Age | Commit message (Collapse) | Author | Files | Lines |
|
263579b Add support for i2p and tor seed nodes (vtnerd)
|
|
|
|
|
|
|
|
Update copyright year to 2020
|
|
145be6d p2p: startup speedup, init seed nodes on first 'connect_to_seed()' (xiphon)
|
|
|
|
bcae95a2 p2p: do not add recently failed addresses to the peerlist (moneromooo-monero)
|
|
- New flag in NOTIFY_NEW_TRANSACTION to indicate stem mode
- Stem loops detected in tx_pool.cpp
- Embargo timeout for a blackhole attack during stem phase
|
|
|
|
|
|
Nodes remember which connections have been sent which peer addresses
and won't send it again. This causes more addresses to be sent as
the connection lifetime grows, since there is no duplication anymore,
which increases the diffusion speed of peer addresses. The whole
white list is now considered for sending, not just the most recent
seen peers. This further hardens against topology discovery, though
it will more readily send peers that have been last seen earlier
than it otherwise would. While this does save a fair amount of net
bandwidth, it makes heavy use of std::set lookups, which does bring
network_address::less up the profile, though not too aggressively.
|
|
|
|
|
|
|
|
65e8a89 Change monerod --proxy to --tx-proxy (vtnerd)
|
|
Daemons intended for public use can be set up to require payment
in the form of hashes in exchange for RPC service. This enables
public daemons to receive payment for their work over a large
number of calls. This system behaves similarly to a pool, so
payment takes the form of valid blocks every so often, yielding
a large one off payment, rather than constant micropayments.
This system can also be used by third parties as a "paywall"
layer, where users of a service can pay for use by mining Monero
to the service provider's address. An example of this for web
site access is Primo, a Monero mining based website "paywall":
https://github.com/selene-kovri/primo
This has some advantages:
- incentive to run a node providing RPC services, thereby promoting the availability of third party nodes for those who can't run their own
- incentive to run your own node instead of using a third party's, thereby promoting decentralization
- decentralized: payment is done between a client and server, with no third party needed
- private: since the system is "pay as you go", you don't need to identify yourself to claim a long lived balance
- no payment occurs on the blockchain, so there is no extra transactional load
- one may mine with a beefy server, and use those credits from a phone, by reusing the client ID (at the cost of some privacy)
- no barrier to entry: anyone may run a RPC node, and your expected revenue depends on how much work you do
- Sybil resistant: if you run 1000 idle RPC nodes, you don't magically get more revenue
- no large credit balance maintained on servers, so they have no incentive to exit scam
- you can use any/many node(s), since there's little cost in switching servers
- market based prices: competition between servers to lower costs
- incentive for a distributed third party node system: if some public nodes are overused/slow, traffic can move to others
- increases network security
- helps counteract mining pools' share of the network hash rate
- zero incentive for a payer to "double spend" since a reorg does not give any money back to the miner
And some disadvantages:
- low power clients will have difficulty mining (but one can optionally mine in advance and/or with a faster machine)
- payment is "random", so a server might go a long time without a block before getting one
- a public node's overall expected payment may be small
Public nodes are expected to compete to find a suitable level for
cost of service.
The daemon can be set up this way to require payment for RPC services:
monerod --rpc-payment-address 4xxxxxx \
--rpc-payment-credits 250 --rpc-payment-difficulty 1000
These values are an example only.
The --rpc-payment-difficulty switch selects how hard each "share" should
be, similar to a mining pool. The higher the difficulty, the fewer
shares a client will find.
The --rpc-payment-credits switch selects how many credits are awarded
for each share a client finds.
Considering both options, clients will be awarded credits/difficulty
credits for every hash they calculate. For example, in the command line
above, 0.25 credits per hash. A client mining at 100 H/s will therefore
get an average of 25 credits per second.
For reference, in the current implementation, a credit is enough to
sync 20 blocks, so a 100 H/s client that's just starting to use Monero
and uses this daemon will be able to sync 500 blocks per second.
The wallet can be set to automatically mine if connected to a daemon
which requires payment for RPC usage. It will try to keep a balance
of 50000 credits, stopping mining when it's at this level, and starting
again as credits are spent. With the example above, a new client will
mine this much credits in about half an hour, and this target is enough
to sync 500000 blocks (currently about a third of the monero blockchain).
There are three new settings in the wallet:
- credits-target: this is the amount of credits a wallet will try to
reach before stopping mining. The default of 0 means 50000 credits.
- auto-mine-for-rpc-payment-threshold: this controls the minimum
credit rate which the wallet considers worth mining for. If the
daemon credits less than this ratio, the wallet will consider mining
to be not worth it. In the example above, the rate is 0.25
- persistent-rpc-client-id: if set, this allows the wallet to reuse
a client id across runs. This means a public node can tell a wallet
that's connecting is the same as one that connected previously, but
allows a wallet to keep their credit balance from one run to the
other. Since the wallet only mines to keep a small credit balance,
this is not normally worth doing. However, someone may want to mine
on a fast server, and use that credit balance on a low power device
such as a phone. If left unset, a new client ID is generated at
each wallet start, for privacy reasons.
To mine and use a credit balance on two different devices, you can
use the --rpc-client-secret-key switch. A wallet's client secret key
can be found using the new rpc_payments command in the wallet.
Note: anyone knowing your RPC client secret key is able to use your
credit balance.
The wallet has a few new commands too:
- start_mining_for_rpc: start mining to acquire more credits,
regardless of the auto mining settings
- stop_mining_for_rpc: stop mining to acquire more credits
- rpc_payments: display information about current credits with
the currently selected daemon
The node has an extra command:
- rpc_payments: display information about clients and their
balances
The node will forget about any balance for clients which have
been inactive for 6 months. Balances carry over on node restart.
|
|
|
|
d4d2b5c p2p+rpc: don't skip p2p or rpc port bind failure by default (xiphon)
|
|
|
|
PoW is expensive to verify, so be strict
|
|
|
|
e353e3d p2p: sanitize peer lists (moneromooo-monero)
|
|
Also remove the delta time fixup, since we now ignore those
as they're attacker controlled
|
|
|
|
new cli options (RPC ones also apply to wallet):
--p2p-bind-ipv6-address (default = "::")
--p2p-bind-port-ipv6 (default same as ipv4 port for given nettype)
--rpc-bind-ipv6-address (default = "::1")
--p2p-use-ipv6 (default false)
--rpc-use-ipv6 (default false)
--p2p-require-ipv4 (default true, if ipv4 bind fails and this is
true, will not continue even if ipv6 bind
successful)
--rpc-require-ipv4 (default true, description as above)
ipv6 addresses are to be specified as "[xx:xx:xx::xx:xx]:port" except
in the cases of the cli args for bind address. For those the square
braces can be omitted.
|
|
068fa1c p2p: delay IGP probing on startup (moneromooo-monero)
|
|
fcfcc3a rpc: in/out peers can now return the setting's value (moneromooo-monero)
|
|
6abaaaa remove obsolete save_graph skeleton code (moneromooo-monero)
|
|
|
|
|
|
rather than their string representation
|
|
We might have external access without having to do this
|
|
|
|
|
|
a54e81e5 daemon: add '--no-sync' arg to optionally disable blockchain sync (xiphon)
|
|
551104fb daemon: add --public-node mode, RPC port propagation over P2P (xiphon)
|
|
|
|
|
|
|
|
|
|
RPC connections now have optional tranparent SSL.
An optional private key and certificate file can be passed,
using the --{rpc,daemon}-ssl-private-key and
--{rpc,daemon}-ssl-certificate options. Those have as
argument a path to a PEM format private private key and
certificate, respectively.
If not given, a temporary self signed certificate will be used.
SSL can be enabled or disabled using --{rpc}-ssl, which
accepts autodetect (default), disabled or enabled.
Access can be restricted to particular certificates using the
--rpc-ssl-allowed-certificates, which takes a list of
paths to PEM encoded certificates. This can allow a wallet to
connect to only the daemon they think they're connected to,
by forcing SSL and listing the paths to the known good
certificates.
To generate long term certificates:
openssl genrsa -out /tmp/KEY 4096
openssl req -new -key /tmp/KEY -out /tmp/REQ
openssl x509 -req -days 999999 -sha256 -in /tmp/REQ -signkey /tmp/KEY -out /tmp/CERT
/tmp/KEY is the private key, and /tmp/CERT is the certificate,
both in PEM format. /tmp/REQ can be removed. Adjust the last
command to set expiration date, etc, as needed. It doesn't
make a whole lot of sense for monero anyway, since most servers
will run with one time temporary self signed certificates anyway.
SSL support is transparent, so all communication is done on the
existing ports, with SSL autodetection. This means you can start
using an SSL daemon now, but you should not enforce SSL yet or
nothing will talk to you.
|
|
- Support for ".onion" in --add-exclusive-node and --add-peer
- Add --anonymizing-proxy for outbound Tor connections
- Add --anonymous-inbounds for inbound Tor connections
- Support for sharing ".onion" addresses over Tor connections
- Support for broadcasting transactions received over RPC exclusively
over Tor (else broadcast over public IP when Tor not enabled).
|
|
The blockchain prunes seven eighths of prunable tx data.
This saves about two thirds of the blockchain size, while
keeping the node useful as a sync source for an eighth
of the blockchain.
No other data is currently pruned.
There are three ways to prune a blockchain:
- run monerod with --prune-blockchain
- run "prune_blockchain" in the monerod console
- run the monero-blockchain-prune utility
The first two will prune in place. Due to how LMDB works, this
will not reduce the blockchain size on disk. Instead, it will
mark parts of the file as free, so that future data will use
that free space, causing the file to not grow until free space
grows scarce.
The third way will create a second database, a pruned copy of
the original one. Since this is a new file, this one will be
smaller than the original one.
Once the database is pruned, it will stay pruned as it syncs.
That is, there is no need to use --prune-blockchain again, etc.
|
|
85665003 epee: better network buffer data structure (moneromooo-monero)
|
|
avoids pointless allocs and memcpy
|
|
|
|
bd98e99c Removed a lot of unnecessary includes (Martijn Otto)
|
|
03fc731b p2p: less frequent incoming connections check (moneromooo-monero)
14a5c206 p2p: tone down "no incoming connections" warning to info if in peers is 0 (moneromooo-monero)
|
|
|
|
|
|
|
|
de1ffe0 p2p: warn when no incoming connections are seen for a while (moneromooo-monero)
|
|
|
|
Those were added to the seed nodes list even when they had already
been added. Moreover, the current index was not reset after they
were added, typically causing previous seeds to be used, and some
of those fallback seeds to not be tried.
|
|
|
|
|
|
|
|
e4646379 keccak: fix mdlen bounds sanity checking (moneromooo-monero)
2e3e90ac pass large parameters by const ref, not value (moneromooo-monero)
61defd89 blockchain: sanity check number of precomputed hash of hash blocks (moneromooo-monero)
9af6b2d1 ringct: fix infinite loop in unused h2b function (moneromooo-monero)
8cea8d0c simplewallet: double check a new multisig wallet is multisig (moneromooo-monero)
9b98a6ac threadpool: catch exceptions in dtor, to avoid terminate (moneromooo-monero)
24803ed9 blockchain_export: fix buffer overflow in exporter (moneromooo-monero)
f3f7da62 perf_timer: rewrite to make it clear there is no division by zero (moneromooo-monero)
c6ea3df0 performance_tests: remove add_arg call stray extra param (moneromooo-monero)
fa6b4566 fuzz_tests: fix an uninitialized var in setup (moneromooo-monero)
03887f11 keccak: fix sanity check bounds test (moneromooo-monero)
ad11db91 blockchain_db: initialize m_open in base class ctor (moneromooo-monero)
bece67f9 miner: restore std::cout precision after modification (moneromooo-monero)
1aabd14c db_lmdb: check hard fork info drop succeeded (moneromooo-monero)
|
|
Coverity 136394 136397 136409 136526 136529 136533 175302
|
|
It was already possible to limit outgoing connections. One might want
to do this on home network connections with high bandwidth but low
usage caps.
|
|
This rename is needed so that delete_in_connections can be added.
|
|
|
|
As a followon side effect, this makes a lot of inline code
included only in particular cpp files (and instanciated
when necessary.
|
|
|
|
|
|
This avoids failing to connect to the network in case all
known peers are unavailable (which can happen if the peer
list is small).
|
|
This fixes nodes not being able to connect to nodes which use
recent code. While there, init peer_id too.
|
|
158c3ecf core: thread most of handle_incoming_tx (moneromooo-monero)
f57ee382 cryptonote_protocol: retry stale spans early (moneromooo-monero)
90df52e1 cryptonote_protocol: light cleanup (moneromooo-monero)
84e23156 cryptonote_protocol: avoid spurious SYNCHRONIZED OK messages (moneromooo-monero)
5be43fcd cryptonote_protocol_handler: sync speedup (moneromooo-monero)
|
|
A block queue is now placed between block download and
block processing. Blocks are now requested only from one
peer (unless starved).
Includes a new sync_info coommand.
|
|
It's got no place in the base class as it's P2P specific field
|
|
All code which was using ip and port now uses a new IPv4 object,
subclass of a new network_address class. This will allow easy
addition of I2P addresses later (and also IPv6, etc).
Both old style and new style peer lists are now sent in the P2P
protocol, which is inefficient but allows peers using both
codebases to talk to each other. This will be removed in the
future. No other subclasses than IPv4 exist yet.
|
|
8277e67f Add anchor connections (Miguel Herranz)
|
|
In case the DNS seed(s) is/are down, which would otherwise
cause the fallback seeds to never be used. Also if the seeds
resolve to too few IPs.
|
|
|
|
This is only used to load, not save
|
|
Based on https://eprint.iacr.org/2015/263.pdf 4. Anchor connections.
Peer list serialisation version bumped to 5.
|
|
|
|
4cdf0a35 p2p: always recreate a new peer id on startup (moneromooo-monero)
|
|
This prevents easy fingerprinting when you change IPs, and
will be a must when kovri gets used.
|
|
A random peer from the gray peer list is selected and a connection is
made to check if the peer is alive.
If the connection and handshake are successful the peer is promoted to
the white peer list, in case of failure the peer is evicted from the
gray peer list.
The connection is closed after the check in either case.
|
|
|
|
|
|
Added a new command to the P2P protocol definitions to allow querying for support flags.
Implemented handling of new support flags command in net_node. Changed for_each callback template to include support flags. Updated print_connections command to show peer support flags.
Added p2p constant for signaling fluffy block support.
Added get_pool_transaction function to cryptnote_core.
Added new commands to cryptonote protocol for relaying fluffy blocks.
Implemented handling of fluffy block command in cryptonote protocol.
Enabled fluffy block support in node initial configuration.
Implemented get_testnet function in cryptonote_core.
Made it so that fluffy blocks only run on testnet.
|
|
|
|
std::thread crashes on (at least) ARMv6 g++ 4.8/4.9
|
|
|
|
Remove trailing whitespace in same files.
|
|
It will not try to connect to the monero network, nor listen
|
|
|
|
m_blocked_ips now stores the unblocking time, rather than the
blocking time.
Also change > to >=, since banning for 0 seconds should not ban
|
|
With minor cleanup and fixes (spelling, indent) by moneromooo
|
|
Bockchain:
1. Optim: Multi-thread long-hash computation when encountering groups of blocks.
2. Optim: Cache verified txs and return result from cache instead of re-checking whenever possible.
3. Optim: Preload output-keys when encoutering groups of blocks. Sort by amount and global-index before bulk querying database and multi-thread when possible.
4. Optim: Disable double spend check on block verification, double spend is already detected when trying to add blocks.
5. Optim: Multi-thread signature computation whenever possible.
6. Patch: Disable locking (recursive mutex) on called functions from check_tx_inputs which causes slowdowns (only seems to happen on ubuntu/VMs??? Reason: TBD)
7. Optim: Removed looped full-tx hash computation when retrieving transactions from pool (???).
8. Optim: Cache difficulty/timestamps (735 blocks) for next-difficulty calculations so that only 2 db reads per new block is needed when a new block arrives (instead of 1470 reads).
Berkeley-DB:
1. Fix: 32-bit data errors causing wrong output global indices and failure to send blocks to peers (etc).
2. Fix: Unable to pop blocks on reorganize due to transaction errors.
3. Patch: Large number of transaction aborts when running multi-threaded bulk queries.
4. Patch: Insufficient locks error when running full sync.
5. Patch: Incorrect db stats when returning from an immediate exit from "pop block" operation.
6. Optim: Add bulk queries to get output global indices.
7. Optim: Modified output_keys table to store public_key+unlock_time+height for single transaction lookup (vs 3)
8. Optim: Used output_keys table retrieve public_keys instead of going through output_amounts->output_txs+output_indices->txs->output:public_key
9. Optim: Added thread-safe buffers used when multi-threading bulk queries.
10. Optim: Added support for nosync/write_nosync options for improved performance (*see --db-sync-mode option for details)
11. Mod: Added checkpoint thread and auto-remove-logs option.
12. *Now usable on 32-bit systems like RPI2.
LMDB:
1. Optim: Added custom comparison for 256-bit key tables (minor speed-up, TBD: get actual effect)
2. Optim: Modified output_keys table to store public_key+unlock_time+height for single transaction lookup (vs 3)
3. Optim: Used output_keys table retrieve public_keys instead of going through output_amounts->output_txs+output_indices->txs->output:public_key
4. Optim: Added support for sync/writemap options for improved performance (*see --db-sync-mode option for details)
5. Mod: Auto resize to +1GB instead of multiplier x1.5
ETC:
1. Minor optimizations for slow-hash for ARM (RPI2). Incomplete.
2. Fix: 32-bit saturation bug when computing next difficulty on large blocks.
[PENDING ISSUES]
1. Berkely db has a very slow "pop-block" operation. This is very noticeable on the RPI2 as it sometimes takes > 10 MINUTES to pop a block during reorganization.
This does not happen very often however, most reorgs seem to take a few seconds but it possibly depends on the number of outputs present. TBD.
2. Berkeley db, possible bug "unable to allocate memory". TBD.
[NEW OPTIONS] (*Currently all enabled for testing purposes)
1. --fast-block-sync arg=[0:1] (default: 1)
a. 0 = Compute long hash per block (may take a while depending on CPU)
b. 1 = Skip long-hash and verify blocks based on embedded known good block hashes (faster, minimal CPU dependence)
2. --db-sync-mode arg=[[safe|fast|fastest]:[sync|async]:[nblocks_per_sync]] (default: fastest:async:1000)
a. safe = fdatasync/fsync (or equivalent) per stored block. Very slow, but safest option to protect against power-out/crash conditions.
b. fast/fastest = Enables asynchronous fdatasync/fsync (or equivalent). Useful for battery operated devices or STABLE systems with UPS and/or systems with battery backed write cache/solid state cache.
Fast - Write meta-data but defer data flush.
Fastest - Defer meta-data and data flush.
Sync - Flush data after nblocks_per_sync and wait.
Async - Flush data after nblocks_per_sync but do not wait for the operation to finish.
3. --prep-blocks-threads arg=[n] (default: 4 or system max threads, whichever is lower)
Max number of threads to use when computing long-hash in groups.
4. --show-time-stats arg=[0:1] (default: 1)
Show benchmark related time stats.
5. --db-auto-remove-logs arg=[0:1] (default: 1)
For berkeley-db only. Auto remove logs if enabled.
**Note: lmdb and berkeley-db have changes to the tables and are not compatible with official git head version.
At the moment, you need a full resync to use this optimized version.
[PERFORMANCE COMPARISON]
**Some figures are approximations only.
Using a baseline machine of an i7-2600K+SSD+(with full pow computation):
1. The optimized lmdb/blockhain core can process blocks up to 585K for ~1.25 hours + download time, so it usually takes 2.5 hours to sync the full chain.
2. The current head with memory can process blocks up to 585K for ~4.2 hours + download time, so it usually takes 5.5 hours to sync the full chain.
3. The current head with lmdb can process blocks up to 585K for ~32 hours + download time and usually takes 36 hours to sync the full chain.
Averate procesing times (with full pow computation):
lmdb-optimized:
1. tx_ave = 2.5 ms / tx
2. block_ave = 5.87 ms / block
memory-official-repo:
1. tx_ave = 8.85 ms / tx
2. block_ave = 19.68 ms / block
lmdb-official-repo (0f4a036437fd41a5498ee5e74e2422ea6177aa3e)
1. tx_ave = 47.8 ms / tx
2. block_ave = 64.2 ms / block
**Note: The following data denotes processing times only (does not include p2p download time)
lmdb-optimized processing times (with full pow computation):
1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 1.25 hours processing time (--db-sync-mode=fastest:async:1000).
2. Laptop, Dual-core / 4-threads U4200 (3Mb) - 4.90 hours processing time (--db-sync-mode=fastest:async:1000).
3. Embedded, Quad-core / 4-threads Z3735F (2x1Mb) - 12.0 hours processing time (--db-sync-mode=fastest:async:1000).
lmdb-optimized processing times (with per-block-checkpoint)
1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 10 minutes processing time (--db-sync-mode=fastest:async:1000).
berkeley-db optimized processing times (with full pow computation)
1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 1.8 hours processing time (--db-sync-mode=fastest:async:1000).
2. RPI2. Improved from estimated 3 months(???) into 2.5 days (*Need 2AMP supply + Clock:1Ghz + [usb+ssd] to achieve this speed) (--db-sync-mode=fastest:async:1000).
berkeley-db optimized processing times (with per-block-checkpoint)
1. RPI2. 12-15 hours (*Need 2AMP supply + Clock:1Ghz + [usb+ssd] to achieve this speed) (--db-sync-mode=fastest:async:1000).
|
|
|
|
|
|
works for unit tests build, too
|
|
|
|
|
|
|
|
many RPC functions added by the daemonize changes
(and related changes on the upstream dev branch that were not merged)
were commented out (apart from return). Other than that, this *should*
work...at any rate, it builds, and that's something.
|
|
new update of the pr with network limits
more debug options:
discarding downloaded blocks all or after given height.
trying to trigger the locking errors.
debug levels polished/tuned to sane values.
debug/logging improved.
warning: this pr should be correct code, but it could make
an existing (in master version) locking error appear more often.
it's a race on the list (map) of peers, e.g. between closing/deleting
them versus working on them in net-limit sleep in sending chunk.
the bug is not in this code/this pr, but in the master version.
the locking problem of master will be fixed in other pr.
problem is ub, and in practice is seems to usually cause program abort
(tested on debian stable with updated gcc). see --help for option
to add sleep to trigger the error faster.
|
|
Update of the PR with network limits
works very well for all speeds
(but remember that low download speed can stop upload
because we then slow down downloading of blockchain
requests too)
more debug options
fixed pedantic warnings in our code
should work again on Mac OS X and FreeBSD
fixed warning about size_t
tested on Debian, Ubuntu, Windows(testing now)
TCP options and ToS (QoS) flag
FIXED peer number limit
FIXED some spikes in ingress/download
FIXED problems when other up and down limit
|
|
commands and options for network limiting
works very well e.g. for 50 KiB/sec up and down
ToS (QoS) flag
peer number limit
TODO some spikes in ingress/download
TODO problems when other up and down limit
added "otshell utils" - simple logging (with colors, text files channels)
|
|
|
|
IPv4 and IPv6 name resolution working.
Unit tests written (and passing).
net_node.{h,inl} code modified to use DNS seeds.
|
|
|
|
|
|
|
|
Source: cryptonotefoundation
|
|
|
|
|
|
|
|
|