Age | Commit message (Collapse) | Author | Files | Lines |
|
|
|
|
|
|
|
83da867 Update error messages in daemon (tmoravec)
|
|
When given a wrong argument, some daemon commands failed with "unknown
command" error, instead of a meaningful error message. This patch
brings consistency into the error messages.
In several places, this patch removes relatively useful messages,
and replaces them with more generic ones. E.g.,
- std::cout << "use: print_pl [white] [gray] [<limit>] [pruned]
[publicrpc]" << std::endl;
+ std::cout << "Invalid syntax: Too many parameters. For more
details, use the help command." << std::endl;
There are two reasons for this:
1. Consistency.
2. Removing duplicates.
The detailed information about the parameters is present in
the help messages already. Having it in two places increases
the risk that the messages would get out of date.
|
|
|
|
Update copyright year to 2020
|
|
Flushes m_invalid_blocks in Blockchain.
|
|
This allows flushing internal caches (for now, the bad tx cache,
which will allow debugging a stuck monerod after it has failed to
verify a transaction in a block, since it would otherwise not try
again, making subsequent log changes pointless)
|
|
Daemons intended for public use can be set up to require payment
in the form of hashes in exchange for RPC service. This enables
public daemons to receive payment for their work over a large
number of calls. This system behaves similarly to a pool, so
payment takes the form of valid blocks every so often, yielding
a large one off payment, rather than constant micropayments.
This system can also be used by third parties as a "paywall"
layer, where users of a service can pay for use by mining Monero
to the service provider's address. An example of this for web
site access is Primo, a Monero mining based website "paywall":
https://github.com/selene-kovri/primo
This has some advantages:
- incentive to run a node providing RPC services, thereby promoting the availability of third party nodes for those who can't run their own
- incentive to run your own node instead of using a third party's, thereby promoting decentralization
- decentralized: payment is done between a client and server, with no third party needed
- private: since the system is "pay as you go", you don't need to identify yourself to claim a long lived balance
- no payment occurs on the blockchain, so there is no extra transactional load
- one may mine with a beefy server, and use those credits from a phone, by reusing the client ID (at the cost of some privacy)
- no barrier to entry: anyone may run a RPC node, and your expected revenue depends on how much work you do
- Sybil resistant: if you run 1000 idle RPC nodes, you don't magically get more revenue
- no large credit balance maintained on servers, so they have no incentive to exit scam
- you can use any/many node(s), since there's little cost in switching servers
- market based prices: competition between servers to lower costs
- incentive for a distributed third party node system: if some public nodes are overused/slow, traffic can move to others
- increases network security
- helps counteract mining pools' share of the network hash rate
- zero incentive for a payer to "double spend" since a reorg does not give any money back to the miner
And some disadvantages:
- low power clients will have difficulty mining (but one can optionally mine in advance and/or with a faster machine)
- payment is "random", so a server might go a long time without a block before getting one
- a public node's overall expected payment may be small
Public nodes are expected to compete to find a suitable level for
cost of service.
The daemon can be set up this way to require payment for RPC services:
monerod --rpc-payment-address 4xxxxxx \
--rpc-payment-credits 250 --rpc-payment-difficulty 1000
These values are an example only.
The --rpc-payment-difficulty switch selects how hard each "share" should
be, similar to a mining pool. The higher the difficulty, the fewer
shares a client will find.
The --rpc-payment-credits switch selects how many credits are awarded
for each share a client finds.
Considering both options, clients will be awarded credits/difficulty
credits for every hash they calculate. For example, in the command line
above, 0.25 credits per hash. A client mining at 100 H/s will therefore
get an average of 25 credits per second.
For reference, in the current implementation, a credit is enough to
sync 20 blocks, so a 100 H/s client that's just starting to use Monero
and uses this daemon will be able to sync 500 blocks per second.
The wallet can be set to automatically mine if connected to a daemon
which requires payment for RPC usage. It will try to keep a balance
of 50000 credits, stopping mining when it's at this level, and starting
again as credits are spent. With the example above, a new client will
mine this much credits in about half an hour, and this target is enough
to sync 500000 blocks (currently about a third of the monero blockchain).
There are three new settings in the wallet:
- credits-target: this is the amount of credits a wallet will try to
reach before stopping mining. The default of 0 means 50000 credits.
- auto-mine-for-rpc-payment-threshold: this controls the minimum
credit rate which the wallet considers worth mining for. If the
daemon credits less than this ratio, the wallet will consider mining
to be not worth it. In the example above, the rate is 0.25
- persistent-rpc-client-id: if set, this allows the wallet to reuse
a client id across runs. This means a public node can tell a wallet
that's connecting is the same as one that connected previously, but
allows a wallet to keep their credit balance from one run to the
other. Since the wallet only mines to keep a small credit balance,
this is not normally worth doing. However, someone may want to mine
on a fast server, and use that credit balance on a low power device
such as a phone. If left unset, a new client ID is generated at
each wallet start, for privacy reasons.
To mine and use a credit balance on two different devices, you can
use the --rpc-client-secret-key switch. A wallet's client secret key
can be found using the new rpc_payments command in the wallet.
Note: anyone knowing your RPC client secret key is able to use your
credit balance.
The wallet has a few new commands too:
- start_mining_for_rpc: start mining to acquire more credits,
regardless of the auto mining settings
- stop_mining_for_rpc: stop mining to acquire more credits
- rpc_payments: display information about current credits with
the currently selected daemon
The node has an extra command:
- rpc_payments: display information about clients and their
balances
The node will forget about any balance for clients which have
been inactive for 6 months. Balances carry over on node restart.
|
|
|
|
|
|
6abaaaa remove obsolete save_graph skeleton code (moneromooo-monero)
|
|
|
|
|
|
|
|
|
|
59478c80 daemon: new mining_status command (moneromooo-monero)
|
|
|
|
|
|
|
|
d294a577 daemon: extend 'print_pl' command, optional filter by type and limit (xiphon)
|
|
The blockchain prunes seven eighths of prunable tx data.
This saves about two thirds of the blockchain size, while
keeping the node useful as a sync source for an eighth
of the blockchain.
No other data is currently pruned.
There are three ways to prune a blockchain:
- run monerod with --prune-blockchain
- run "prune_blockchain" in the monerod console
- run the monero-blockchain-prune utility
The first two will prune in place. Due to how LMDB works, this
will not reduce the blockchain size on disk. Instead, it will
mark parts of the file as free, so that future data will use
that free space, causing the file to not grow until free space
grows scarce.
The third way will create a second database, a pruned copy of
the original one. Since this is a new file, this one will be
smaller than the original one.
Once the database is pruned, it will stay pruned as it syncs.
That is, there is no need to use --prune-blockchain again, etc.
|
|
|
|
add new public method to Blockchain and update according to code review
update after review: better lock/unlock, try catch and coding style
|
|
|
|
|
|
It was already possible to limit outgoing connections. One might want
to do this on home network connections with high bandwidth but low
usage caps.
|
|
|
|
|
|
|
|
|
|
Also, set_log without parameters now prints the log categories
|
|
updated clarification of required parameter for bc_dyn_stats
|
|
clarification of required parameter for bc_dyn_stats
|
|
|
|
A block queue is now placed between block download and
block processing. Blocks are now requested only from one
peer (unless starved).
Includes a new sync_info coommand.
|
|
|
|
|
|
subcommands "check", "download", and "update".
update is not yet implemented.
|
|
|
|
|
|
Added an extra path to check for linux power supply status.
Added ignore battery option. If set to true, then when we can't figure out
the power status, we'll assume the system is plugged in.
|
|
source, and CPU has been idle for some time, then begin mining to some
threshold (don't destroy the users' CPU).
This patch only supports windows and linux (I've only tested on Win64 and
Ubuntu).
The variables currently default to pretty conservative values (i.e. 20%
CPU mining threshold).
|
|
|
|
This replaces the epee and data_loggers logging systems with
a single one, and also adds filename:line and explicit severity
levels. Categories may be defined, and logging severity set
by category (or set of categories). epee style 0-4 log level
maps to a sensible severity configuration. Log files now also
rotate when reaching 100 MB.
To select which logs to output, use the MONERO_LOGS environment
variable, with a comma separated list of categories (globs are
supported), with their requested severity level after a colon.
If a log matches more than one such setting, the last one in
the configuration string applies. A few examples:
This one is (mostly) silent, only outputting fatal errors:
MONERO_LOGS=*:FATAL
This one is very verbose:
MONERO_LOGS=*:TRACE
This one is totally silent (logwise):
MONERO_LOGS=""
This one outputs all errors and warnings, except for the
"verify" category, which prints just fatal errors (the verify
category is used for logs about incoming transactions and
blocks, and it is expected that some/many will fail to verify,
hence we don't want the spam):
MONERO_LOGS=*:WARNING,verify:FATAL
Log levels are, in decreasing order of priority:
FATAL, ERROR, WARNING, INFO, DEBUG, TRACE
Subcategories may be added using prefixes and globs. This
example will output net.p2p logs at the TRACE level, but all
other net* logs only at INFO:
MONERO_LOGS=*:ERROR,net*:INFO,net.p2p:TRACE
Logs which are intended for the user (which Monero was using
a lot through epee, but really isn't a nice way to go things)
should use the "global" category. There are a few helper macros
for using this category, eg: MGINFO("this shows up by default")
or MGINFO_RED("this is red"), to try to keep a similar look
and feel for now.
Existing epee log macros still exist, and map to the new log
levels, but since they're used as a "user facing" UI element
as much as a logging system, they often don't map well to log
severities (ie, a log level 0 log may be an error, or may be
something we want the user to see, such as an important info).
In those cases, I tried to use the new macros. In other cases,
I left the existing macros in. When modifying logs, it is
probably best to switch to the new macros with explicit levels.
The --log-level options and set_log commands now also accept
category settings, in addition to the epee style log levels.
|
|
About the tip of the main chain, and the last N blocks
|
|
|
|
Helps see what's going on now that Monero is getting used
|
|
|
|
|
|
|
|
|
|
This is intended to catch traffic coming from a web browser,
so we avoid issues with a web page sending a transfer RPC to
the wallet. Requiring a particular user agent can act as a
simple password scheme, while we wait for 0MQ and proper
authentication to be merged.
|
|
|
|
This is a list of existing output amounts along with the number
of outputs of that amount in the blockchain.
The daemon command takes:
- no parameters: all outputs with at least 3 instances
- one parameter: all outputs with at least that many instances
- two parameters: all outputs within that many instances
The default starts at 3 to avoid massive spamming of all dust
outputs in the blockchain, and is the current minimum mixin
requirement.
An optional vector of amounts may be passed, to request
histogram only for those outputs.
|
|
Ain't nobody got time for link/cmake skullduggery.
This reverts commit fff238ec94ac6d45fc18c315d7bc590ddfaad63d.
|
|
Useful for debugging users' logs
|
|
It can flush a particular tx, or the whole pool (the RPC command
can flush a list of transactions too)
|
|
|
|
|
|
|
|
|
|
Displays current block height and target, net hash, hard fork
basic info, and connections.
Useful as a basic user friendly "what's going on here" command.
|
|
|
|
|
|
It uses the async console handler differently than simplewallet,
and wasn't running the same exit code, causing it to never actually
exit after breaking out of the console entry loop.
|
|
|
|
|
|
Daemon interactive mode is now working again.
RPC mapped calls in daemon and wallet have both had connection_context
removed as an argument as that argument was not being used anywhere.
|
|
The RPC calls the daemon executable uses to talk to the running daemon
instance have mostly been added back in. Rate limiting has not been
added in upstream, but is on its way in a separate effort, so those
calls are still NOPed out.
|
|
many RPC functions added by the daemonize changes
(and related changes on the upstream dev branch that were not merged)
were commented out (apart from return). Other than that, this *should*
work...at any rate, it builds, and that's something.
|