user facing" UI element
as much as a logging system, they often don't map well to log
severities (ie, a log level 0 log may be an error, or may be
something we want the user to see, such as an important info).
In those cases, I tried to use the new macros. In other cases,
I left the existing macros in. When modifying logs, it is
probably best to switch to the new macros with explicit levels.
The --log-level options and set_log commands now also accept
category settings, in addition to the epee style log levels.
|
|
d561f4ad enable clang checks that were disabled (Chris Vickio)
0aefb2f6 remove std::move from return statements (pessimizing-move warning) (Chris Vickio)
629d5b76 change counter from bool to int (deprecated-increment-bool warning) (Chris Vickio)
fb76d439 add extra braces around subobjects (missing-braces warning) (Chris Vickio)
3b6d5f25 make struct/class declarations consistent (mismatched-tags warning) (Chris Vickio)
fcf66925 remove unused fields from network_throttle (unused-private-field warning) (Chris Vickio)
296f8c16 inline unused function (for unused-function warning) (Chris Vickio)
|
|
Semantics can be checked early
|
|
|
|
|
|
|
|
And rangeProofs are on outputs...
|
|
3b005275 ringct: add sc_check calls in MLSAG_Ver for ss and cc (moneromooo-monero)
2f1732a7 ringct: guard against bad data exceptions in worker threads (moneromooo-monero)
|
|
luigi1111's recommendation
|
|
If purported pubkeys aren't actually valid pubkeys, exceptions
will fly. These will terminate if thrown in a worker thread.
Guard against this.
|
|
|
|
|
|
|
|
|
|
|
|
48b57d8 monero.supp: valgrind suppressions file (moneromooo-monero)
ffd8c41 ringct: check the size of amount_keys is the same as destinations (moneromooo-monero)
836669d ringct: always shutdown the boost io service (moneromooo-monero)
|
|
|
|
Even if no worker threads were started, it needs shutting down
or it will cause an invalid access in the io service thread
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Keep the immediate direct deps at the library that depends on them,
declare deps as PUBLIC so that targets that link against that library
get the library's deps as transitive deps.
Break dep cycle between blockchain_db <-> crytonote_core.
No code refactoring, just hide cycle from cmake so that
it doesn't complain (cycles are allowed only between
static libs, not shared libs).
This is in preparation for supproting BUILD_SHARED_LIBS cmake
built-in option for building internal libs as shared.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
When RingCT is enabled, outputs from coinbase transactions
are created as a single output, and stored as RingCT output,
with a fake mask. Their amount is not hidden on the blockchain
itself, but they are then able to be used as fake inputs in
a RingCT ring. Since the output amounts are hidden, their
"dustiness" is not an obstacle anymore to mixing, and this
makes the coinbase transactions a lot smaller, as well as
helping the TXO set to grow more slowly.
Also add a new "Null" type of rct signature, which decreases
the size required when no signatures are to be stored, as
in a coinbase tx.
|
|
and remove some unnecessary variables in the checking code
|
|
|
|
This allows the key to be not the same for two outputs sent to
the same address (eg, if you pay yourself, and also get change
back). Also remove the key amounts lists and return parameters
since we don't actually generate random ones, so we don't need
to save them as we can recalculate them when needed if we have
the correct keys.
|
|
Nothing is pruned, but this allows easier changes later.
|
|
The whole rct data apart from the MLSAGs is now included in
the signed message, to avoid malleability issues.
Instead of passing the data that's not serialized as extra
parameters to the verification API, the transaction is modified
to fill all that information. This means the transaction can
not be const anymore, but it cleaner in other ways.
|
|
for future expansion
|
|
This element is used in the generation of the MLSAG, but isn't
needed in verification.
Also misc changes in the cryptonote code to match, by mooo.
|
|
|
|
Scheme design from luigi1114.
|
|
They can be reconstructed from vout
|
|
Found by luigi1111w
|
|
|
|
|
|
|
|
Allows the fake outs to be in different positions for each ring.
For rct inputs only.
|
|
|
|
The mixRing (output keys and commitments) and II fields (key images)
can be reconstructed from vin data.
This saves some modest amount of space in the tx.
|
|
|
|
|
|
|
|
It is not yet constrained to a fork, so don't use on the real network
or you'll be orphaned or rejected.
|
|
One to commit to an amount with zero key (for use with fake
commitments for pre-rct outputs), and one with an arbitrary
key (for rct outputs).
|
|
It may be suboptimal, but it's a pain to have to rebuild everything
when some of this changes.
Also, no clue why there seems to be two different code paths for
serializing a tx...
|
|
|
|
|
|
|