Age | Commit message (Collapse) | Author | Files | Lines |
|
When using a relative path for the log filename,
since the iteration on files adds "./" to the beginning of the filename
monero-wallet-rpc and monero-wallet-cli cannot find already written
log files and therefore rotate indefinitely.
|
|
|
|
Actions:
1. Remove unused functions from misc_os_dependent.h
2. Move three remaining functions, get_gmt_time, get_ns_count, and get_tick_count into time_helper.h
3. Remove unused functions from time_helper.h
4. Refactor get_ns_count and get_internet_time_str and get_time_interval_string
5. Remove/add includes as needed
Relevant commits on the old PR:
a9fbe52b02ffab451e90c977459fea4642731cd1
9a59b131c4ed1be8afe238fff3780fe203c65a46
7fa9e2817df9b9ef3f0290f7f86357939829e588
|
|
It's not something the user needs to know, and will display
attacker controlled data
|
|
Daemons intended for public use can be set up to require payment
in the form of hashes in exchange for RPC service. This enables
public daemons to receive payment for their work over a large
number of calls. This system behaves similarly to a pool, so
payment takes the form of valid blocks every so often, yielding
a large one off payment, rather than constant micropayments.
This system can also be used by third parties as a "paywall"
layer, where users of a service can pay for use by mining Monero
to the service provider's address. An example of this for web
site access is Primo, a Monero mining based website "paywall":
https://github.com/selene-kovri/primo
This has some advantages:
- incentive to run a node providing RPC services, thereby promoting the availability of third party nodes for those who can't run their own
- incentive to run your own node instead of using a third party's, thereby promoting decentralization
- decentralized: payment is done between a client and server, with no third party needed
- private: since the system is "pay as you go", you don't need to identify yourself to claim a long lived balance
- no payment occurs on the blockchain, so there is no extra transactional load
- one may mine with a beefy server, and use those credits from a phone, by reusing the client ID (at the cost of some privacy)
- no barrier to entry: anyone may run a RPC node, and your expected revenue depends on how much work you do
- Sybil resistant: if you run 1000 idle RPC nodes, you don't magically get more revenue
- no large credit balance maintained on servers, so they have no incentive to exit scam
- you can use any/many node(s), since there's little cost in switching servers
- market based prices: competition between servers to lower costs
- incentive for a distributed third party node system: if some public nodes are overused/slow, traffic can move to others
- increases network security
- helps counteract mining pools' share of the network hash rate
- zero incentive for a payer to "double spend" since a reorg does not give any money back to the miner
And some disadvantages:
- low power clients will have difficulty mining (but one can optionally mine in advance and/or with a faster machine)
- payment is "random", so a server might go a long time without a block before getting one
- a public node's overall expected payment may be small
Public nodes are expected to compete to find a suitable level for
cost of service.
The daemon can be set up this way to require payment for RPC services:
monerod --rpc-payment-address 4xxxxxx \
--rpc-payment-credits 250 --rpc-payment-difficulty 1000
These values are an example only.
The --rpc-payment-difficulty switch selects how hard each "share" should
be, similar to a mining pool. The higher the difficulty, the fewer
shares a client will find.
The --rpc-payment-credits switch selects how many credits are awarded
for each share a client finds.
Considering both options, clients will be awarded credits/difficulty
credits for every hash they calculate. For example, in the command line
above, 0.25 credits per hash. A client mining at 100 H/s will therefore
get an average of 25 credits per second.
For reference, in the current implementation, a credit is enough to
sync 20 blocks, so a 100 H/s client that's just starting to use Monero
and uses this daemon will be able to sync 500 blocks per second.
The wallet can be set to automatically mine if connected to a daemon
which requires payment for RPC usage. It will try to keep a balance
of 50000 credits, stopping mining when it's at this level, and starting
again as credits are spent. With the example above, a new client will
mine this much credits in about half an hour, and this target is enough
to sync 500000 blocks (currently about a third of the monero blockchain).
There are three new settings in the wallet:
- credits-target: this is the amount of credits a wallet will try to
reach before stopping mining. The default of 0 means 50000 credits.
- auto-mine-for-rpc-payment-threshold: this controls the minimum
credit rate which the wallet considers worth mining for. If the
daemon credits less than this ratio, the wallet will consider mining
to be not worth it. In the example above, the rate is 0.25
- persistent-rpc-client-id: if set, this allows the wallet to reuse
a client id across runs. This means a public node can tell a wallet
that's connecting is the same as one that connected previously, but
allows a wallet to keep their credit balance from one run to the
other. Since the wallet only mines to keep a small credit balance,
this is not normally worth doing. However, someone may want to mine
on a fast server, and use that credit balance on a low power device
such as a phone. If left unset, a new client ID is generated at
each wallet start, for privacy reasons.
To mine and use a credit balance on two different devices, you can
use the --rpc-client-secret-key switch. A wallet's client secret key
can be found using the new rpc_payments command in the wallet.
Note: anyone knowing your RPC client secret key is able to use your
credit balance.
The wallet has a few new commands too:
- start_mining_for_rpc: start mining to acquire more credits,
regardless of the auto mining settings
- stop_mining_for_rpc: stop mining to acquire more credits
- rpc_payments: display information about current credits with
the currently selected daemon
The node has an extra command:
- rpc_payments: display information about clients and their
balances
The node will forget about any balance for clients which have
been inactive for 6 months. Balances carry over on node restart.
|
|
use mfatal/merror/mwarning/minfo/mdebug/mtrace
|
|
As a side effect, colouring on Windows should now work
regardless of version
|
|
|
|
|
|
and make them not default at log level 1
|
|
In some cases, it doesn't like it (I don't know the details).
Factor into a new epee function
|
|
|
|
bcf3f6af fuzz_tests: catch unhandled exceptions (moneromooo-monero)
3ebd05d4 miner: restore stream flags after changing them (moneromooo-monero)
a093092e levin_protocol_handler_async: do not propagate exception through dtor (moneromooo-monero)
1eebb82b net_helper: do not propagate exceptions through dtor (moneromooo-monero)
fb6a3630 miner: do not propagate exceptions through dtor (moneromooo-monero)
2e2139ff epee: do not propagate exception through dtor (moneromooo-monero)
0749a8bd db_lmdb: do not propagate exceptions in dtor (moneromooo-monero)
1b0afeeb wallet_rpc_server: exit cleanly on unhandled exceptions (moneromooo-monero)
418a9936 unit_tests: catch unhandled exceptions (moneromooo-monero)
ea7f9543 threadpool: do not propagate exceptions through the dtor (moneromooo-monero)
6e855422 gen_multisig: nice exit on unhandled exception (moneromooo-monero)
53df2deb db_lmdb: catch error in mdb_stat calls during migration (moneromooo-monero)
e67016dd blockchain_blackball: catch failure to commit db transaction (moneromooo-monero)
661439f4 mlog: don't remove old logs if we failed to rename the current file (moneromooo-monero)
5fdcda50 easylogging++: test for NULL before dereference (moneromooo-monero)
7ece1550 performance_test: fix bad last argument calling add_arg (moneromooo-monero)
a085da32 unit_tests: add check for page size > 0 before dividing (moneromooo-monero)
d8b1ec8b unit_tests: use std::shared_ptr to shut coverity up about leaks (moneromooo-monero)
02563bf4 simplewallet: top level exception catcher to print nicer messages (moneromooo-monero)
c57a65b2 blockchain_blackball: fix shift range for 32 bit archs (moneromooo-monero)
|
|
They're controllable by potential attackers and would just spam
|
|
eg, --log-file=foo.log
This would otherwise throw and crash with a stack overflow
|
|
|
|
|
|
|
|
|
|
|
|
Level 1 logs map to INFO, so setting log level to 1 should
show these. Demote some stuff to DEBUG to avoid spam, though.
|
|
Also, set_log without parameters now prints the log categories
|
|
|
|
|
|
This should prevent "silent" failures to start
|
|
There might be privacy issues doing it by default
|
|
|
|
|
|
This ensures command output gets logged by default
|
|
|
|
Because some people just won't even try to read what is written
and freak out because the word FATAL is in here, despite the
context making it clear it's not an error.
|
|
We want to know which log categories are active.
This reverts commit 4f7bce6d20c72a1384289f7c35b7fe0ee796ed41.
|
|
Errors in this layer depend on how peers behave, and thus errors
are expected
|
|
|
|
|
|
|
|
Makes it more likely to show up
|
|
|
|
|
|
|
|
eg, 2,foo:ERROR,bar:INFO
|
|
It was not matching the LOG_PRINT_Lx mapping for 2/3/4
|
|
|
|
using the MONERO_LOG_FORMAT environment variable.
Default is:
%datetime{%Y-%M-%d %H:%m:%s.%g}\t%thread\t%level\t%logger\t%loc\t%msg
Field list in easylogging++ documentation.
Don't forget to escape as needed.
|
|
This replaces the epee and data_loggers logging systems with
a single one, and also adds filename:line and explicit severity
levels. Categories may be defined, and logging severity set
by category (or set of categories). epee style 0-4 log level
maps to a sensible severity configuration. Log files now also
rotate when reaching 100 MB.
To select which logs to output, use the MONERO_LOGS environment
variable, with a comma separated list of categories (globs are
supported), with their requested severity level after a colon.
If a log matches more than one such setting, the last one in
the configuration string applies. A few examples:
This one is (mostly) silent, only outputting fatal errors:
MONERO_LOGS=*:FATAL
This one is very verbose:
MONERO_LOGS=*:TRACE
This one is totally silent (logwise):
MONERO_LOGS=""
This one outputs all errors and warnings, except for the
"verify" category, which prints just fatal errors (the verify
category is used for logs about incoming transactions and
blocks, and it is expected that some/many will fail to verify,
hence we don't want the spam):
MONERO_LOGS=*:WARNING,verify:FATAL
Log levels are, in decreasing order of priority:
FATAL, ERROR, WARNING, INFO, DEBUG, TRACE
Subcategories may be added using prefixes and globs. This
example will output net.p2p logs at the TRACE level, but all
other net* logs only at INFO:
MONERO_LOGS=*:ERROR,net*:INFO,net.p2p:TRACE
Logs which are intended for the user (which Monero was using
a lot through epee, but really isn't a nice way to go things)
should use the "global" category. There are a few helper macros
for using this category, eg: MGINFO("this shows up by default")
or MGINFO_RED("this is red"), to try to keep a similar look
and feel for now.
Existing epee log macros still exist, and map to the new log
levels, but since they're used as a "user facing" UI element
as much as a logging system, they often don't map well to log
severities (ie, a log level 0 log may be an error, or may be
something we want the user to see, such as an important info).
In those cases, I tried to use the new macros. In other cases,
I left the existing macros in. When modifying logs, it is
probably best to switch to the new macros with explicit levels.
The --log-level options and set_log commands now also accept
category settings, in addition to the epee style log levels.
|