diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/crypto/slow-hash.c | 252 | ||||
-rw-r--r-- | src/crypto/variant2_int_sqrt.h | 163 |
2 files changed, 361 insertions, 54 deletions
diff --git a/src/crypto/slow-hash.c b/src/crypto/slow-hash.c index 9d4fc0dfa..a4d2b58de 100644 --- a/src/crypto/slow-hash.c +++ b/src/crypto/slow-hash.c @@ -38,6 +38,7 @@ #include "common/int-util.h" #include "hash-ops.h" #include "oaes_lib.h" +#include "variant2_int_sqrt.h" #define MEMORY (1 << 21) // 2MB scratchpad #define ITER (1 << 20) @@ -50,7 +51,7 @@ extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expa extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey); #define VARIANT1_1(p) \ - do if (variant > 0) \ + do if (variant == 1) \ { \ const uint8_t tmp = ((const uint8_t*)(p))[11]; \ static const uint32_t table = 0x75310; \ @@ -59,7 +60,7 @@ extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *exp } while(0) #define VARIANT1_2(p) \ - do if (variant > 0) \ + do if (variant == 1) \ { \ xor64(p, tweak1_2); \ } while(0) @@ -67,7 +68,7 @@ extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *exp #define VARIANT1_CHECK() \ do if (length < 43) \ { \ - fprintf(stderr, "Cryptonight variants need at least 43 bytes of data"); \ + fprintf(stderr, "Cryptonight variant 1 needs at least 43 bytes of data"); \ _exit(1); \ } while(0) @@ -75,7 +76,7 @@ extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *exp #define VARIANT1_PORTABLE_INIT() \ uint8_t tweak1_2[8]; \ - do if (variant > 0) \ + do if (variant == 1) \ { \ VARIANT1_CHECK(); \ memcpy(&tweak1_2, &state.hs.b[192], sizeof(tweak1_2)); \ @@ -83,11 +84,119 @@ extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *exp } while(0) #define VARIANT1_INIT64() \ - if (variant > 0) \ + if (variant == 1) \ { \ VARIANT1_CHECK(); \ } \ - const uint64_t tweak1_2 = variant > 0 ? (state.hs.w[24] ^ (*((const uint64_t*)NONCE_POINTER))) : 0 + const uint64_t tweak1_2 = (variant == 1) ? (state.hs.w[24] ^ (*((const uint64_t*)NONCE_POINTER))) : 0 + +#define VARIANT2_INIT64() \ + uint64_t division_result = 0; \ + uint64_t sqrt_result = 0; \ + do if (variant >= 2) \ + { \ + U64(b)[2] = state.hs.w[8] ^ state.hs.w[10]; \ + U64(b)[3] = state.hs.w[9] ^ state.hs.w[11]; \ + division_result = state.hs.w[12]; \ + sqrt_result = state.hs.w[13]; \ + } while (0) + +#define VARIANT2_PORTABLE_INIT() \ + uint64_t division_result = 0; \ + uint64_t sqrt_result = 0; \ + do if (variant >= 2) \ + { \ + memcpy(b + AES_BLOCK_SIZE, state.hs.b + 64, AES_BLOCK_SIZE); \ + xor64(b + AES_BLOCK_SIZE, state.hs.b + 80); \ + xor64(b + AES_BLOCK_SIZE + 8, state.hs.b + 88); \ + division_result = state.hs.w[12]; \ + sqrt_result = state.hs.w[13]; \ + } while (0) + +#define VARIANT2_SHUFFLE_ADD_SSE2(base_ptr, offset) \ + do if (variant >= 2) \ + { \ + const __m128i chunk1 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10))); \ + const __m128i chunk2 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20))); \ + const __m128i chunk3 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30))); \ + _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10)), _mm_add_epi64(chunk3, _b1)); \ + _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20)), _mm_add_epi64(chunk1, _b)); \ + _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30)), _mm_add_epi64(chunk2, _a)); \ + } while (0) + +#define VARIANT2_SHUFFLE_ADD_NEON(base_ptr, offset) \ + do if (variant >= 2) \ + { \ + const uint64x2_t chunk1 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x10))); \ + const uint64x2_t chunk2 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x20))); \ + const uint64x2_t chunk3 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x30))); \ + vst1q_u64(U64((base_ptr) + ((offset) ^ 0x10)), vaddq_u64(chunk3, vreinterpretq_u64_u8(_b1))); \ + vst1q_u64(U64((base_ptr) + ((offset) ^ 0x20)), vaddq_u64(chunk1, vreinterpretq_u64_u8(_b))); \ + vst1q_u64(U64((base_ptr) + ((offset) ^ 0x30)), vaddq_u64(chunk2, vreinterpretq_u64_u8(_a))); \ + } while (0) + +#define VARIANT2_PORTABLE_SHUFFLE_ADD(base_ptr, offset) \ + do if (variant >= 2) \ + { \ + uint64_t* chunk1 = U64((base_ptr) + ((offset) ^ 0x10)); \ + uint64_t* chunk2 = U64((base_ptr) + ((offset) ^ 0x20)); \ + uint64_t* chunk3 = U64((base_ptr) + ((offset) ^ 0x30)); \ + \ + const uint64_t chunk1_old[2] = { chunk1[0], chunk1[1] }; \ + \ + uint64_t b1[2]; \ + memcpy(b1, b + 16, 16); \ + chunk1[0] = chunk3[0] + b1[0]; \ + chunk1[1] = chunk3[1] + b1[1]; \ + \ + uint64_t a0[2]; \ + memcpy(a0, a, 16); \ + chunk3[0] = chunk2[0] + a0[0]; \ + chunk3[1] = chunk2[1] + a0[1]; \ + \ + uint64_t b0[2]; \ + memcpy(b0, b, 16); \ + chunk2[0] = chunk1_old[0] + b0[0]; \ + chunk2[1] = chunk1_old[1] + b0[1]; \ + } while (0) + +#define VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr) \ + ((uint64_t*)(b))[0] ^= division_result ^ (sqrt_result << 32); \ + { \ + const uint64_t dividend = ((uint64_t*)(ptr))[1]; \ + const uint32_t divisor = (((uint64_t*)(ptr))[0] + (uint32_t)(sqrt_result << 1)) | 0x80000001UL; \ + division_result = ((uint32_t)(dividend / divisor)) + \ + (((uint64_t)(dividend % divisor)) << 32); \ + } \ + const uint64_t sqrt_input = ((uint64_t*)(ptr))[0] + division_result + +#define VARIANT2_INTEGER_MATH_SSE2(b, ptr) \ + do if (variant >= 2) \ + { \ + VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \ + VARIANT2_INTEGER_MATH_SQRT_STEP_SSE2(); \ + VARIANT2_INTEGER_MATH_SQRT_FIXUP(sqrt_result); \ + } while(0) + +#if defined DBL_MANT_DIG && (DBL_MANT_DIG >= 50) + // double precision floating point type has enough bits of precision on current platform + #define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \ + do if (variant >= 2) \ + { \ + VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \ + VARIANT2_INTEGER_MATH_SQRT_STEP_FP64(); \ + VARIANT2_INTEGER_MATH_SQRT_FIXUP(sqrt_result); \ + } while (0) +#else + // double precision floating point type is not good enough on current platform + // fall back to the reference code (integer only) + #define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \ + do if (variant >= 2) \ + { \ + VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \ + VARIANT2_INTEGER_MATH_SQRT_STEP_REF(); \ + } while (0) +#endif #if !defined NO_AES && (defined(__x86_64__) || (defined(_MSC_VER) && defined(_WIN64))) // Optimised code below, uses x86-specific intrinsics, SSE2, AES-NI @@ -164,19 +273,22 @@ extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *exp * This code is based upon an optimized implementation by dga. */ #define post_aes() \ + VARIANT2_SHUFFLE_ADD_SSE2(hp_state, j); \ _mm_store_si128(R128(c), _c); \ - _b = _mm_xor_si128(_b, _c); \ - _mm_store_si128(R128(&hp_state[j]), _b); \ + _mm_store_si128(R128(&hp_state[j]), _mm_xor_si128(_b, _c)); \ VARIANT1_1(&hp_state[j]); \ j = state_index(c); \ p = U64(&hp_state[j]); \ b[0] = p[0]; b[1] = p[1]; \ + VARIANT2_INTEGER_MATH_SSE2(b, c); \ __mul(); \ + VARIANT2_SHUFFLE_ADD_SSE2(hp_state, j); \ a[0] += hi; a[1] += lo; \ p = U64(&hp_state[j]); \ p[0] = a[0]; p[1] = a[1]; \ a[0] ^= b[0]; a[1] ^= b[1]; \ VARIANT1_2(p + 1); \ + _b1 = _b; \ _b = _c; \ #if defined(_MSC_VER) @@ -570,10 +682,10 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int uint8_t text[INIT_SIZE_BYTE]; RDATA_ALIGN16 uint64_t a[2]; - RDATA_ALIGN16 uint64_t b[2]; + RDATA_ALIGN16 uint64_t b[4]; RDATA_ALIGN16 uint64_t c[2]; union cn_slow_hash_state state; - __m128i _a, _b, _c; + __m128i _a, _b, _b1, _c; uint64_t hi, lo; size_t i, j; @@ -599,6 +711,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int memcpy(text, state.init, INIT_SIZE_BYTE); VARIANT1_INIT64(); + VARIANT2_INIT64(); /* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill * the 2MB large random access buffer. @@ -637,6 +750,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int */ _b = _mm_load_si128(R128(b)); + _b1 = _mm_load_si128(R128(b) + 1); // Two independent versions, one with AES, one without, to ensure that // the useAes test is only performed once, not every iteration. if(useAes) @@ -761,19 +875,22 @@ union cn_slow_hash_state _a = vld1q_u8((const uint8_t *)a); \ #define post_aes() \ + VARIANT2_SHUFFLE_ADD_NEON(hp_state, j); \ vst1q_u8((uint8_t *)c, _c); \ - _b = veorq_u8(_b, _c); \ - vst1q_u8(&hp_state[j], _b); \ + vst1q_u8(&hp_state[j], veorq_u8(_b, _c)); \ VARIANT1_1(&hp_state[j]); \ j = state_index(c); \ p = U64(&hp_state[j]); \ b[0] = p[0]; b[1] = p[1]; \ + VARIANT2_PORTABLE_INTEGER_MATH(b, c); \ __mul(); \ + VARIANT2_SHUFFLE_ADD_NEON(hp_state, j); \ a[0] += hi; a[1] += lo; \ p = U64(&hp_state[j]); \ p[0] = a[0]; p[1] = a[1]; \ a[0] ^= b[0]; a[1] ^= b[1]; \ VARIANT1_2(p + 1); \ + _b1 = _b; \ _b = _c; \ @@ -912,10 +1029,10 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int uint8_t text[INIT_SIZE_BYTE]; RDATA_ALIGN16 uint64_t a[2]; - RDATA_ALIGN16 uint64_t b[2]; + RDATA_ALIGN16 uint64_t b[4]; RDATA_ALIGN16 uint64_t c[2]; union cn_slow_hash_state state; - uint8x16_t _a, _b, _c, zero = {0}; + uint8x16_t _a, _b, _b1, _c, zero = {0}; uint64_t hi, lo; size_t i, j; @@ -936,6 +1053,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int memcpy(text, state.init, INIT_SIZE_BYTE); VARIANT1_INIT64(); + VARIANT2_INIT64(); /* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill * the 2MB large random access buffer. @@ -959,7 +1077,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int */ _b = vld1q_u8((const uint8_t *)b); - + _b1 = vld1q_u8(((const uint8_t *)b) + AES_BLOCK_SIZE); for(i = 0; i < ITER / 2; i++) { @@ -1075,6 +1193,11 @@ __asm__ __volatile__( #endif /* !aarch64 */ #endif // NO_OPTIMIZED_MULTIPLY_ON_ARM +STATIC INLINE void copy_block(uint8_t* dst, const uint8_t* src) +{ + memcpy(dst, src, AES_BLOCK_SIZE); +} + STATIC INLINE void sum_half_blocks(uint8_t* a, const uint8_t* b) { uint64_t a0, a1, b0, b1; @@ -1109,7 +1232,9 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int { uint8_t text[INIT_SIZE_BYTE]; uint8_t a[AES_BLOCK_SIZE]; - uint8_t b[AES_BLOCK_SIZE]; + uint8_t b[AES_BLOCK_SIZE * 2]; + uint8_t c[AES_BLOCK_SIZE]; + uint8_t c1[AES_BLOCK_SIZE]; uint8_t d[AES_BLOCK_SIZE]; uint8_t aes_key[AES_KEY_SIZE]; RDATA_ALIGN16 uint8_t expandedKey[256]; @@ -1138,11 +1263,12 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int } memcpy(text, state.init, INIT_SIZE_BYTE); - VARIANT1_INIT64(); - aes_ctx = (oaes_ctx *) oaes_alloc(); oaes_key_import_data(aes_ctx, state.hs.b, AES_KEY_SIZE); + VARIANT1_INIT64(); + VARIANT2_INIT64(); + // use aligned data memcpy(expandedKey, aes_ctx->key->exp_data, aes_ctx->key->exp_data_len); for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) @@ -1163,23 +1289,33 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int #define state_index(x) ((*(uint32_t *) x) & MASK) // Iteration 1 - p = &long_state[state_index(a)]; + j = state_index(a); + p = &long_state[j]; aesb_single_round(p, p, a); + copy_block(c1, p); - xor_blocks(b, p); - swap_blocks(b, p); - swap_blocks(a, b); + VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j); + xor_blocks(p, b); VARIANT1_1(p); // Iteration 2 - p = &long_state[state_index(a)]; - - mul(a, p, d); - sum_half_blocks(b, d); - swap_blocks(b, p); - xor_blocks(b, p); - swap_blocks(a, b); - VARIANT1_2(U64(p) + 1); + j = state_index(c1); + p = &long_state[j]; + copy_block(c, p); + + VARIANT2_PORTABLE_INTEGER_MATH(c, c1); + mul(c1, c, d); + VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j); + sum_half_blocks(a, d); + swap_blocks(a, c); + xor_blocks(a, c); + VARIANT1_2(U64(c) + 1); + copy_block(p, c); + + if (variant >= 2) { + copy_block(b + AES_BLOCK_SIZE, b); + } + copy_block(b, c1); } memcpy(text, state.init, INIT_SIZE_BYTE); @@ -1298,8 +1434,9 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int union cn_slow_hash_state state; uint8_t text[INIT_SIZE_BYTE]; uint8_t a[AES_BLOCK_SIZE]; - uint8_t b[AES_BLOCK_SIZE]; - uint8_t c[AES_BLOCK_SIZE]; + uint8_t b[AES_BLOCK_SIZE * 2]; + uint8_t c1[AES_BLOCK_SIZE]; + uint8_t c2[AES_BLOCK_SIZE]; uint8_t d[AES_BLOCK_SIZE]; size_t i, j; uint8_t aes_key[AES_KEY_SIZE]; @@ -1315,6 +1452,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int aes_ctx = (oaes_ctx *) oaes_alloc(); VARIANT1_PORTABLE_INIT(); + VARIANT2_PORTABLE_INIT(); oaes_key_import_data(aes_ctx, aes_key, AES_KEY_SIZE); for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) { @@ -1324,9 +1462,9 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int memcpy(&long_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE); } - for (i = 0; i < 16; i++) { - a[i] = state.k[ i] ^ state.k[32 + i]; - b[i] = state.k[16 + i] ^ state.k[48 + i]; + for (i = 0; i < AES_BLOCK_SIZE; i++) { + a[i] = state.k[ i] ^ state.k[AES_BLOCK_SIZE * 2 + i]; + b[i] = state.k[AES_BLOCK_SIZE + i] ^ state.k[AES_BLOCK_SIZE * 3 + i]; } for (i = 0; i < ITER / 2; i++) { @@ -1335,26 +1473,32 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int * next address <-+ */ /* Iteration 1 */ - j = e2i(a, MEMORY / AES_BLOCK_SIZE); - copy_block(c, &long_state[j * AES_BLOCK_SIZE]); - aesb_single_round(c, c, a); - xor_blocks(b, c); - swap_blocks(b, c); - copy_block(&long_state[j * AES_BLOCK_SIZE], c); - assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE)); - swap_blocks(a, b); - VARIANT1_1(&long_state[j * AES_BLOCK_SIZE]); + j = e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE; + copy_block(c1, &long_state[j]); + aesb_single_round(c1, c1, a); + VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j); + copy_block(&long_state[j], c1); + xor_blocks(&long_state[j], b); + assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE); + VARIANT1_1(&long_state[j]); /* Iteration 2 */ - j = e2i(a, MEMORY / AES_BLOCK_SIZE); - copy_block(c, &long_state[j * AES_BLOCK_SIZE]); - mul(a, c, d); - sum_half_blocks(b, d); - swap_blocks(b, c); - xor_blocks(b, c); - VARIANT1_2(c + 8); - copy_block(&long_state[j * AES_BLOCK_SIZE], c); - assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE)); - swap_blocks(a, b); + j = e2i(c1, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE; + copy_block(c2, &long_state[j]); + VARIANT2_PORTABLE_INTEGER_MATH(c2, c1); + mul(c1, c2, d); + VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j); + swap_blocks(a, c1); + sum_half_blocks(c1, d); + swap_blocks(c1, c2); + xor_blocks(c1, c2); + VARIANT1_2(c2 + 8); + copy_block(&long_state[j], c2); + assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE); + if (variant >= 2) { + copy_block(b + AES_BLOCK_SIZE, b); + } + copy_block(b, a); + copy_block(a, c1); } memcpy(text, state.init, INIT_SIZE_BYTE); diff --git a/src/crypto/variant2_int_sqrt.h b/src/crypto/variant2_int_sqrt.h new file mode 100644 index 000000000..b405bb798 --- /dev/null +++ b/src/crypto/variant2_int_sqrt.h @@ -0,0 +1,163 @@ +#ifndef VARIANT2_INT_SQRT_H +#define VARIANT2_INT_SQRT_H + +#include <math.h> +#include <float.h> + +#define VARIANT2_INTEGER_MATH_SQRT_STEP_SSE2() \ + do { \ + const __m128i exp_double_bias = _mm_set_epi64x(0, 1023ULL << 52); \ + __m128d x = _mm_castsi128_pd(_mm_add_epi64(_mm_cvtsi64_si128(sqrt_input >> 12), exp_double_bias)); \ + x = _mm_sqrt_sd(_mm_setzero_pd(), x); \ + sqrt_result = (uint64_t)(_mm_cvtsi128_si64(_mm_sub_epi64(_mm_castpd_si128(x), exp_double_bias))) >> 19; \ + } while(0) + +#define VARIANT2_INTEGER_MATH_SQRT_STEP_FP64() \ + do { \ + sqrt_result = sqrt(sqrt_input + 18446744073709551616.0) * 2.0 - 8589934592.0; \ + } while(0) + +#define VARIANT2_INTEGER_MATH_SQRT_STEP_REF() \ + sqrt_result = integer_square_root_v2(sqrt_input) + +// Reference implementation of the integer square root for Cryptonight variant 2 +// Computes integer part of "sqrt(2^64 + n) * 2 - 2^33" +// +// In other words, given 64-bit unsigned integer n: +// 1) Write it as x = 1.NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN000... in binary (1 <= x < 2, all 64 bits of n are used) +// 2) Calculate sqrt(x) = 1.0RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR... (1 <= sqrt(x) < sqrt(2), so it will always start with "1.0" in binary) +// 3) Take 32 bits that come after "1.0" and return them as a 32-bit unsigned integer, discard all remaining bits +// +// Some sample inputs and outputs: +// +// Input | Output | Exact value of "sqrt(2^64 + n) * 2 - 2^33" +// -----------------|------------|------------------------------------------- +// 0 | 0 | 0 +// 2^32 | 0 | 0.99999999994179233909330885695244... +// 2^32 + 1 | 1 | 1.0000000001746229827200734316305... +// 2^50 | 262140 | 262140.00012206565608606978175873... +// 2^55 + 20963331 | 8384515 | 8384515.9999999997673963974959744... +// 2^55 + 20963332 | 8384516 | 8384516 +// 2^62 + 26599786 | 1013904242 | 1013904242.9999999999479374853545... +// 2^62 + 26599787 | 1013904243 | 1013904243.0000000001561875439364... +// 2^64 - 1 | 3558067407 | 3558067407.9041987696409179931096... + +// The reference implementation as it is now uses only unsigned int64 arithmetic, so it can't have undefined behavior +// It was tested once for all edge cases and confirmed correct +static inline uint32_t integer_square_root_v2(uint64_t n) +{ + uint64_t r = 1ULL << 63; + + for (uint64_t bit = 1ULL << 60; bit; bit >>= 2) + { + const bool b = (n < r + bit); + const uint64_t n_next = n - (r + bit); + const uint64_t r_next = r + bit * 2; + n = b ? n : n_next; + r = b ? r : r_next; + r >>= 1; + } + + return r * 2 + ((n > r) ? 1 : 0); +} + +/* +VARIANT2_INTEGER_MATH_SQRT_FIXUP checks that "r" is an integer part of "sqrt(2^64 + sqrt_input) * 2 - 2^33" and adds or subtracts 1 if needed +It's hard to understand how it works, so here is a full calculation of formulas used in VARIANT2_INTEGER_MATH_SQRT_FIXUP + +The following inequalities must hold for r if it's an integer part of "sqrt(2^64 + sqrt_input) * 2 - 2^33": +1) r <= sqrt(2^64 + sqrt_input) * 2 - 2^33 +2) r + 1 > sqrt(2^64 + sqrt_input) * 2 - 2^33 + +We need to check them using only unsigned integer arithmetic to avoid rounding errors and undefined behavior + +First inequality: r <= sqrt(2^64 + sqrt_input) * 2 - 2^33 +----------------------------------------------------------------------------------- +r <= sqrt(2^64 + sqrt_input) * 2 - 2^33 +r + 2^33 <= sqrt(2^64 + sqrt_input) * 2 +r/2 + 2^32 <= sqrt(2^64 + sqrt_input) +(r/2 + 2^32)^2 <= 2^64 + sqrt_input + +Rewrite r as r = s * 2 + b (s = trunc(r/2), b is 0 or 1) + +((s*2+b)/2 + 2^32)^2 <= 2^64 + sqrt_input +(s*2+b)^2/4 + 2*2^32*(s*2+b)/2 + 2^64 <= 2^64 + sqrt_input +(s*2+b)^2/4 + 2*2^32*(s*2+b)/2 <= sqrt_input +(s*2+b)^2/4 + 2^32*r <= sqrt_input +(s^2*4+2*s*2*b+b^2)/4 + 2^32*r <= sqrt_input +s^2+s*b+b^2/4 + 2^32*r <= sqrt_input +s*(s+b) + b^2/4 + 2^32*r <= sqrt_input + +Let r2 = s*(s+b) + r*2^32 +r2 + b^2/4 <= sqrt_input + +If this inequality doesn't hold, then we must decrement r: IF "r2 + b^2/4 > sqrt_input" THEN r = r - 1 + +b can be 0 or 1 +If b is 0 then we need to compare "r2 > sqrt_input" +If b is 1 then b^2/4 = 0.25, so we need to compare "r2 + 0.25 > sqrt_input" +Since both r2 and sqrt_input are integers, we can safely replace it with "r2 + 1 > sqrt_input" +----------------------------------------------------------------------------------- +Both cases can be merged to a single expression "r2 + b > sqrt_input" +----------------------------------------------------------------------------------- +There will be no overflow when calculating "r2 + b", so it's safe to compare with sqrt_input: +r2 + b = s*(s+b) + r*2^32 + b +The largest value s, b and r can have is s = 1779033703, b = 1, r = 3558067407 when sqrt_input = 2^64 - 1 +r2 + b <= 1779033703*1779033704 + 3558067407*2^32 + 1 = 18446744068217447385 < 2^64 + +Second inequality: r + 1 > sqrt(2^64 + sqrt_input) * 2 - 2^33 +----------------------------------------------------------------------------------- +r + 1 > sqrt(2^64 + sqrt_input) * 2 - 2^33 +r + 1 + 2^33 > sqrt(2^64 + sqrt_input) * 2 +((r+1)/2 + 2^32)^2 > 2^64 + sqrt_input + +Rewrite r as r = s * 2 + b (s = trunc(r/2), b is 0 or 1) + +((s*2+b+1)/2 + 2^32)^2 > 2^64 + sqrt_input +(s*2+b+1)^2/4 + 2*(s*2+b+1)/2*2^32 + 2^64 > 2^64 + sqrt_input +(s*2+b+1)^2/4 + (s*2+b+1)*2^32 > sqrt_input +(s*2+b+1)^2/4 + (r+1)*2^32 > sqrt_input +(s*2+(b+1))^2/4 + r*2^32 + 2^32 > sqrt_input +(s^2*4+2*s*2*(b+1)+(b+1)^2)/4 + r*2^32 + 2^32 > sqrt_input +s^2+s*(b+1)+(b+1)^2/4 + r*2^32 + 2^32 > sqrt_input +s*(s+b) + s + (b+1)^2/4 + r*2^32 + 2^32 > sqrt_input + +Let r2 = s*(s+b) + r*2^32 + +r2 + s + (b+1)^2/4 + 2^32 > sqrt_input +r2 + 2^32 + (b+1)^2/4 > sqrt_input - s + +If this inequality doesn't hold, then we must decrement r: IF "r2 + 2^32 + (b+1)^2/4 <= sqrt_input - s" THEN r = r - 1 +b can be 0 or 1 +If b is 0 then we need to compare "r2 + 2^32 + 1/4 <= sqrt_input - s" which is equal to "r2 + 2^32 < sqrt_input - s" because all numbers here are integers +If b is 1 then (b+1)^2/4 = 1, so we need to compare "r2 + 2^32 + 1 <= sqrt_input - s" which is also equal to "r2 + 2^32 < sqrt_input - s" +----------------------------------------------------------------------------------- +Both cases can be merged to a single expression "r2 + 2^32 < sqrt_input - s" +----------------------------------------------------------------------------------- +There will be no overflow when calculating "r2 + 2^32": +r2 + 2^32 = s*(s+b) + r*2^32 + 2^32 = s*(s+b) + (r+1)*2^32 +The largest value s, b and r can have is s = 1779033703, b = 1, r = 3558067407 when sqrt_input = 2^64 - 1 +r2 + b <= 1779033703*1779033704 + 3558067408*2^32 = 18446744072512414680 < 2^64 + +There will be no integer overflow when calculating "sqrt_input - s", i.e. "sqrt_input >= s" at all times: +s = trunc(r/2) = trunc(sqrt(2^64 + sqrt_input) - 2^32) < sqrt(2^64 + sqrt_input) - 2^32 + 1 +sqrt_input > sqrt(2^64 + sqrt_input) - 2^32 + 1 +sqrt_input + 2^32 - 1 > sqrt(2^64 + sqrt_input) +(sqrt_input + 2^32 - 1)^2 > sqrt_input + 2^64 +sqrt_input^2 + 2*sqrt_input*(2^32 - 1) + (2^32-1)^2 > sqrt_input + 2^64 +sqrt_input^2 + sqrt_input*(2^33 - 2) + (2^32-1)^2 > sqrt_input + 2^64 +sqrt_input^2 + sqrt_input*(2^33 - 3) + (2^32-1)^2 > 2^64 +sqrt_input^2 + sqrt_input*(2^33 - 3) + 2^64-2^33+1 > 2^64 +sqrt_input^2 + sqrt_input*(2^33 - 3) - 2^33 + 1 > 0 +This inequality is true if sqrt_input > 1 and it's easy to check that s = 0 if sqrt_input is 0 or 1, so there will be no integer overflow +*/ + +#define VARIANT2_INTEGER_MATH_SQRT_FIXUP(r) \ + do { \ + const uint64_t s = r >> 1; \ + const uint64_t b = r & 1; \ + const uint64_t r2 = (uint64_t)(s) * (s + b) + (r << 32); \ + r += ((r2 + b > sqrt_input) ? -1 : 0) + ((r2 + (1ULL << 32) < sqrt_input - s) ? 1 : 0); \ + } while(0) + +#endif |