diff options
Diffstat (limited to 'tests/unit_tests')
-rw-r--r-- | tests/unit_tests/CMakeLists.txt | 5 | ||||
-rw-r--r-- | tests/unit_tests/hardfork.cpp | 2 | ||||
-rw-r--r-- | tests/unit_tests/output_selection.cpp | 103 | ||||
-rw-r--r-- | tests/unit_tests/ringct.cpp | 1070 | ||||
-rw-r--r-- | tests/unit_tests/serialization.cpp | 198 |
5 files changed, 1376 insertions, 2 deletions
diff --git a/tests/unit_tests/CMakeLists.txt b/tests/unit_tests/CMakeLists.txt index 1b272cf5a..3d42809e3 100644 --- a/tests/unit_tests/CMakeLists.txt +++ b/tests/unit_tests/CMakeLists.txt @@ -51,7 +51,9 @@ set(unit_tests_sources test_protocol_pack.cpp hardfork.cpp unbound.cpp - varint.cpp) + varint.cpp + ringct.cpp + output_selection.cpp) set(unit_tests_headers unit_tests_utils.h) @@ -61,6 +63,7 @@ add_executable(unit_tests ${unit_tests_headers}) target_link_libraries(unit_tests LINK_PRIVATE + ringct cryptonote_core blockchain_db rpc diff --git a/tests/unit_tests/hardfork.cpp b/tests/unit_tests/hardfork.cpp index eab6b9cf8..a279b6c68 100644 --- a/tests/unit_tests/hardfork.cpp +++ b/tests/unit_tests/hardfork.cpp @@ -96,7 +96,7 @@ public: virtual void remove_block() { blocks.pop_back(); } virtual uint64_t add_transaction_data(const crypto::hash& blk_hash, const transaction& tx, const crypto::hash& tx_hash) {return 0;} virtual void remove_transaction_data(const crypto::hash& tx_hash, const transaction& tx) {} - virtual uint64_t add_output(const crypto::hash& tx_hash, const tx_out& tx_output, const uint64_t& local_index, const uint64_t unlock_time) {return 0;} + virtual uint64_t add_output(const crypto::hash& tx_hash, const tx_out& tx_output, const uint64_t& local_index, const uint64_t unlock_time, const rct::key *commitment) {return 0;} virtual void add_tx_amount_output_indices(const uint64_t tx_index, const std::vector<uint64_t>& amount_output_indices) {} virtual void add_spent_key(const crypto::key_image& k_image) {} virtual void remove_spent_key(const crypto::key_image& k_image) {} diff --git a/tests/unit_tests/output_selection.cpp b/tests/unit_tests/output_selection.cpp new file mode 100644 index 000000000..4344d1ffc --- /dev/null +++ b/tests/unit_tests/output_selection.cpp @@ -0,0 +1,103 @@ +// Copyright (c) 2014-2016, The Monero Project +// +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without modification, are +// permitted provided that the following conditions are met: +// +// 1. Redistributions of source code must retain the above copyright notice, this list of +// conditions and the following disclaimer. +// +// 2. Redistributions in binary form must reproduce the above copyright notice, this list +// of conditions and the following disclaimer in the documentation and/or other +// materials provided with the distribution. +// +// 3. Neither the name of the copyright holder nor the names of its contributors may be +// used to endorse or promote products derived from this software without specific +// prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY +// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF +// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL +// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, +// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF +// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +// FIXME: move this into a full wallet2 unit test suite, if possible + +#include "gtest/gtest.h" + +#include "wallet/wallet2.h" +#include <string> + +static tools::wallet2::transfer_container make_transfers_container(size_t N) +{ + tools::wallet2::transfer_container transfers; + for (size_t n = 0; n < N; ++n) + { + transfers.push_back(AUTO_VAL_INIT(tools::wallet2::transfer_details())); + tools::wallet2::transfer_details &td = transfers.back(); + td.m_block_height = 1000; + td.m_spent = false; + td.m_txid = cryptonote::null_hash; + td.m_txid.data[0] = n & 0xff; + td.m_txid.data[1] = (n >> 8) & 0xff; + td.m_txid.data[2] = (n >> 16) & 0xff; + td.m_txid.data[3] = (n >> 24) & 0xff; + } + return transfers; +} + +#define SELECT(idx) \ + do { \ + auto i = std::find(unused_indices.begin(), unused_indices.end(), idx); \ + ASSERT_TRUE(i != unused_indices.end()); \ + unused_indices.erase(i); \ + selected.push_back(transfers.begin() + idx); \ + } while(0) + +#define PICK(expected) \ + do { \ + size_t idx = w.pop_best_value_from(transfers, unused_indices, selected); \ + ASSERT_EQ(expected, idx); \ + selected.push_back(transfers.begin() + idx); \ + } while(0) + +TEST(select_outputs, one_out_of_N) +{ + tools::wallet2 w; + + // check that if there are N-1 outputs of the same height, one of them + // already selected, the next one selected is the one that's from a + // different height + tools::wallet2::transfer_container transfers = make_transfers_container(10); + transfers[6].m_block_height = 700; + std::vector<size_t> unused_indices({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}); + std::list<tools::wallet2::transfer_container::iterator> selected; + SELECT(2); + PICK(6); +} + +TEST(select_outputs, order) +{ + tools::wallet2 w; + + // check that most unrelated heights are picked in order + tools::wallet2::transfer_container transfers = make_transfers_container(5); + transfers[0].m_block_height = 700; + transfers[1].m_block_height = 700; + transfers[2].m_block_height = 704; + transfers[3].m_block_height = 716; + transfers[4].m_block_height = 701; + std::vector<size_t> unused_indices({0, 1, 2, 3, 4}); + std::list<tools::wallet2::transfer_container::iterator> selected; + SELECT(0); + PICK(3); // first the one that's far away + PICK(2); // then the one that's close + PICK(4); // then the one that's adjacent + PICK(1); // then the one that's on the same height +} + diff --git a/tests/unit_tests/ringct.cpp b/tests/unit_tests/ringct.cpp new file mode 100644 index 000000000..224e32e61 --- /dev/null +++ b/tests/unit_tests/ringct.cpp @@ -0,0 +1,1070 @@ +// Copyright (c) 2014-2016, The Monero Project +// +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without modification, are +// permitted provided that the following conditions are met: +// +// 1. Redistributions of source code must retain the above copyright notice, this list of +// conditions and the following disclaimer. +// +// 2. Redistributions in binary form must reproduce the above copyright notice, this list +// of conditions and the following disclaimer in the documentation and/or other +// materials provided with the distribution. +// +// 3. Neither the name of the copyright holder nor the names of its contributors may be +// used to endorse or promote products derived from this software without specific +// prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY +// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF +// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL +// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, +// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF +// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers + +#include "gtest/gtest.h" + +#include <cstdint> +#include <algorithm> + +#include "ringct/rctTypes.h" +#include "ringct/rctSigs.h" +#include "ringct/rctOps.h" + +using namespace crypto; +using namespace rct; + +TEST(ringct, SNL) +{ + key x, P1; + skpkGen(x, P1); + + key P2 = pkGen(); + key P3 = pkGen(); + + key L1, s1, s2; + GenSchnorrNonLinkable(L1, s1, s2, x, P1, P2, 0); + + // a valid one + // an invalid one + ASSERT_TRUE(VerSchnorrNonLinkable(P1, P2, L1, s1, s2)); + ASSERT_FALSE(VerSchnorrNonLinkable(P1, P3, L1, s1, s2)); +} + +TEST(ringct, ASNL) +{ + int j = 0; + + //Tests for ASNL + //#ASNL true one, false one, C != sum Ci, and one out of the range.. + int N = 64; + key64 xv; + key64 P1v; + key64 P2v; + bits indi; + + for (j = 0 ; j < N ; j++) { + indi[j] = (int)randXmrAmount(2); + + xv[j] = skGen(); + if ( (int)indi[j] == 0 ) { + P1v[j] = scalarmultBase(xv[j]); + P2v[j] = pkGen(); + + } else { + + P2v[j] = scalarmultBase(xv[j]); + P1v[j] = pkGen(); + + } + } + + //#true one + asnlSig L1s2s = GenASNL(xv, P1v, P2v, indi); + ASSERT_TRUE(VerASNL(P1v, P2v, L1s2s)); + + //#false one + indi[3] = (indi[3] + 1) % 2; + L1s2s = GenASNL(xv, P1v, P2v, indi); + ASSERT_FALSE(VerASNL(P1v, P2v, L1s2s)); + + //#true one again + indi[3] = (indi[3] + 1) % 2; + L1s2s = GenASNL(xv, P1v, P2v, indi); + ASSERT_TRUE(VerASNL(P1v, P2v, L1s2s)); + + //#false one + L1s2s = GenASNL(xv, P2v, P1v, indi); + ASSERT_FALSE(VerASNL(P1v, P2v, L1s2s)); +} + +TEST(ringct, MG_sigs) +{ + int j = 0; + int N = 0; + + //Tests for MG Sigs + //#MG sig: true one + N = 3;// #cols + int R = 3;// #rows + keyV xtmp = skvGen(R); + keyM xm = keyMInit(R, N);// = [[None]*N] #just used to generate test public keys + keyV sk = skvGen(R); + keyM P = keyMInit(R, N);// = keyM[[None]*N] #stores the public keys; + int ind = 2; + int i = 0; + for (j = 0 ; j < R ; j++) { + for (i = 0 ; i < N ; i++) + { + xm[i][j] = skGen(); + P[i][j] = scalarmultBase(xm[i][j]); + } + } + for (j = 0 ; j < R ; j++) { + sk[j] = xm[ind][j]; + } + key message = identity(); + mgSig IIccss = MLSAG_Gen(message, P, sk, ind, R); + ASSERT_TRUE(MLSAG_Ver(message, P, IIccss, R)); + + //#MG sig: false one + N = 3;// #cols + R = 3;// #rows + xtmp = skvGen(R); + keyM xx(N, xtmp);// = [[None]*N] #just used to generate test public keys + sk = skvGen(R); + //P (N, xtmp);// = keyM[[None]*N] #stores the public keys; + + ind = 2; + for (j = 0 ; j < R ; j++) { + for (i = 0 ; i < N ; i++) + { + xx[i][j] = skGen(); + P[i][j] = scalarmultBase(xx[i][j]); + } + sk[j] = xx[ind][j]; + } + sk[2] = skGen();//asume we don't know one of the private keys.. + IIccss = MLSAG_Gen(message, P, sk, ind, R); + ASSERT_FALSE(MLSAG_Ver(message, P, IIccss, R)); +} + +TEST(ringct, range_proofs) +{ + //Ring CT Stuff + //ct range proofs + ctkeyV sc, pc; + ctkey sctmp, pctmp; + //add fake input 5000 + tie(sctmp, pctmp) = ctskpkGen(6000); + sc.push_back(sctmp); + pc.push_back(pctmp); + + + tie(sctmp, pctmp) = ctskpkGen(7000); + sc.push_back(sctmp); + pc.push_back(pctmp); + vector<xmr_amount >amounts; + rct::keyV amount_keys; + key mask; + + //add output 500 + amounts.push_back(500); + amount_keys.push_back(rct::hash_to_scalar(rct::zero())); + keyV destinations; + key Sk, Pk; + skpkGen(Sk, Pk); + destinations.push_back(Pk); + + + //add output for 12500 + amounts.push_back(12500); + amount_keys.push_back(rct::hash_to_scalar(rct::zero())); + skpkGen(Sk, Pk); + destinations.push_back(Pk); + + //compute rct data with mixin 500 + rctSig s = genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, 3); + + //verify rct data + ASSERT_TRUE(verRct(s)); + + //decode received amount + ASSERT_TRUE(decodeRct(s, amount_keys[1], 1, mask)); + + // Ring CT with failing MG sig part should not verify! + // Since sum of inputs != outputs + + amounts[1] = 12501; + skpkGen(Sk, Pk); + destinations[1] = Pk; + + + //compute rct data with mixin 500 + s = genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, 3); + + //verify rct data + ASSERT_FALSE(verRct(s)); + + //decode received amount + ASSERT_TRUE(decodeRct(s, amount_keys[1], 1, mask)); +} + +TEST(ringct, range_proofs_with_fee) +{ + //Ring CT Stuff + //ct range proofs + ctkeyV sc, pc; + ctkey sctmp, pctmp; + //add fake input 5000 + tie(sctmp, pctmp) = ctskpkGen(6001); + sc.push_back(sctmp); + pc.push_back(pctmp); + + + tie(sctmp, pctmp) = ctskpkGen(7000); + sc.push_back(sctmp); + pc.push_back(pctmp); + vector<xmr_amount >amounts; + keyV amount_keys; + key mask; + + //add output 500 + amounts.push_back(500); + amount_keys.push_back(rct::hash_to_scalar(rct::zero())); + keyV destinations; + key Sk, Pk; + skpkGen(Sk, Pk); + destinations.push_back(Pk); + + //add txn fee for 1 + //has no corresponding destination.. + amounts.push_back(1); + amount_keys.push_back(hash_to_scalar(zero())); + + //add output for 12500 + amounts.push_back(12500); + amount_keys.push_back(hash_to_scalar(zero())); + skpkGen(Sk, Pk); + destinations.push_back(Pk); + + //compute rct data with mixin 500 + rctSig s = genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, 3); + + //verify rct data + ASSERT_TRUE(verRct(s)); + + //decode received amount + ASSERT_TRUE(decodeRct(s, amount_keys[1], 1, mask)); + + // Ring CT with failing MG sig part should not verify! + // Since sum of inputs != outputs + + amounts[1] = 12501; + skpkGen(Sk, Pk); + destinations[1] = Pk; + + + //compute rct data with mixin 500 + s = genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, 3); + + //verify rct data + ASSERT_FALSE(verRct(s)); + + //decode received amount + ASSERT_TRUE(decodeRct(s, amount_keys[1], 1, mask)); +} + +TEST(ringct, simple) +{ + ctkeyV sc, pc; + ctkey sctmp, pctmp; + //this vector corresponds to output amounts + vector<xmr_amount>outamounts; + //this vector corresponds to input amounts + vector<xmr_amount>inamounts; + //this keyV corresponds to destination pubkeys + keyV destinations; + keyV amount_keys; + key mask; + + //add fake input 3000 + //the sc is secret data + //pc is public data + tie(sctmp, pctmp) = ctskpkGen(3000); + sc.push_back(sctmp); + pc.push_back(pctmp); + inamounts.push_back(3000); + + //add fake input 3000 + //the sc is secret data + //pc is public data + tie(sctmp, pctmp) = ctskpkGen(3000); + sc.push_back(sctmp); + pc.push_back(pctmp); + inamounts.push_back(3000); + + //add output 5000 + outamounts.push_back(5000); + amount_keys.push_back(rct::hash_to_scalar(rct::zero())); + //add the corresponding destination pubkey + key Sk, Pk; + skpkGen(Sk, Pk); + destinations.push_back(Pk); + + //add output 999 + outamounts.push_back(999); + amount_keys.push_back(rct::hash_to_scalar(rct::zero())); + //add the corresponding destination pubkey + skpkGen(Sk, Pk); + destinations.push_back(Pk); + + key message = skGen(); //real message later (hash of txn..) + + //compute sig with mixin 2 + xmr_amount txnfee = 1; + + rctSig s = genRctSimple(message, sc, pc, destinations,inamounts, outamounts, amount_keys, txnfee, 2); + + //verify ring ct signature + ASSERT_TRUE(verRctSimple(s)); + + //decode received amount corresponding to output pubkey index 1 + ASSERT_TRUE(decodeRctSimple(s, amount_keys[1], 1, mask)); +} + +static rct::rctSig make_sample_rct_sig(int n_inputs, const uint64_t input_amounts[], int n_outputs, const uint64_t output_amounts[], bool last_is_fee) +{ + ctkeyV sc, pc; + ctkey sctmp, pctmp; + vector<xmr_amount >amounts; + keyV destinations; + keyV amount_keys; + key Sk, Pk; + + for (int n = 0; n < n_inputs; ++n) { + tie(sctmp, pctmp) = ctskpkGen(input_amounts[n]); + sc.push_back(sctmp); + pc.push_back(pctmp); + } + + for (int n = 0; n < n_outputs; ++n) { + amounts.push_back(output_amounts[n]); + amount_keys.push_back(rct::hash_to_scalar(rct::zero())); + skpkGen(Sk, Pk); + if (n < n_outputs - 1 || !last_is_fee) + destinations.push_back(Pk); + } + + return genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, 3);; +} + +static rct::rctSig make_sample_simple_rct_sig(int n_inputs, const uint64_t input_amounts[], int n_outputs, const uint64_t output_amounts[], uint64_t fee) +{ + ctkeyV sc, pc; + ctkey sctmp, pctmp; + vector<xmr_amount> inamounts, outamounts; + keyV destinations; + keyV amount_keys; + key Sk, Pk; + + for (int n = 0; n < n_inputs; ++n) { + inamounts.push_back(input_amounts[n]); + tie(sctmp, pctmp) = ctskpkGen(input_amounts[n]); + sc.push_back(sctmp); + pc.push_back(pctmp); + } + + for (int n = 0; n < n_outputs; ++n) { + outamounts.push_back(output_amounts[n]); + amount_keys.push_back(hash_to_scalar(zero())); + skpkGen(Sk, Pk); + destinations.push_back(Pk); + } + + return genRctSimple(rct::zero(), sc, pc, destinations, inamounts, outamounts, amount_keys, fee, 3);; +} + +static bool range_proof_test(bool expected_valid, + int n_inputs, const uint64_t input_amounts[], int n_outputs, const uint64_t output_amounts[], bool last_is_fee, bool simple) +{ + //compute rct data + bool valid; + try { + rctSig s; + // simple takes fee as a parameter, non-simple takes it as an extra element to output amounts + if (simple) { + s = make_sample_simple_rct_sig(n_inputs, input_amounts, last_is_fee ? n_outputs - 1 : n_outputs, output_amounts, last_is_fee ? output_amounts[n_outputs - 1] : 0); + valid = verRctSimple(s); + } + else { + s = make_sample_rct_sig(n_inputs, input_amounts, n_outputs, output_amounts, last_is_fee); + valid = verRct(s); + } + } + catch (const std::exception &e) { + valid = false; + } + + if (valid == expected_valid) { + return testing::AssertionSuccess(); + } + else { + return testing::AssertionFailure(); + } +} + +#define NELTS(array) (sizeof(array)/sizeof(array[0])) + +TEST(ringct, range_proofs_reject_empty_outs) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_reject_empty_outs_simple) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_reject_empty_ins) +{ + const uint64_t inputs[] = {}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_reject_empty_ins_simple) +{ + const uint64_t inputs[] = {}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_reject_all_empty) +{ + const uint64_t inputs[] = {}; + const uint64_t outputs[] = {}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_reject_all_empty_simple) +{ + const uint64_t inputs[] = {}; + const uint64_t outputs[] = {}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_accept_zero_empty) +{ + const uint64_t inputs[] = {0}; + const uint64_t outputs[] = {}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_accept_zero_empty_simple) +{ + const uint64_t inputs[] = {0}; + const uint64_t outputs[] = {}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_reject_empty_zero) +{ + const uint64_t inputs[] = {}; + const uint64_t outputs[] = {0}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_reject_empty_zero_simple) +{ + const uint64_t inputs[] = {}; + const uint64_t outputs[] = {0}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_accept_zero_zero) +{ + const uint64_t inputs[] = {0}; + const uint64_t outputs[] = {0}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_accept_zero_zero_simple) +{ + const uint64_t inputs[] = {0}; + const uint64_t outputs[] = {0}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_accept_zero_out_first) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {0, 5000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_accept_zero_out_first_simple) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {0, 5000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_accept_zero_out_last) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {5000, 0}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_accept_zero_out_last_simple) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {5000, 0}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_accept_zero_out_middle) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {2500, 0, 2500}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_accept_zero_out_middle_simple) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {2500, 0, 2500}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_accept_zero_in_first) +{ + const uint64_t inputs[] = {0, 5000}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_accept_zero_in_first_simple) +{ + const uint64_t inputs[] = {0, 5000}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_accept_zero_in_last) +{ + const uint64_t inputs[] = {5000, 0}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_accept_zero_in_last_simple) +{ + const uint64_t inputs[] = {5000, 0}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_accept_zero_in_middle) +{ + const uint64_t inputs[] = {2500, 0, 2500}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_accept_zero_in_middle_simple) +{ + const uint64_t inputs[] = {2500, 0, 2500}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_reject_single_lower) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {1}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_reject_single_lower_simple) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {1}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_reject_single_higher) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {5001}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_reject_single_higher_simple) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {5001}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_reject_single_out_negative) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {(uint64_t)-1000ll}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_reject_single_out_negative_simple) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {(uint64_t)-1000ll}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_reject_out_negative_first) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {(uint64_t)-1000ll, 6000}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_reject_out_negative_first_simple) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {(uint64_t)-1000ll, 6000}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_reject_out_negative_last) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {6000, (uint64_t)-1000ll}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_reject_out_negative_last_simple) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {6000, (uint64_t)-1000ll}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_reject_out_negative_middle) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {3000, (uint64_t)-1000ll, 3000}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_reject_out_negative_middle_simple) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {3000, (uint64_t)-1000ll, 3000}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_reject_single_in_negative) +{ + const uint64_t inputs[] = {(uint64_t)-1000ll}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_reject_single_in_negative_simple) +{ + const uint64_t inputs[] = {(uint64_t)-1000ll}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_reject_in_negative_first) +{ + const uint64_t inputs[] = {(uint64_t)-1000ll, 6000}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_reject_in_negative_first_simple) +{ + const uint64_t inputs[] = {(uint64_t)-1000ll, 6000}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_reject_in_negative_last) +{ + const uint64_t inputs[] = {6000, (uint64_t)-1000ll}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_reject_in_negative_last_simple) +{ + const uint64_t inputs[] = {6000, (uint64_t)-1000ll}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_reject_in_negative_middle) +{ + const uint64_t inputs[] = {3000, (uint64_t)-1000ll, 3000}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_reject_in_negative_middle_simple) +{ + const uint64_t inputs[] = {3000, (uint64_t)-1000ll, 3000}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_reject_higher_list) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000, 1000}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_reject_higher_list_simple) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000, 1000}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_accept_1_to_1) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_accept_1_to_1_simple) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_accept_1_to_N) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_accept_1_to_N_simple) +{ + const uint64_t inputs[] = {5000}; + const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false,true)); +} + +TEST(ringct, range_proofs_accept_N_to_1) +{ + const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_accept_N_to_1_simple) +{ + const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000}; + const uint64_t outputs[] = {5000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_accept_N_to_N) +{ + const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000}; + const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_accept_N_to_N_simple) +{ + const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000}; + const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, range_proofs_accept_very_long) +{ + const size_t N=12; + uint64_t inputs[N]; + uint64_t outputs[N]; + for (size_t n = 0; n < N; ++n) { + inputs[n] = n; + outputs[n] = n; + } + std::random_shuffle(inputs, inputs + N); + std::random_shuffle(outputs, outputs + N); + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); +} + +TEST(ringct, range_proofs_accept_very_long_simple) +{ + const size_t N=12; + uint64_t inputs[N]; + uint64_t outputs[N]; + for (size_t n = 0; n < N; ++n) { + inputs[n] = n; + outputs[n] = n; + } + std::random_shuffle(inputs, inputs + N); + std::random_shuffle(outputs, outputs + N); + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); +} + +TEST(ringct, HPow2) +{ + key G = scalarmultBase(d2h(1)); + + key H = hashToPointSimple(G); + for (int j = 0 ; j < ATOMS ; j++) { + ASSERT_TRUE(equalKeys(H, H2[j])); + addKeys(H, H, H); + } +} + +static const xmr_amount test_amounts[]={0, 1, 2, 3, 4, 5, 10000, 10000000000000000000ull, 10203040506070809000ull, 123456789123456789}; + +TEST(ringct, ecdh_roundtrip) +{ + key k; + ecdhTuple t0, t1; + + for (auto amount: test_amounts) { + skGen(k); + + t0.mask = skGen(); + t0.amount = d2h(amount); + + t1 = t0; + ecdhEncode(t1, k); + ecdhDecode(t1, k); + ASSERT_TRUE(t0.mask == t1.mask); + ASSERT_TRUE(equalKeys(t0.mask, t1.mask)); + ASSERT_TRUE(t0.amount == t1.amount); + ASSERT_TRUE(equalKeys(t0.amount, t1.amount)); + } +} + +TEST(ringct, d2h) +{ + key k, P1; + skpkGen(k, P1); + for (auto amount: test_amounts) { + d2h(k, amount); + ASSERT_TRUE(amount == h2d(k)); + } +} + +TEST(ringct, d2b) +{ + for (auto amount: test_amounts) { + bits b; + d2b(b, amount); + ASSERT_TRUE(amount == b2d(b)); + } +} + +TEST(ringct, prooveRange_is_non_deterministic) +{ + key C[2], mask[2]; + for (int n = 0; n < 2; ++n) + proveRange(C[n], mask[n], 80); + ASSERT_TRUE(memcmp(C[0].bytes, C[1].bytes, sizeof(C[0].bytes))); + ASSERT_TRUE(memcmp(mask[0].bytes, mask[1].bytes, sizeof(mask[0].bytes))); +} + +TEST(ringct, fee_0_valid) +{ + const uint64_t inputs[] = {1000, 1000}; + const uint64_t outputs[] = {2000, 0}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false)); +} + +TEST(ringct, fee_0_valid_simple) +{ + const uint64_t inputs[] = {1000, 1000}; + const uint64_t outputs[] = {2000, 0}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true)); +} + +TEST(ringct, fee_non_0_valid) +{ + const uint64_t inputs[] = {1000, 1000}; + const uint64_t outputs[] = {1900, 100}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false)); +} + +TEST(ringct, fee_non_0_valid_simple) +{ + const uint64_t inputs[] = {1000, 1000}; + const uint64_t outputs[] = {1900, 100}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true)); +} + +TEST(ringct, fee_non_0_invalid_higher) +{ + const uint64_t inputs[] = {1000, 1000}; + const uint64_t outputs[] = {1990, 100}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false)); +} + +TEST(ringct, fee_non_0_invalid_higher_simple) +{ + const uint64_t inputs[] = {1000, 1000}; + const uint64_t outputs[] = {1990, 100}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true)); +} + +TEST(ringct, fee_non_0_invalid_lower) +{ + const uint64_t inputs[] = {1000, 1000}; + const uint64_t outputs[] = {1000, 100}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false)); +} + +TEST(ringct, fee_non_0_invalid_lower_simple) +{ + const uint64_t inputs[] = {1000, 1000}; + const uint64_t outputs[] = {1000, 100}; + EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true)); +} + +TEST(ringct, fee_burn_valid_one_out) +{ + const uint64_t inputs[] = {1000, 1000}; + const uint64_t outputs[] = {0, 2000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false)); +} + +TEST(ringct, fee_burn_valid_one_out_simple) +{ + const uint64_t inputs[] = {1000, 1000}; + const uint64_t outputs[] = {0, 2000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true)); +} + +TEST(ringct, fee_burn_valid_zero_out) +{ + const uint64_t inputs[] = {1000, 1000}; + const uint64_t outputs[] = {2000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false)); +} + +TEST(ringct, fee_burn_valid_zero_out_simple) +{ + const uint64_t inputs[] = {1000, 1000}; + const uint64_t outputs[] = {2000}; + EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true)); +} + +#define TEST_rctSig_elements(name, op) \ +TEST(ringct, rctSig_##name) \ +{ \ + const uint64_t inputs[] = {1000, 1000}; \ + const uint64_t outputs[] = {1000, 1000}; \ + rct::rctSig sig = make_sample_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, true); \ + ASSERT_TRUE(rct::verRct(sig)); \ + op; \ + ASSERT_FALSE(rct::verRct(sig)); \ +} + +TEST_rctSig_elements(rangeSigs_empty, sig.p.rangeSigs.resize(0)); +TEST_rctSig_elements(rangeSigs_too_many, sig.p.rangeSigs.push_back(sig.p.rangeSigs.back())); +TEST_rctSig_elements(rangeSigs_too_few, sig.p.rangeSigs.pop_back()); +TEST_rctSig_elements(mgSig_MG_empty, sig.p.MGs.resize(0)); +TEST_rctSig_elements(mgSig_ss_empty, sig.p.MGs[0].ss.resize(0)); +TEST_rctSig_elements(mgSig_ss_too_many, sig.p.MGs[0].ss.push_back(sig.p.MGs[0].ss.back())); +TEST_rctSig_elements(mgSig_ss_too_few, sig.p.MGs[0].ss.pop_back()); +TEST_rctSig_elements(mgSig_ss0_empty, sig.p.MGs[0].ss[0].resize(0)); +TEST_rctSig_elements(mgSig_ss0_too_many, sig.p.MGs[0].ss[0].push_back(sig.p.MGs[0].ss[0].back())); +TEST_rctSig_elements(mgSig_ss0_too_few, sig.p.MGs[0].ss[0].pop_back()); +TEST_rctSig_elements(mgSig_II_empty, sig.p.MGs[0].II.resize(0)); +TEST_rctSig_elements(mgSig_II_too_many, sig.p.MGs[0].II.push_back(sig.p.MGs[0].II.back())); +TEST_rctSig_elements(mgSig_II_too_few, sig.p.MGs[0].II.pop_back()); +TEST_rctSig_elements(mixRing_empty, sig.mixRing.resize(0)); +TEST_rctSig_elements(mixRing_too_many, sig.mixRing.push_back(sig.mixRing.back())); +TEST_rctSig_elements(mixRing_too_few, sig.mixRing.pop_back()); +TEST_rctSig_elements(mixRing0_empty, sig.mixRing[0].resize(0)); +TEST_rctSig_elements(mixRing0_too_many, sig.mixRing[0].push_back(sig.mixRing[0].back())); +TEST_rctSig_elements(mixRing0_too_few, sig.mixRing[0].pop_back()); +TEST_rctSig_elements(ecdhInfo_empty, sig.ecdhInfo.resize(0)); +TEST_rctSig_elements(ecdhInfo_too_many, sig.ecdhInfo.push_back(sig.ecdhInfo.back())); +TEST_rctSig_elements(ecdhInfo_too_few, sig.ecdhInfo.pop_back()); +TEST_rctSig_elements(outPk_empty, sig.outPk.resize(0)); +TEST_rctSig_elements(outPk_too_many, sig.outPk.push_back(sig.outPk.back())); +TEST_rctSig_elements(outPk_too_few, sig.outPk.pop_back()); + +#define TEST_rctSig_elements_simple(name, op) \ +TEST(ringct, rctSig_##name##_simple) \ +{ \ + const uint64_t inputs[] = {1000, 1000}; \ + const uint64_t outputs[] = {1000}; \ + rct::rctSig sig = make_sample_simple_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, 1000); \ + ASSERT_TRUE(rct::verRctSimple(sig)); \ + op; \ + ASSERT_FALSE(rct::verRctSimple(sig)); \ +} + +TEST_rctSig_elements_simple(rangeSigs_empty, sig.p.rangeSigs.resize(0)); +TEST_rctSig_elements_simple(rangeSigs_too_many, sig.p.rangeSigs.push_back(sig.p.rangeSigs.back())); +TEST_rctSig_elements_simple(rangeSigs_too_few, sig.p.rangeSigs.pop_back()); +TEST_rctSig_elements_simple(mgSig_empty, sig.p.MGs.resize(0)); +TEST_rctSig_elements_simple(mgSig_too_many, sig.p.MGs.push_back(sig.p.MGs.back())); +TEST_rctSig_elements_simple(mgSig_too_few, sig.p.MGs.pop_back()); +TEST_rctSig_elements_simple(mgSig0_ss_empty, sig.p.MGs[0].ss.resize(0)); +TEST_rctSig_elements_simple(mgSig0_ss_too_many, sig.p.MGs[0].ss.push_back(sig.p.MGs[0].ss.back())); +TEST_rctSig_elements_simple(mgSig0_ss_too_few, sig.p.MGs[0].ss.pop_back()); +TEST_rctSig_elements_simple(mgSig_ss0_empty, sig.p.MGs[0].ss[0].resize(0)); +TEST_rctSig_elements_simple(mgSig_ss0_too_many, sig.p.MGs[0].ss[0].push_back(sig.p.MGs[0].ss[0].back())); +TEST_rctSig_elements_simple(mgSig_ss0_too_few, sig.p.MGs[0].ss[0].pop_back()); +TEST_rctSig_elements_simple(mgSig0_II_empty, sig.p.MGs[0].II.resize(0)); +TEST_rctSig_elements_simple(mgSig0_II_too_many, sig.p.MGs[0].II.push_back(sig.p.MGs[0].II.back())); +TEST_rctSig_elements_simple(mgSig0_II_too_few, sig.p.MGs[0].II.pop_back()); +TEST_rctSig_elements_simple(mixRing_empty, sig.mixRing.resize(0)); +TEST_rctSig_elements_simple(mixRing_too_many, sig.mixRing.push_back(sig.mixRing.back())); +TEST_rctSig_elements_simple(mixRing_too_few, sig.mixRing.pop_back()); +TEST_rctSig_elements_simple(mixRing0_empty, sig.mixRing[0].resize(0)); +TEST_rctSig_elements_simple(mixRing0_too_many, sig.mixRing[0].push_back(sig.mixRing[0].back())); +TEST_rctSig_elements_simple(mixRing0_too_few, sig.mixRing[0].pop_back()); +TEST_rctSig_elements_simple(pseudoOuts_empty, sig.pseudoOuts.resize(0)); +TEST_rctSig_elements_simple(pseudoOuts_too_many, sig.pseudoOuts.push_back(sig.pseudoOuts.back())); +TEST_rctSig_elements_simple(pseudoOuts_too_few, sig.pseudoOuts.pop_back()); +TEST_rctSig_elements_simple(ecdhInfo_empty, sig.ecdhInfo.resize(0)); +TEST_rctSig_elements_simple(ecdhInfo_too_many, sig.ecdhInfo.push_back(sig.ecdhInfo.back())); +TEST_rctSig_elements_simple(ecdhInfo_too_few, sig.ecdhInfo.pop_back()); +TEST_rctSig_elements_simple(outPk_empty, sig.outPk.resize(0)); +TEST_rctSig_elements_simple(outPk_too_many, sig.outPk.push_back(sig.outPk.back())); +TEST_rctSig_elements_simple(outPk_too_few, sig.outPk.pop_back()); + +TEST(ringct, reject_gen_simple_ver_non_simple) +{ + const uint64_t inputs[] = {1000, 1000}; + const uint64_t outputs[] = {1000}; + rct::rctSig sig = make_sample_simple_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, 1000); + ASSERT_FALSE(rct::verRct(sig)); +} + +TEST(ringct, reject_gen_non_simple_ver_simple) +{ + const uint64_t inputs[] = {1000, 1000}; + const uint64_t outputs[] = {1000, 1000}; + rct::rctSig sig = make_sample_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, true); + ASSERT_FALSE(rct::verRctSimple(sig)); +} diff --git a/tests/unit_tests/serialization.cpp b/tests/unit_tests/serialization.cpp index b110a41ab..40209f6ed 100644 --- a/tests/unit_tests/serialization.cpp +++ b/tests/unit_tests/serialization.cpp @@ -36,6 +36,7 @@ #include <boost/foreach.hpp> #include "cryptonote_core/cryptonote_basic.h" #include "cryptonote_core/cryptonote_basic_impl.h" +#include "ringct/rctSigs.h" #include "serialization/serialization.h" #include "serialization/binary_archive.h" #include "serialization/json_archive.h" @@ -442,3 +443,200 @@ TEST(Serialization, serializes_transacion_signatures_correctly) blob.resize(blob.size() + sizeof(crypto::signature) / 2); ASSERT_FALSE(serialization::parse_binary(blob, tx1)); } + +TEST(Serialization, serializes_ringct_types) +{ + string blob; + rct::key key0, key1; + rct::keyV keyv0, keyv1; + rct::keyM keym0, keym1; + rct::ctkey ctkey0, ctkey1; + rct::ctkeyV ctkeyv0, ctkeyv1; + rct::ctkeyM ctkeym0, ctkeym1; + rct::ecdhTuple ecdh0, ecdh1; + rct::asnlSig asnl0, asnl1; + rct::mgSig mg0, mg1; + rct::rangeSig rg0, rg1; + rct::rctSig s0, s1; + cryptonote::transaction tx0, tx1; + + key0 = rct::skGen(); + ASSERT_TRUE(serialization::dump_binary(key0, blob)); + ASSERT_TRUE(serialization::parse_binary(blob, key1)); + ASSERT_TRUE(key0 == key1); + + keyv0 = rct::skvGen(30); + for (size_t n = 0; n < keyv0.size(); ++n) + keyv0[n] = rct::skGen(); + ASSERT_TRUE(serialization::dump_binary(keyv0, blob)); + ASSERT_TRUE(serialization::parse_binary(blob, keyv1)); + ASSERT_TRUE(keyv0.size() == keyv1.size()); + for (size_t n = 0; n < keyv0.size(); ++n) + { + ASSERT_TRUE(keyv0[n] == keyv1[n]); + } + + keym0 = rct::keyMInit(9, 12); + for (size_t n = 0; n < keym0.size(); ++n) + for (size_t i = 0; i < keym0[n].size(); ++i) + keym0[n][i] = rct::skGen(); + ASSERT_TRUE(serialization::dump_binary(keym0, blob)); + ASSERT_TRUE(serialization::parse_binary(blob, keym1)); + ASSERT_TRUE(keym0.size() == keym1.size()); + for (size_t n = 0; n < keym0.size(); ++n) + { + ASSERT_TRUE(keym0[n].size() == keym1[n].size()); + for (size_t i = 0; i < keym0[n].size(); ++i) + { + ASSERT_TRUE(keym0[n][i] == keym1[n][i]); + } + } + + rct::skpkGen(ctkey0.dest, ctkey0.mask); + ASSERT_TRUE(serialization::dump_binary(ctkey0, blob)); + ASSERT_TRUE(serialization::parse_binary(blob, ctkey1)); + ASSERT_TRUE(!memcmp(&ctkey0, &ctkey1, sizeof(ctkey0))); + + ctkeyv0 = std::vector<rct::ctkey>(14); + for (size_t n = 0; n < ctkeyv0.size(); ++n) + rct::skpkGen(ctkeyv0[n].dest, ctkeyv0[n].mask); + ASSERT_TRUE(serialization::dump_binary(ctkeyv0, blob)); + ASSERT_TRUE(serialization::parse_binary(blob, ctkeyv1)); + ASSERT_TRUE(ctkeyv0.size() == ctkeyv1.size()); + for (size_t n = 0; n < ctkeyv0.size(); ++n) + { + ASSERT_TRUE(!memcmp(&ctkeyv0[n], &ctkeyv1[n], sizeof(ctkeyv0[n]))); + } + + ctkeym0 = std::vector<rct::ctkeyV>(9); + for (size_t n = 0; n < ctkeym0.size(); ++n) + { + ctkeym0[n] = std::vector<rct::ctkey>(11); + for (size_t i = 0; i < ctkeym0[n].size(); ++i) + rct::skpkGen(ctkeym0[n][i].dest, ctkeym0[n][i].mask); + } + ASSERT_TRUE(serialization::dump_binary(ctkeym0, blob)); + ASSERT_TRUE(serialization::parse_binary(blob, ctkeym1)); + ASSERT_TRUE(ctkeym0.size() == ctkeym1.size()); + for (size_t n = 0; n < ctkeym0.size(); ++n) + { + ASSERT_TRUE(ctkeym0[n].size() == ctkeym1[n].size()); + for (size_t i = 0; i < ctkeym0.size(); ++i) + { + ASSERT_TRUE(!memcmp(&ctkeym0[n][i], &ctkeym1[n][i], sizeof(ctkeym0[n][i]))); + } + } + + ecdh0.mask = rct::skGen(); + ecdh0.amount = rct::skGen(); + ecdh0.senderPk = rct::skGen(); + ASSERT_TRUE(serialization::dump_binary(ecdh0, blob)); + ASSERT_TRUE(serialization::parse_binary(blob, ecdh1)); + ASSERT_TRUE(!memcmp(&ecdh0.mask, &ecdh1.mask, sizeof(ecdh0.mask))); + ASSERT_TRUE(!memcmp(&ecdh0.amount, &ecdh1.amount, sizeof(ecdh0.amount))); + // senderPk is not serialized + + for (size_t n = 0; n < 64; ++n) + { + asnl0.L1[n] = rct::skGen(); + asnl0.s2[n] = rct::skGen(); + } + asnl0.s = rct::skGen(); + ASSERT_TRUE(serialization::dump_binary(asnl0, blob)); + ASSERT_TRUE(serialization::parse_binary(blob, asnl1)); + ASSERT_TRUE(!memcmp(&asnl0, &asnl1, sizeof(asnl0))); + + // create a full rct signature to use its innards + rct::ctkeyV sc, pc; + rct::ctkey sctmp, pctmp; + tie(sctmp, pctmp) = rct::ctskpkGen(6000); + sc.push_back(sctmp); + pc.push_back(pctmp); + tie(sctmp, pctmp) = rct::ctskpkGen(7000); + sc.push_back(sctmp); + pc.push_back(pctmp); + vector<uint64_t> amounts; + rct::keyV amount_keys; + //add output 500 + amounts.push_back(500); + rct::keyV destinations; + rct::key Sk, Pk; + rct::skpkGen(Sk, Pk); + destinations.push_back(Pk); + //add output for 12500 + amounts.push_back(12500); + amount_keys.push_back(rct::hash_to_scalar(rct::zero())); + rct::skpkGen(Sk, Pk); + destinations.push_back(Pk); + //compute rct data with mixin 500 + s0 = rct::genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, 3); + + mg0 = s0.p.MGs[0]; + ASSERT_TRUE(serialization::dump_binary(mg0, blob)); + ASSERT_TRUE(serialization::parse_binary(blob, mg1)); + ASSERT_TRUE(mg0.ss.size() == mg1.ss.size()); + for (size_t n = 0; n < mg0.ss.size(); ++n) + { + ASSERT_TRUE(mg0.ss[n] == mg1.ss[n]); + } + ASSERT_TRUE(mg0.cc == mg1.cc); + + // mixRing and II are not serialized, they are meant to be reconstructed + ASSERT_TRUE(mg1.II.empty()); + + rg0 = s0.p.rangeSigs.front(); + ASSERT_TRUE(serialization::dump_binary(rg0, blob)); + ASSERT_TRUE(serialization::parse_binary(blob, rg1)); + ASSERT_TRUE(!memcmp(&rg0, &rg1, sizeof(rg0))); + + ASSERT_TRUE(serialization::dump_binary(s0, blob)); + ASSERT_TRUE(serialization::parse_binary(blob, s1)); + ASSERT_TRUE(s0.type == s1.type); + ASSERT_TRUE(s0.p.rangeSigs.size() == s1.p.rangeSigs.size()); + for (size_t n = 0; n < s0.p.rangeSigs.size(); ++n) + { + ASSERT_TRUE(!memcmp(&s0.p.rangeSigs[n], &s1.p.rangeSigs[n], sizeof(s0.p.rangeSigs[n]))); + } + ASSERT_TRUE(s0.p.MGs.size() == s1.p.MGs.size()); + ASSERT_TRUE(s0.p.MGs[0].ss.size() == s1.p.MGs[0].ss.size()); + for (size_t n = 0; n < s0.p.MGs[0].ss.size(); ++n) + { + ASSERT_TRUE(s0.p.MGs[0].ss[n] == s1.p.MGs[0].ss[n]); + } + ASSERT_TRUE(s0.p.MGs[0].cc == s1.p.MGs[0].cc); + // mixRing and II are not serialized, they are meant to be reconstructed + ASSERT_TRUE(s1.p.MGs[0].II.empty()); + + // mixRing and II are not serialized, they are meant to be reconstructed + ASSERT_TRUE(s1.mixRing.size() == 0); + + ASSERT_TRUE(s0.ecdhInfo.size() == s1.ecdhInfo.size()); + for (size_t n = 0; n < s0.ecdhInfo.size(); ++n) + { + ASSERT_TRUE(!memcmp(&s0.ecdhInfo[n], &s1.ecdhInfo[n], sizeof(s0.ecdhInfo[n]))); + } + ASSERT_TRUE(s0.outPk.size() == s1.outPk.size()); + for (size_t n = 0; n < s0.outPk.size(); ++n) + { + // serialization only does the mask + ASSERT_TRUE(!memcmp(&s0.outPk[n].mask, &s1.outPk[n].mask, sizeof(s0.outPk[n].mask))); + } + + tx0.set_null(); + tx0.version = 2; + cryptonote::txin_to_key txin_to_key1; + txin_to_key1.key_offsets.resize(2); + cryptonote::txin_to_key txin_to_key2; + txin_to_key2.key_offsets.resize(2); + tx0.vin.push_back(txin_to_key1); + tx0.vin.push_back(txin_to_key2); + tx0.vout.push_back(cryptonote::tx_out()); + tx0.rct_signatures = s0; + ASSERT_EQ(tx0.rct_signatures.p.rangeSigs.size(), 2); + ASSERT_TRUE(serialization::dump_binary(tx0, blob)); + ASSERT_TRUE(serialization::parse_binary(blob, tx1)); + ASSERT_EQ(tx1.rct_signatures.p.rangeSigs.size(), 2); + std::string blob2; + ASSERT_TRUE(serialization::dump_binary(tx1, blob2)); + ASSERT_TRUE(blob == blob2); +} |