Age | Commit message (Collapse) | Author | Files | Lines |
|
|
|
|
|
|
|
|
|
Fixes #8633. The function `append_net_address` did not parse hostname + port addresses (e.g. `bar:29080`) correctly if the hostname did not contain a `'.'` character.
@vtnerd comments 1
clear up 2nd conditional statement
|
|
|
|
|
|
|
|
Thanks @mj-xmr: https://github.com/monero-project/monero/pull/8211#discussion_r823870855
|
|
Relevant commit from old PR:
330df2952cb2863a591158b984c0fb7f652887ac
|
|
|
|
Remove unused include statements or unused definitions.
|
|
Here lies dozens of unused files. This commit is ONLY file deletions except
for the removing of a couple of #includes and removing filenames from CmakeLists
where appropriate.
|
|
|
|
|
|
|
|
|
|
Co-authored-by: selsta <selsta@sent.at>
Co-authored-by: tobtoht <thotbot@protonmail.com>
|
|
|
|
|
|
|
|
|
|
This reverts commit 63c7ca07fba2f063c760f786a986fb3e02fb040e, reversing
changes made to 2218e23e84a89e9a1e4c0be5d50f891ab836754f.
|
|
|
|
|
|
Helps daemons behind a proxy get more than one connection.
Defaults to 1 (no change)
|
|
|
|
|
|
This reverts commit 4e74385a1ae9eae4ae9e8d155dfd96978eb10e7a.
|
|
|
|
removes a back and forth on connect, and the RPC can be removed
once all peers have updated
|
|
|
|
Both drop_connection and add_host_fail can drop the connection,
which invalidates the context, and thus the address it contains.
Thanks to wfaressuissia[m] for lots of help and prodding when
debugging this
|
|
|
|
Integer quantization biased the picks a lot (leading some indices
to never be selected)
|
|
ie, if the list ends in ;
|
|
|
|
|
|
|
|
|
|
If enabled, pulls IPs to block on blocklist.moneropulse.*, and
blocks then for 8 days (so IPs dropping from the list will
eventually get unblocked, and DNS failures don't result in
instant clearing of the blocklist).
Enable with --enable-dns-blocklist
|
|
|
|
The code is technically correct, but liable to easily become incorrect with changes
|
|
|
|
|
|
- rolling_median: tried to free uninitialized pointer in a constructor
- net_node.inl: erase-remove idiom was used incorrectly. remove_if doesn't actually remove elements, see http://cpp.sh/6fcjv
- bulletproofs.cc: call to sizeof() instead of vector.size(), luckily it only impacts performance and not code logic there
|
|
|
|
There's always some people who just want to abuse things
|
|
|
|
|
|
|
|
|
|
|
|
even if some run more than one node
|
|
Co-authored-by: Lee Clagett <code@leeclagett.com>
|
|
|
|
|
|
IPv6 addresses include a range that can map IPv4 addresses,
which allowed those mapped addresses to bypass filtering.
This filter should be replaced by AS filtering at some point.
|
|
|
|
|
|
|
|
|
|
|
|
This reduces the attack surface for data that can come from
malicious sources (exported output and key images, multisig
transactions...) since the monero serialization is already
exposed to the outside, and the boost lib we were using had
a few known crashers.
For interoperability, a new load-deprecated-formats wallet
setting is added (off by default). This allows loading boost
format data if there is no alternative. It will likely go
at some point, along with the ability to load those.
Notably, the peer lists file still uses the boost serialization
code, as the data it stores is define in epee, while the new
serialization code is in monero, and migrating it was fairly
hairy. Since this file is local and not obtained from anyone
else, the marginal risk is minimal, but it could be migrated
later if needed.
Some tests and tools also do, this will stay as is for now.
|
|
|
|
|
|
Update copyright year to 2020
|
|
node is funded by random people and managed by me. currently functioning as public node at uwillrunanodesoon.moneroworld.com
|
|
|
|
|
|
|
|
When a handshake fails, it can fail due to timeout or destroyed
connection, in which case the connection will be, or already is,
closed, and we don't want to do it twice.
Additionally, when closing a connection directly from the top
level code, ensure the connection is gone from the m_connects
list so it won't be used again.
AFAICT this is now clean in netstat, /proc/PID/fd and print_cn.
This fixes a noisy (but harmless) exception.
|
|
Node from syksy, administered by mooo
|
|
- New flag in NOTIFY_NEW_TRANSACTION to indicate stem mode
- Stem loops detected in tx_pool.cpp
- Embargo timeout for a blackhole attack during stem phase
|
|
|
|
|
|
During the handshake for an incoming connection, the peer id is checked against the local node's peer id only for the specific zone of the incoming peer, in order to avoid linking public addresses to tor addresses:
https://github.com/monero-project/monero/blob/5d7ae2d2791c0244a221872a7ac62627abb81896/src/p2p/net_node.inl#L2343
However, on handshakes for outgoing connections, all zones are checked:
https://github.com/monero-project/monero/blob/5d7ae2d2791c0244a221872a7ac62627abb81896/src/p2p/net_node.inl#L1064
If an attacker wanted to link a specific tor node to a public node, they could potentially connect to as many public nodes as possible, get themselves added to the peer whitelist, maybe stuff some more attacker-owned addresses into the greylist, then disconnect, and for any future incoming connections, respond with the tor node's id in an attempt to link the public/tor addresses.
|
|
|
|
Also removes a potential fingerprinting vector
|
|
Nodes remember which connections have been sent which peer addresses
and won't send it again. This causes more addresses to be sent as
the connection lifetime grows, since there is no duplication anymore,
which increases the diffusion speed of peer addresses. The whole
white list is now considered for sending, not just the most recent
seen peers. This further hardens against topology discovery, though
it will more readily send peers that have been last seen earlier
than it otherwise would. While this does save a fair amount of net
bandwidth, it makes heavy use of std::set lookups, which does bring
network_address::less up the profile, though not too aggressively.
|
|
|
|
|
|
|
|
|
|
The code would ignore the first one to be added
|
|
|
|
It's spammy
|
|
|
|
|
|
|
|
|
|
|
|
Daemons intended for public use can be set up to require payment
in the form of hashes in exchange for RPC service. This enables
public daemons to receive payment for their work over a large
number of calls. This system behaves similarly to a pool, so
payment takes the form of valid blocks every so often, yielding
a large one off payment, rather than constant micropayments.
This system can also be used by third parties as a "paywall"
layer, where users of a service can pay for use by mining Monero
to the service provider's address. An example of this for web
site access is Primo, a Monero mining based website "paywall":
https://github.com/selene-kovri/primo
This has some advantages:
- incentive to run a node providing RPC services, thereby promoting the availability of third party nodes for those who can't run their own
- incentive to run your own node instead of using a third party's, thereby promoting decentralization
- decentralized: payment is done between a client and server, with no third party needed
- private: since the system is "pay as you go", you don't need to identify yourself to claim a long lived balance
- no payment occurs on the blockchain, so there is no extra transactional load
- one may mine with a beefy server, and use those credits from a phone, by reusing the client ID (at the cost of some privacy)
- no barrier to entry: anyone may run a RPC node, and your expected revenue depends on how much work you do
- Sybil resistant: if you run 1000 idle RPC nodes, you don't magically get more revenue
- no large credit balance maintained on servers, so they have no incentive to exit scam
- you can use any/many node(s), since there's little cost in switching servers
- market based prices: competition between servers to lower costs
- incentive for a distributed third party node system: if some public nodes are overused/slow, traffic can move to others
- increases network security
- helps counteract mining pools' share of the network hash rate
- zero incentive for a payer to "double spend" since a reorg does not give any money back to the miner
And some disadvantages:
- low power clients will have difficulty mining (but one can optionally mine in advance and/or with a faster machine)
- payment is "random", so a server might go a long time without a block before getting one
- a public node's overall expected payment may be small
Public nodes are expected to compete to find a suitable level for
cost of service.
The daemon can be set up this way to require payment for RPC services:
monerod --rpc-payment-address 4xxxxxx \
--rpc-payment-credits 250 --rpc-payment-difficulty 1000
These values are an example only.
The --rpc-payment-difficulty switch selects how hard each "share" should
be, similar to a mining pool. The higher the difficulty, the fewer
shares a client will find.
The --rpc-payment-credits switch selects how many credits are awarded
for each share a client finds.
Considering both options, clients will be awarded credits/difficulty
credits for every hash they calculate. For example, in the command line
above, 0.25 credits per hash. A client mining at 100 H/s will therefore
get an average of 25 credits per second.
For reference, in the current implementation, a credit is enough to
sync 20 blocks, so a 100 H/s client that's just starting to use Monero
and uses this daemon will be able to sync 500 blocks per second.
The wallet can be set to automatically mine if connected to a daemon
which requires payment for RPC usage. It will try to keep a balance
of 50000 credits, stopping mining when it's at this level, and starting
again as credits are spent. With the example above, a new client will
mine this much credits in about half an hour, and this target is enough
to sync 500000 blocks (currently about a third of the monero blockchain).
There are three new settings in the wallet:
- credits-target: this is the amount of credits a wallet will try to
reach before stopping mining. The default of 0 means 50000 credits.
- auto-mine-for-rpc-payment-threshold: this controls the minimum
credit rate which the wallet considers worth mining for. If the
daemon credits less than this ratio, the wallet will consider mining
to be not worth it. In the example above, the rate is 0.25
- persistent-rpc-client-id: if set, this allows the wallet to reuse
a client id across runs. This means a public node can tell a wallet
that's connecting is the same as one that connected previously, but
allows a wallet to keep their credit balance from one run to the
other. Since the wallet only mines to keep a small credit balance,
this is not normally worth doing. However, someone may want to mine
on a fast server, and use that credit balance on a low power device
such as a phone. If left unset, a new client ID is generated at
each wallet start, for privacy reasons.
To mine and use a credit balance on two different devices, you can
use the --rpc-client-secret-key switch. A wallet's client secret key
can be found using the new rpc_payments command in the wallet.
Note: anyone knowing your RPC client secret key is able to use your
credit balance.
The wallet has a few new commands too:
- start_mining_for_rpc: start mining to acquire more credits,
regardless of the auto mining settings
- stop_mining_for_rpc: stop mining to acquire more credits
- rpc_payments: display information about current credits with
the currently selected daemon
The node has an extra command:
- rpc_payments: display information about clients and their
balances
The node will forget about any balance for clients which have
been inactive for 6 months. Balances carry over on node restart.
|
|
|
|
added for mainnet, testnet, and stagenet.
server is owner by snipa, both snipa and I have access to it. No idea where its hosted.
xmrchain.net is a block explorer thats been around a while.
|
|
|
|
|
|
|
|
PoW is expensive to verify, so be strict
|
|
Unbound uses a 64 kb large character array on the stack, which
leads to a stack overflow for some libc implementations. musl
only gives 80 kb in total. This PR changes the stack size for
these threads to 1mb, which solves the segmentation fault.
|
|
|
|
IP addresses are stored in network byte order even on little
endian hosts
|
|
|
|
Also remove the delta time fixup, since we now ignore those
as they're attacker controlled
|
|
It was here while debugging, and I forgot to move it away
|
|
|
|
According to [1], std::random_shuffle is deprecated in C++14 and removed
in C++17. Since std::shuffle is available since C++11 as a replacement
and monero already requires C++11, this is a good replacement.
A cryptographically secure random number generator is used in all cases
to prevent people from perhaps copying an insecure std::shuffle call
over to a place where a secure one would be warranted. A form of
defense-in-depth.
[1]: https://en.cppreference.com/w/cpp/algorithm/random_shuffle
|
|
new cli options (RPC ones also apply to wallet):
--p2p-bind-ipv6-address (default = "::")
--p2p-bind-port-ipv6 (default same as ipv4 port for given nettype)
--rpc-bind-ipv6-address (default = "::1")
--p2p-use-ipv6 (default false)
--rpc-use-ipv6 (default false)
--p2p-require-ipv4 (default true, if ipv4 bind fails and this is
true, will not continue even if ipv6 bind
successful)
--rpc-require-ipv4 (default true, description as above)
ipv6 addresses are to be specified as "[xx:xx:xx::xx:xx]:port" except
in the cases of the cli args for bind address. For those the square
braces can be omitted.
|
|
|
|
|
|
|
|
rather than their string representation
|
|
|
|
|
|
Older nodes don't pass that information around
|
|
"Exploring the Monero Peer-to-Peer Network". https://eprint.iacr.org/2019/411
|
|
|
|
|
|
|
|
We might have external access without having to do this
|
|
|
|
|
|
This can be used for fingerprinting and working out the
network topology.
Instead of sending the first N (which are sorted by last
seen time), we sent a random subset of the first N+N/5,
which ensures reasonably recent peers are used, while
preventing repeated calls from deducing new entries are
peers the target node just connected to.
The list is also randomly shuffled so the original set of
timestamps cannot be approximated.
|
|
|
|
|
|
This will cause DNS requests, which will block and timeout
if there is really no network connectivity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RPC connections now have optional tranparent SSL.
An optional private key and certificate file can be passed,
using the --{rpc,daemon}-ssl-private-key and
--{rpc,daemon}-ssl-certificate options. Those have as
argument a path to a PEM format private private key and
certificate, respectively.
If not given, a temporary self signed certificate will be used.
SSL can be enabled or disabled using --{rpc}-ssl, which
accepts autodetect (default), disabled or enabled.
Access can be restricted to particular certificates using the
--rpc-ssl-allowed-certificates, which takes a list of
paths to PEM encoded certificates. This can allow a wallet to
connect to only the daemon they think they're connected to,
by forcing SSL and listing the paths to the known good
certificates.
To generate long term certificates:
openssl genrsa -out /tmp/KEY 4096
openssl req -new -key /tmp/KEY -out /tmp/REQ
openssl x509 -req -days 999999 -sha256 -in /tmp/REQ -signkey /tmp/KEY -out /tmp/CERT
/tmp/KEY is the private key, and /tmp/CERT is the certificate,
both in PEM format. /tmp/REQ can be removed. Adjust the last
command to set expiration date, etc, as needed. It doesn't
make a whole lot of sense for monero anyway, since most servers
will run with one time temporary self signed certificates anyway.
SSL support is transparent, so all communication is done on the
existing ports, with SSL autodetection. This means you can start
using an SSL daemon now, but you should not enforce SSL yet or
nothing will talk to you.
|
|
|
|
- Support for ".onion" in --add-exclusive-node and --add-peer
- Add --anonymizing-proxy for outbound Tor connections
- Add --anonymous-inbounds for inbound Tor connections
- Support for sharing ".onion" addresses over Tor connections
- Support for broadcasting transactions received over RPC exclusively
over Tor (else broadcast over public IP when Tor not enabled).
|
|
The blockchain prunes seven eighths of prunable tx data.
This saves about two thirds of the blockchain size, while
keeping the node useful as a sync source for an eighth
of the blockchain.
No other data is currently pruned.
There are three ways to prune a blockchain:
- run monerod with --prune-blockchain
- run "prune_blockchain" in the monerod console
- run the monero-blockchain-prune utility
The first two will prune in place. Due to how LMDB works, this
will not reduce the blockchain size on disk. Instead, it will
mark parts of the file as free, so that future data will use
that free space, causing the file to not grow until free space
grows scarce.
The third way will create a second database, a pruned copy of
the original one. Since this is a new file, this one will be
smaller than the original one.
Once the database is pruned, it will stay pruned as it syncs.
That is, there is no need to use --prune-blockchain again, etc.
|
|
|
|
avoids pointless allocs and memcpy
|
|
|
|
|
|
|
|
|
|
Also add an info if not offline, since it weakens the network
|
|
|
|
|
|
as per the source documentation
|
|
This reverts commit 909398efc79cb1fa92e330e9a50a316ca5858953.
It looks like it's causing trouble with tor on some setups
|
|
|
|
|
|
on_generateblocks RPC call combines functionality from the on_getblocktemplate and on_submitblock RPC calls to allow rapid block creation. Difficulty is set permanently to 1 for regtest.
Makes use of FAKECHAIN network type, but takes hard fork heights from mainchain
Default reserve_size in generate_blocks RPC call is now 1. If it is 0, the following error occurs 'Failed to calculate offset for'.
Queries hard fork heights info of other network types
|
|
For some reason, this confuses and kills ASAN on startup
as it thinks const uint8_t ipv4_network_address::ID is
defined multiple times.
|
|
|
|
config::testnet::X : stagenet ? config::stagenet::X : config::X
|
|
|
|
Those were added to the seed nodes list even when they had already
been added. Moreover, the current index was not reset after they
were added, typically causing previous seeds to be used, and some
of those fallback seeds to not be tried.
|
|
|
|
(cherry picked from commit a7366b5feeffaeb65b217b2d6f138e0ab1c90192)
|
|
(cherry picked from commit b16a282f97d8f6c967e8a0b1ecfd75110f095182)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Coverity 136394 136397 136409 136526 136529 136533 175302
|
|
|
|
It was already possible to limit outgoing connections. One might want
to do this on home network connections with high bandwidth but low
usage caps.
|
|
This rename is needed so that delete_in_connections can be added.
|
|
This is needed so that a max_in_connection_count can be added.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
These even had the epee namespace.
This fixes some ugly circular dependencies.
|
|
As a followon side effect, this makes a lot of inline code
included only in particular cpp files (and instanciated
when necessary.
|
|
|
|
This fixes a hang on exit due to race where a connection adds
itself to the server after the starting connections are closed,
but before the net server marks itself as stopped.
|
|
|
|
Deleted 3 out of 4 calls to method connection_basic::sleep_before_packet
that were erroneous / superfluous, which enabled the elimination of a
"fudge" factor of 2.1 in connection_basic::set_rate_up_limit;
also ended the multiplying of limit values and numbers of bytes
transferred by 1024 before handing them over to the global throttle
objects
|
|
Those have no reason to be in a generic module
|
|
It's nasty, and actually breaks on Solaris, where if.h fails to
build due to:
struct map *if_memmap;
|
|
The commands handler must not be destroyed before the config
object, or we'll be accessing freed memory.
An earlier attempt at using boost::shared_ptr to control object
lifetime turned out to be very invasive, though would be a
better solution in theory.
|
|
- internal nullptr checks
- prevent modifications to network_address (shallow copy issues)
- automagically works with any type containing interface functions
- removed fnv1a hashing
- ipv4_network_address now flattened with no base class
|
|
p2p uses it, and the cpp file needs to know the symbols should
be public
|
|
CID 175290
|
|
|
|
Exclusive nodes may be used for privacy reasons, and thus we don't
want to connect to other nodes, even for checking connectivity.
See https://github.com/monero-project/monero/issues/2346
|
|
|
|
|
|
|
|
Fixes multiple connections to the same address
|
|
Fix sync wedge corner case:
It could happen if a connection went into standby mode, while
it was the one which had requested the next span, and that span
was still waiting for the data, and that peer is not on the
main chain. Other peers can then start asking for that data
again and again, but never get it as only that forked peer does.
And various other fixes
|
|
This avoids quicker exit
|
|
This should prevent "silent" failures to start
|
|
|