diff options
Diffstat (limited to 'src/ringct')
-rw-r--r-- | src/ringct/CMakeLists.txt | 2 | ||||
-rw-r--r-- | src/ringct/bulletproofs.cc | 877 | ||||
-rw-r--r-- | src/ringct/bulletproofs.h | 4 | ||||
-rw-r--r-- | src/ringct/multiexp.cc | 665 | ||||
-rw-r--r-- | src/ringct/multiexp.h | 71 | ||||
-rw-r--r-- | src/ringct/rctOps.cpp | 35 | ||||
-rw-r--r-- | src/ringct/rctOps.h | 7 | ||||
-rw-r--r-- | src/ringct/rctSigs.cpp | 343 | ||||
-rw-r--r-- | src/ringct/rctSigs.h | 10 | ||||
-rw-r--r-- | src/ringct/rctTypes.cpp | 88 | ||||
-rw-r--r-- | src/ringct/rctTypes.h | 59 |
11 files changed, 1815 insertions, 346 deletions
diff --git a/src/ringct/CMakeLists.txt b/src/ringct/CMakeLists.txt index c8dcdca26..29f166a3b 100644 --- a/src/ringct/CMakeLists.txt +++ b/src/ringct/CMakeLists.txt @@ -30,11 +30,13 @@ set(ringct_basic_sources rctOps.cpp rctTypes.cpp rctCryptoOps.c + multiexp.cc bulletproofs.cc) set(ringct_basic_private_headers rctOps.h rctTypes.h + multiexp.h bulletproofs.h) monero_private_headers(ringct_basic diff --git a/src/ringct/bulletproofs.cc b/src/ringct/bulletproofs.cc index fd15ffbc4..abe4ef18d 100644 --- a/src/ringct/bulletproofs.cc +++ b/src/ringct/bulletproofs.cc @@ -30,14 +30,17 @@ #include <stdlib.h> #include <openssl/ssl.h> +#include <openssl/bn.h> #include <boost/thread/mutex.hpp> #include "misc_log_ex.h" #include "common/perf_timer.h" +#include "cryptonote_config.h" extern "C" { #include "crypto/crypto-ops.h" } #include "rctOps.h" +#include "multiexp.h" #include "bulletproofs.h" #undef MONERO_DEFAULT_LOG_CATEGORY @@ -47,27 +50,99 @@ extern "C" #define PERF_TIMER_START_BP(x) PERF_TIMER_START_UNIT(x, 1000000) +#define STRAUS_SIZE_LIMIT 128 +#define PIPPENGER_SIZE_LIMIT 0 + namespace rct { static rct::key vector_exponent(const rct::keyV &a, const rct::keyV &b); -static rct::keyV vector_powers(rct::key x, size_t n); +static rct::keyV vector_powers(const rct::key &x, size_t n); +static rct::keyV vector_dup(const rct::key &x, size_t n); static rct::key inner_product(const rct::keyV &a, const rct::keyV &b); static constexpr size_t maxN = 64; -static rct::key Hi[maxN], Gi[maxN]; -static ge_dsmp Gprecomp[64], Hprecomp[64]; +static constexpr size_t maxM = BULLETPROOF_MAX_OUTPUTS; +static rct::key Hi[maxN*maxM], Gi[maxN*maxM]; +static ge_p3 Hi_p3[maxN*maxM], Gi_p3[maxN*maxM]; +static std::shared_ptr<straus_cached_data> straus_HiGi_cache; +static std::shared_ptr<pippenger_cached_data> pippenger_HiGi_cache; static const rct::key TWO = { {0x02, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } }; -static const rct::keyV oneN = vector_powers(rct::identity(), maxN); +static const rct::key MINUS_ONE = { { 0xec, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10 } }; +static const rct::key MINUS_INV_EIGHT = { { 0x74, 0xa4, 0x19, 0x7a, 0xf0, 0x7d, 0x0b, 0xf7, 0x05, 0xc2, 0xda, 0x25, 0x2b, 0x5c, 0x0b, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a } }; +static const rct::keyV oneN = vector_dup(rct::identity(), maxN); static const rct::keyV twoN = vector_powers(TWO, maxN); static const rct::key ip12 = inner_product(oneN, twoN); static boost::mutex init_mutex; +static inline rct::key multiexp(const std::vector<MultiexpData> &data, bool HiGi) +{ + if (HiGi) + { + static_assert(128 <= STRAUS_SIZE_LIMIT, "Straus in precalc mode can only be calculated till STRAUS_SIZE_LIMIT"); + return data.size() <= 128 ? straus(data, straus_HiGi_cache, 0) : pippenger(data, pippenger_HiGi_cache, get_pippenger_c(data.size())); + } + else + return data.size() <= 64 ? straus(data, NULL, 0) : pippenger(data, NULL, get_pippenger_c(data.size())); +} + +static bool is_reduced(const rct::key &scalar) +{ + rct::key reduced = scalar; + sc_reduce32(reduced.bytes); + return scalar == reduced; +} + +static void addKeys_acc_p3(ge_p3 *acc_p3, const rct::key &a, const rct::key &point) +{ + ge_p3 p3; + CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&p3, point.bytes) == 0, "ge_frombytes_vartime failed"); + ge_scalarmult_p3(&p3, a.bytes, &p3); + ge_cached cached; + ge_p3_to_cached(&cached, acc_p3); + ge_p1p1 p1; + ge_add(&p1, &p3, &cached); + ge_p1p1_to_p3(acc_p3, &p1); +} + +static void add_acc_p3(ge_p3 *acc_p3, const rct::key &point) +{ + ge_p3 p3; + CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&p3, point.bytes) == 0, "ge_frombytes_vartime failed"); + ge_cached cached; + ge_p3_to_cached(&cached, &p3); + ge_p1p1 p1; + ge_add(&p1, acc_p3, &cached); + ge_p1p1_to_p3(acc_p3, &p1); +} + +static void sub_acc_p3(ge_p3 *acc_p3, const rct::key &point) +{ + ge_p3 p3; + CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&p3, point.bytes) == 0, "ge_frombytes_vartime failed"); + ge_cached cached; + ge_p3_to_cached(&cached, &p3); + ge_p1p1 p1; + ge_sub(&p1, acc_p3, &cached); + ge_p1p1_to_p3(acc_p3, &p1); +} + +static rct::key scalarmultKey(const ge_p3 &P, const rct::key &a) +{ + ge_p2 R; + ge_scalarmult(&R, a.bytes, &P); + rct::key aP; + ge_tobytes(aP.bytes, &R); + return aP; +} + static rct::key get_exponent(const rct::key &base, size_t idx) { static const std::string salt("bulletproof"); std::string hashed = std::string((const char*)base.bytes, sizeof(base)) + salt + tools::get_varint_data(idx); - return rct::hashToPoint(rct::hash2rct(crypto::cn_fast_hash(hashed.data(), hashed.size()))); + const rct::key e = rct::hashToPoint(rct::hash2rct(crypto::cn_fast_hash(hashed.data(), hashed.size()))); + CHECK_AND_ASSERT_THROW_MES(!(e == rct::identity()), "Exponent is point at infinity"); + return e; } static void init_exponents() @@ -77,13 +152,27 @@ static void init_exponents() static bool init_done = false; if (init_done) return; - for (size_t i = 0; i < maxN; ++i) + std::vector<MultiexpData> data; + for (size_t i = 0; i < maxN*maxM; ++i) { Hi[i] = get_exponent(rct::H, i * 2); - rct::precomp(Hprecomp[i], Hi[i]); + CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&Hi_p3[i], Hi[i].bytes) == 0, "ge_frombytes_vartime failed"); Gi[i] = get_exponent(rct::H, i * 2 + 1); - rct::precomp(Gprecomp[i], Gi[i]); + CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&Gi_p3[i], Gi[i].bytes) == 0, "ge_frombytes_vartime failed"); + + data.push_back({rct::zero(), Gi[i]}); + data.push_back({rct::zero(), Hi[i]}); } + + straus_HiGi_cache = straus_init_cache(data, STRAUS_SIZE_LIMIT); + pippenger_HiGi_cache = pippenger_init_cache(data, PIPPENGER_SIZE_LIMIT); + + MINFO("Hi/Gi cache size: " << (sizeof(Hi)+sizeof(Gi))/1024 << " kB"); + MINFO("Hi_p3/Gi_p3 cache size: " << (sizeof(Hi_p3)+sizeof(Gi_p3))/1024 << " kB"); + MINFO("Straus cache size: " << straus_get_cache_size(straus_HiGi_cache)/1024 << " kB"); + MINFO("Pippenger cache size: " << pippenger_get_cache_size(pippenger_HiGi_cache)/1024 << " kB"); + size_t cache_size = (sizeof(Hi)+sizeof(Hi_p3))*2 + straus_get_cache_size(straus_HiGi_cache) + pippenger_get_cache_size(pippenger_HiGi_cache); + MINFO("Total cache size: " << cache_size/1024 << "kB"); init_done = true; } @@ -91,15 +180,16 @@ static void init_exponents() static rct::key vector_exponent(const rct::keyV &a, const rct::keyV &b) { CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b"); - CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN, "Incompatible sizes of a and maxN"); - rct::key res = rct::identity(); + CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN*maxM, "Incompatible sizes of a and maxN"); + + std::vector<MultiexpData> multiexp_data; + multiexp_data.reserve(a.size()*2); for (size_t i = 0; i < a.size(); ++i) { - rct::key term; - rct::addKeys3(term, a[i], Gprecomp[i], b[i], Hprecomp[i]); - rct::addKeys(res, res, term); + multiexp_data.emplace_back(a[i], Gi_p3[i]); + multiexp_data.emplace_back(b[i], Hi_p3[i]); } - return res; + return multiexp(multiexp_data, true); } /* Compute a custom vector-scalar commitment */ @@ -108,44 +198,24 @@ static rct::key vector_exponent_custom(const rct::keyV &A, const rct::keyV &B, c CHECK_AND_ASSERT_THROW_MES(A.size() == B.size(), "Incompatible sizes of A and B"); CHECK_AND_ASSERT_THROW_MES(a.size() == b.size(), "Incompatible sizes of a and b"); CHECK_AND_ASSERT_THROW_MES(a.size() == A.size(), "Incompatible sizes of a and A"); - CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN, "Incompatible sizes of a and maxN"); - rct::key res = rct::identity(); + CHECK_AND_ASSERT_THROW_MES(a.size() <= maxN*maxM, "Incompatible sizes of a and maxN"); + + std::vector<MultiexpData> multiexp_data; + multiexp_data.reserve(a.size()*2); for (size_t i = 0; i < a.size(); ++i) { - rct::key term; -#if 0 - // we happen to know where A and B might fall, so don't bother checking the rest - ge_dsmp *Acache = NULL, *Bcache = NULL; - ge_dsmp Acache_custom[1], Bcache_custom[1]; - if (Gi[i] == A[i]) - Acache = Gprecomp + i; - else if (i<32 && Gi[i+32] == A[i]) - Acache = Gprecomp + i + 32; - else - { - rct::precomp(Acache_custom[0], A[i]); - Acache = Acache_custom; - } - if (i == 0 && B[i] == Hi[0]) - Bcache = Hprecomp; - else - { - rct::precomp(Bcache_custom[0], B[i]); - Bcache = Bcache_custom; - } - rct::addKeys3(term, a[i], *Acache, b[i], *Bcache); -#else - ge_dsmp Acache, Bcache; - rct::precomp(Bcache, B[i]); - rct::addKeys3(term, a[i], A[i], b[i], Bcache); -#endif - rct::addKeys(res, res, term); + multiexp_data.resize(multiexp_data.size() + 1); + multiexp_data.back().scalar = a[i]; + CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&multiexp_data.back().point, A[i].bytes) == 0, "ge_frombytes_vartime failed"); + multiexp_data.resize(multiexp_data.size() + 1); + multiexp_data.back().scalar = b[i]; + CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&multiexp_data.back().point, B[i].bytes) == 0, "ge_frombytes_vartime failed"); } - return res; + return multiexp(multiexp_data, false); } /* Given a scalar, construct a vector of powers */ -static rct::keyV vector_powers(rct::key x, size_t n) +static rct::keyV vector_powers(const rct::key &x, size_t n) { rct::keyV res(n); if (n == 0) @@ -161,6 +231,24 @@ static rct::keyV vector_powers(rct::key x, size_t n) return res; } +/* Given a scalar, return the sum of its powers from 0 to n-1 */ +static rct::key vector_power_sum(const rct::key &x, size_t n) +{ + if (n == 0) + return rct::zero(); + rct::key res = rct::identity(); + if (n == 1) + return res; + rct::key prev = x; + for (size_t i = 1; i < n; ++i) + { + if (i > 1) + sc_mul(prev.bytes, prev.bytes, x.bytes); + sc_add(res.bytes, res.bytes, prev.bytes); + } + return res; +} + /* Given two scalar arrays, construct the inner product */ static rct::key inner_product(const rct::keyV &a, const rct::keyV &b) { @@ -232,6 +320,12 @@ static rct::keyV vector_scalar(const rct::keyV &a, const rct::key &x) return res; } +/* Create a vector from copies of a single value */ +static rct::keyV vector_dup(const rct::key &x, size_t N) +{ + return rct::keyV(N, x); +} + /* Exponentiate a curve vector by a scalar */ static rct::keyV vector_scalar2(const rct::keyV &a, const rct::key &x) { @@ -243,6 +337,17 @@ static rct::keyV vector_scalar2(const rct::keyV &a, const rct::key &x) return res; } +/* Get the sum of a vector's elements */ +static rct::key vector_sum(const rct::keyV &a) +{ + rct::key res = rct::zero(); + for (size_t i = 0; i < a.size(); ++i) + { + sc_add(res.bytes, res.bytes, a[i].bytes); + } + return res; +} + static rct::key switch_endianness(rct::key k) { std::reverse(k.bytes, k.bytes + sizeof(k)); @@ -345,6 +450,7 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma) PERF_TIMER_START_BP(PROVE_v); rct::addKeys2(V, gamma, sv, rct::H); + V = rct::scalarmultKey(V, INV_EIGHT); PERF_TIMER_STOP(PROVE_v); PERF_TIMER_START_BP(PROVE_aLaR); @@ -380,12 +486,14 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma) CHECK_AND_ASSERT_THROW_MES(test_aR == v_test, "test_aR failed"); #endif +try_again: PERF_TIMER_START_BP(PROVE_step1); // PAPER LINES 38-39 rct::key alpha = rct::skGen(); rct::key ve = vector_exponent(aL, aR); rct::key A; rct::addKeys(A, ve, rct::scalarmultBase(alpha)); + A = rct::scalarmultKey(A, INV_EIGHT); // PAPER LINES 40-42 rct::keyV sL = rct::skvGen(N), sR = rct::skvGen(N); @@ -393,10 +501,23 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma) ve = vector_exponent(sL, sR); rct::key S; rct::addKeys(S, ve, rct::scalarmultBase(rho)); + S = rct::scalarmultKey(S, INV_EIGHT); // PAPER LINES 43-45 rct::key y = hash_cache_mash(hash_cache, A, S); + if (y == rct::zero()) + { + PERF_TIMER_STOP(PROVE_step1); + MINFO("y is 0, trying again"); + goto try_again; + } rct::key z = hash_cache = rct::hash_to_scalar(y); + if (z == rct::zero()) + { + PERF_TIMER_STOP(PROVE_step1); + MINFO("z is 0, trying again"); + goto try_again; + } // Polynomial construction before PAPER LINE 46 rct::key t0 = rct::zero(); @@ -405,7 +526,7 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma) const auto yN = vector_powers(y, N); - rct::key ip1y = inner_product(oneN, yN); + rct::key ip1y = vector_sum(yN); rct::key tmp; sc_muladd(t0.bytes, z.bytes, ip1y.bytes, t0.bytes); @@ -437,7 +558,7 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma) PERF_TIMER_START_BP(PROVE_step2); const auto HyNsR = hadamard(yN, sR); - const auto vpIz = vector_scalar(oneN, z); + const auto vpIz = vector_dup(z, N); const auto vp2zsq = vector_scalar(twoN, zsq); const auto aL_vpIz = vector_subtract(aL, vpIz); const auto aR_vpIz = vector_add(aR, vpIz); @@ -454,11 +575,19 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma) // PAPER LINES 47-48 rct::key tau1 = rct::skGen(), tau2 = rct::skGen(); - rct::key T1 = rct::addKeys(rct::scalarmultKey(rct::H, t1), rct::scalarmultBase(tau1)); - rct::key T2 = rct::addKeys(rct::scalarmultKey(rct::H, t2), rct::scalarmultBase(tau2)); + rct::key T1 = rct::addKeys(rct::scalarmultH(t1), rct::scalarmultBase(tau1)); + T1 = rct::scalarmultKey(T1, INV_EIGHT); + rct::key T2 = rct::addKeys(rct::scalarmultH(t2), rct::scalarmultBase(tau2)); + T2 = rct::scalarmultKey(T2, INV_EIGHT); // PAPER LINES 49-51 rct::key x = hash_cache_mash(hash_cache, z, T1, T2); + if (x == rct::zero()) + { + PERF_TIMER_STOP(PROVE_step2); + MINFO("x is 0, trying again"); + goto try_again; + } // PAPER LINES 52-53 rct::key taux = rct::zero(); @@ -500,7 +629,7 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma) for (size_t i = 0; i < N; ++i) { Gprime[i] = Gi[i]; - Hprime[i] = scalarmultKey(Hi[i], yinvpow); + Hprime[i] = scalarmultKey(Hi_p3[i], yinvpow); sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes); aprime[i] = l[i]; bprime[i] = r[i]; @@ -525,13 +654,21 @@ Bulletproof bulletproof_PROVE(const rct::key &sv, const rct::key &gamma) // PAPER LINES 18-19 L[round] = vector_exponent_custom(slice(Gprime, nprime, Gprime.size()), slice(Hprime, 0, nprime), slice(aprime, 0, nprime), slice(bprime, nprime, bprime.size())); sc_mul(tmp.bytes, cL.bytes, x_ip.bytes); - rct::addKeys(L[round], L[round], rct::scalarmultKey(rct::H, tmp)); + rct::addKeys(L[round], L[round], rct::scalarmultH(tmp)); + L[round] = rct::scalarmultKey(L[round], INV_EIGHT); R[round] = vector_exponent_custom(slice(Gprime, 0, nprime), slice(Hprime, nprime, Hprime.size()), slice(aprime, nprime, aprime.size()), slice(bprime, 0, nprime)); sc_mul(tmp.bytes, cR.bytes, x_ip.bytes); - rct::addKeys(R[round], R[round], rct::scalarmultKey(rct::H, tmp)); + rct::addKeys(R[round], R[round], rct::scalarmultH(tmp)); + R[round] = rct::scalarmultKey(R[round], INV_EIGHT); // PAPER LINES 21-22 w[round] = hash_cache_mash(hash_cache, L[round], R[round]); + if (w[round] == rct::zero()) + { + PERF_TIMER_STOP(PROVE_step4); + MINFO("w[round] is 0, trying again"); + goto try_again; + } // PAPER LINES 24-25 const rct::key winv = invert(w[round]); @@ -567,179 +704,540 @@ Bulletproof bulletproof_PROVE(uint64_t v, const rct::key &gamma) return bulletproof_PROVE(sv, gamma); } -/* Given a range proof, determine if it is valid */ -bool bulletproof_VERIFY(const Bulletproof &proof) +/* Given a set of values v (0..2^N-1) and masks gamma, construct a range proof */ +Bulletproof bulletproof_PROVE(const rct::keyV &sv, const rct::keyV &gamma) { + CHECK_AND_ASSERT_THROW_MES(sv.size() == gamma.size(), "Incompatible sizes of sv and gamma"); + CHECK_AND_ASSERT_THROW_MES(!sv.empty(), "sv is empty"); + for (const rct::key &sve: sv) + CHECK_AND_ASSERT_THROW_MES(is_reduced(sve), "Invalid sv input"); + for (const rct::key &g: gamma) + CHECK_AND_ASSERT_THROW_MES(is_reduced(g), "Invalid gamma input"); + init_exponents(); - CHECK_AND_ASSERT_MES(proof.V.size() == 1, false, "V does not have exactly one element"); - CHECK_AND_ASSERT_MES(proof.L.size() == proof.R.size(), false, "Mismatched L and R sizes"); - CHECK_AND_ASSERT_MES(proof.L.size() > 0, false, "Empty proof"); - CHECK_AND_ASSERT_MES(proof.L.size() == 6, false, "Proof is not for 64 bits"); + PERF_TIMER_UNIT(PROVE, 1000000); - const size_t logN = proof.L.size(); - const size_t N = 1 << logN; + constexpr size_t logN = 6; // log2(64) + constexpr size_t N = 1<<logN; + size_t M, logM; + for (logM = 0; (M = 1<<logM) <= maxM && M < sv.size(); ++logM); + CHECK_AND_ASSERT_THROW_MES(M <= maxM, "sv/gamma are too large"); + const size_t logMN = logM + logN; + const size_t MN = M * N; + + rct::keyV V(sv.size()); + rct::keyV aL(MN), aR(MN); + rct::key tmp; - // Reconstruct the challenges - PERF_TIMER_START_BP(VERIFY); - PERF_TIMER_START_BP(VERIFY_start); - rct::key hash_cache = rct::hash_to_scalar(proof.V[0]); - rct::key y = hash_cache_mash(hash_cache, proof.A, proof.S); + PERF_TIMER_START_BP(PROVE_v); + for (size_t i = 0; i < sv.size(); ++i) + { + rct::addKeys2(V[i], gamma[i], sv[i], rct::H); + V[i] = rct::scalarmultKey(V[i], INV_EIGHT); + } + PERF_TIMER_STOP(PROVE_v); + + PERF_TIMER_START_BP(PROVE_aLaR); + for (size_t j = 0; j < M; ++j) + { + for (size_t i = N; i-- > 0; ) + { + if (j >= sv.size()) + { + aL[j*N+i] = rct::zero(); + } + else if (sv[j][i/8] & (((uint64_t)1)<<(i%8))) + { + aL[j*N+i] = rct::identity(); + } + else + { + aL[j*N+i] = rct::zero(); + } + sc_sub(aR[j*N+i].bytes, aL[j*N+i].bytes, rct::identity().bytes); + } + } + PERF_TIMER_STOP(PROVE_aLaR); + + // DEBUG: Test to ensure this recovers the value +#ifdef DEBUG_BP + for (size_t j = 0; j < M; ++j) + { + uint64_t test_aL = 0, test_aR = 0; + for (size_t i = 0; i < N; ++i) + { + if (aL[j*N+i] == rct::identity()) + test_aL += ((uint64_t)1)<<i; + if (aR[j*N+i] == rct::zero()) + test_aR += ((uint64_t)1)<<i; + } + uint64_t v_test = 0; + if (j < sv.size()) + for (int n = 0; n < 8; ++n) v_test |= (((uint64_t)sv[j][n]) << (8*n)); + CHECK_AND_ASSERT_THROW_MES(test_aL == v_test, "test_aL failed"); + CHECK_AND_ASSERT_THROW_MES(test_aR == v_test, "test_aR failed"); + } +#endif + +try_again: + rct::key hash_cache = rct::hash_to_scalar(V); + + PERF_TIMER_START_BP(PROVE_step1); + // PAPER LINES 38-39 + rct::key alpha = rct::skGen(); + rct::key ve = vector_exponent(aL, aR); + rct::key A; + rct::addKeys(A, ve, rct::scalarmultBase(alpha)); + A = rct::scalarmultKey(A, INV_EIGHT); + + // PAPER LINES 40-42 + rct::keyV sL = rct::skvGen(MN), sR = rct::skvGen(MN); + rct::key rho = rct::skGen(); + ve = vector_exponent(sL, sR); + rct::key S; + rct::addKeys(S, ve, rct::scalarmultBase(rho)); + S = rct::scalarmultKey(S, INV_EIGHT); + + // PAPER LINES 43-45 + rct::key y = hash_cache_mash(hash_cache, A, S); + if (y == rct::zero()) + { + PERF_TIMER_STOP(PROVE_step1); + MINFO("y is 0, trying again"); + goto try_again; + } rct::key z = hash_cache = rct::hash_to_scalar(y); - rct::key x = hash_cache_mash(hash_cache, z, proof.T1, proof.T2); - PERF_TIMER_STOP(VERIFY_start); + if (z == rct::zero()) + { + PERF_TIMER_STOP(PROVE_step1); + MINFO("z is 0, trying again"); + goto try_again; + } - PERF_TIMER_START_BP(VERIFY_line_60); - // Reconstruct the challenges - rct::key x_ip = hash_cache_mash(hash_cache, x, proof.taux, proof.mu, proof.t); - PERF_TIMER_STOP(VERIFY_line_60); + // Polynomial construction by coefficients + const auto zMN = vector_dup(z, MN); + rct::keyV l0 = vector_subtract(aL, zMN); + const rct::keyV &l1 = sL; - PERF_TIMER_START_BP(VERIFY_line_61); - // PAPER LINE 61 - rct::key L61Left = rct::addKeys(rct::scalarmultBase(proof.taux), rct::scalarmultKey(rct::H, proof.t)); + // This computes the ugly sum/concatenation from PAPER LINE 65 + rct::keyV zero_twos(MN); + const rct::keyV zpow = vector_powers(z, M+2); + for (size_t i = 0; i < MN; ++i) + { + zero_twos[i] = rct::zero(); + for (size_t j = 1; j <= M; ++j) + { + if (i >= (j-1)*N && i < j*N) + { + CHECK_AND_ASSERT_THROW_MES(1+j < zpow.size(), "invalid zpow index"); + CHECK_AND_ASSERT_THROW_MES(i-(j-1)*N < twoN.size(), "invalid twoN index"); + sc_muladd(zero_twos[i].bytes, zpow[1+j].bytes, twoN[i-(j-1)*N].bytes, zero_twos[i].bytes); + } + } + } - rct::key k = rct::zero(); - const auto yN = vector_powers(y, N); - rct::key ip1y = inner_product(oneN, yN); - rct::key zsq; - sc_mul(zsq.bytes, z.bytes, z.bytes); - rct::key tmp, tmp2; - sc_mulsub(k.bytes, zsq.bytes, ip1y.bytes, k.bytes); - rct::key zcu; - sc_mul(zcu.bytes, zsq.bytes, z.bytes); - sc_mulsub(k.bytes, zcu.bytes, ip12.bytes, k.bytes); - PERF_TIMER_STOP(VERIFY_line_61); + rct::keyV r0 = vector_add(aR, zMN); + const auto yMN = vector_powers(y, MN); + r0 = hadamard(r0, yMN); + r0 = vector_add(r0, zero_twos); + rct::keyV r1 = hadamard(yMN, sR); - PERF_TIMER_START_BP(VERIFY_line_61rl); - sc_muladd(tmp.bytes, z.bytes, ip1y.bytes, k.bytes); - rct::key L61Right = rct::scalarmultKey(rct::H, tmp); + // Polynomial construction before PAPER LINE 46 + rct::key t1_1 = inner_product(l0, r1); + rct::key t1_2 = inner_product(l1, r0); + rct::key t1; + sc_add(t1.bytes, t1_1.bytes, t1_2.bytes); + rct::key t2 = inner_product(l1, r1); - CHECK_AND_ASSERT_MES(proof.V.size() == 1, false, "proof.V does not have exactly one element"); - tmp = rct::scalarmultKey(proof.V[0], zsq); - rct::addKeys(L61Right, L61Right, tmp); + PERF_TIMER_STOP(PROVE_step1); - tmp = rct::scalarmultKey(proof.T1, x); - rct::addKeys(L61Right, L61Right, tmp); + PERF_TIMER_START_BP(PROVE_step2); + // PAPER LINES 47-48 + rct::key tau1 = rct::skGen(), tau2 = rct::skGen(); + + rct::key T1 = rct::addKeys(rct::scalarmultH(t1), rct::scalarmultBase(tau1)); + T1 = rct::scalarmultKey(T1, INV_EIGHT); + rct::key T2 = rct::addKeys(rct::scalarmultH(t2), rct::scalarmultBase(tau2)); + T2 = rct::scalarmultKey(T2, INV_EIGHT); + // PAPER LINES 49-51 + rct::key x = hash_cache_mash(hash_cache, z, T1, T2); + if (x == rct::zero()) + { + PERF_TIMER_STOP(PROVE_step2); + MINFO("x is 0, trying again"); + goto try_again; + } + + // PAPER LINES 52-53 + rct::key taux; + sc_mul(taux.bytes, tau1.bytes, x.bytes); rct::key xsq; sc_mul(xsq.bytes, x.bytes, x.bytes); - tmp = rct::scalarmultKey(proof.T2, xsq); - rct::addKeys(L61Right, L61Right, tmp); - PERF_TIMER_STOP(VERIFY_line_61rl); - - if (!(L61Right == L61Left)) + sc_muladd(taux.bytes, tau2.bytes, xsq.bytes, taux.bytes); + for (size_t j = 1; j <= sv.size(); ++j) { - MERROR("Verification failure at step 1"); - return false; + CHECK_AND_ASSERT_THROW_MES(j+1 < zpow.size(), "invalid zpow index"); + sc_muladd(taux.bytes, zpow[j+1].bytes, gamma[j-1].bytes, taux.bytes); } + rct::key mu; + sc_muladd(mu.bytes, x.bytes, rho.bytes, alpha.bytes); - PERF_TIMER_START_BP(VERIFY_line_62); - // PAPER LINE 62 - rct::key P = rct::addKeys(proof.A, rct::scalarmultKey(proof.S, x)); - PERF_TIMER_STOP(VERIFY_line_62); + // PAPER LINES 54-57 + rct::keyV l = l0; + l = vector_add(l, vector_scalar(l1, x)); + rct::keyV r = r0; + r = vector_add(r, vector_scalar(r1, x)); + PERF_TIMER_STOP(PROVE_step2); - // Compute the number of rounds for the inner product - const size_t rounds = proof.L.size(); - CHECK_AND_ASSERT_MES(rounds > 0, false, "Zero rounds"); + PERF_TIMER_START_BP(PROVE_step3); + rct::key t = inner_product(l, r); - PERF_TIMER_START_BP(VERIFY_line_21_22); - // PAPER LINES 21-22 - // The inner product challenges are computed per round - rct::keyV w(rounds); - for (size_t i = 0; i < rounds; ++i) + // DEBUG: Test if the l and r vectors match the polynomial forms +#ifdef DEBUG_BP + rct::key test_t; + const rct::key t0 = inner_product(l0, r0); + sc_muladd(test_t.bytes, t1.bytes, x.bytes, t0.bytes); + sc_muladd(test_t.bytes, t2.bytes, xsq.bytes, test_t.bytes); + CHECK_AND_ASSERT_THROW_MES(test_t == t, "test_t check failed"); +#endif + + // PAPER LINES 32-33 + rct::key x_ip = hash_cache_mash(hash_cache, x, taux, mu, t); + if (x_ip == rct::zero()) { - w[i] = hash_cache_mash(hash_cache, proof.L[i], proof.R[i]); + PERF_TIMER_STOP(PROVE_step3); + MINFO("x_ip is 0, trying again"); + goto try_again; } - PERF_TIMER_STOP(VERIFY_line_21_22); - PERF_TIMER_START_BP(VERIFY_line_24_25); - // Basically PAPER LINES 24-25 - // Compute the curvepoints from G[i] and H[i] - rct::key inner_prod = rct::identity(); + // These are used in the inner product rounds + size_t nprime = MN; + rct::keyV Gprime(MN); + rct::keyV Hprime(MN); + rct::keyV aprime(MN); + rct::keyV bprime(MN); + const rct::key yinv = invert(y); rct::key yinvpow = rct::identity(); - rct::key ypow = rct::identity(); + for (size_t i = 0; i < MN; ++i) + { + Gprime[i] = Gi[i]; + Hprime[i] = scalarmultKey(Hi_p3[i], yinvpow); + sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes); + aprime[i] = l[i]; + bprime[i] = r[i]; + } + rct::keyV L(logMN); + rct::keyV R(logMN); + int round = 0; + rct::keyV w(logMN); // this is the challenge x in the inner product protocol + PERF_TIMER_STOP(PROVE_step3); - PERF_TIMER_START_BP(VERIFY_line_24_25_invert); - const rct::key yinv = invert(y); - rct::keyV winv(rounds); - for (size_t i = 0; i < rounds; ++i) - winv[i] = invert(w[i]); - PERF_TIMER_STOP(VERIFY_line_24_25_invert); + PERF_TIMER_START_BP(PROVE_step4); + // PAPER LINE 13 + while (nprime > 1) + { + // PAPER LINE 15 + nprime /= 2; - for (size_t i = 0; i < N; ++i) + // PAPER LINES 16-17 + rct::key cL = inner_product(slice(aprime, 0, nprime), slice(bprime, nprime, bprime.size())); + rct::key cR = inner_product(slice(aprime, nprime, aprime.size()), slice(bprime, 0, nprime)); + + // PAPER LINES 18-19 + L[round] = vector_exponent_custom(slice(Gprime, nprime, Gprime.size()), slice(Hprime, 0, nprime), slice(aprime, 0, nprime), slice(bprime, nprime, bprime.size())); + sc_mul(tmp.bytes, cL.bytes, x_ip.bytes); + rct::addKeys(L[round], L[round], rct::scalarmultH(tmp)); + L[round] = rct::scalarmultKey(L[round], INV_EIGHT); + R[round] = vector_exponent_custom(slice(Gprime, 0, nprime), slice(Hprime, nprime, Hprime.size()), slice(aprime, nprime, aprime.size()), slice(bprime, 0, nprime)); + sc_mul(tmp.bytes, cR.bytes, x_ip.bytes); + rct::addKeys(R[round], R[round], rct::scalarmultH(tmp)); + R[round] = rct::scalarmultKey(R[round], INV_EIGHT); + + // PAPER LINES 21-22 + w[round] = hash_cache_mash(hash_cache, L[round], R[round]); + if (w[round] == rct::zero()) + { + PERF_TIMER_STOP(PROVE_step4); + MINFO("w[round] is 0, trying again"); + goto try_again; + } + + // PAPER LINES 24-25 + const rct::key winv = invert(w[round]); + Gprime = hadamard2(vector_scalar2(slice(Gprime, 0, nprime), winv), vector_scalar2(slice(Gprime, nprime, Gprime.size()), w[round])); + Hprime = hadamard2(vector_scalar2(slice(Hprime, 0, nprime), w[round]), vector_scalar2(slice(Hprime, nprime, Hprime.size()), winv)); + + // PAPER LINES 28-29 + aprime = vector_add(vector_scalar(slice(aprime, 0, nprime), w[round]), vector_scalar(slice(aprime, nprime, aprime.size()), winv)); + bprime = vector_add(vector_scalar(slice(bprime, 0, nprime), winv), vector_scalar(slice(bprime, nprime, bprime.size()), w[round])); + + ++round; + } + PERF_TIMER_STOP(PROVE_step4); + + // PAPER LINE 58 (with inclusions from PAPER LINE 8 and PAPER LINE 20) + return Bulletproof(V, A, S, T1, T2, taux, mu, L, R, aprime[0], bprime[0], t); +} + +Bulletproof bulletproof_PROVE(const std::vector<uint64_t> &v, const rct::keyV &gamma) +{ + CHECK_AND_ASSERT_THROW_MES(v.size() == gamma.size(), "Incompatible sizes of v and gamma"); + + // vG + gammaH + PERF_TIMER_START_BP(PROVE_v); + rct::keyV sv(v.size()); + for (size_t i = 0; i < v.size(); ++i) { - // Convert the index to binary IN REVERSE and construct the scalar exponent - rct::key g_scalar = proof.a; - rct::key h_scalar; - sc_mul(h_scalar.bytes, proof.b.bytes, yinvpow.bytes); + sv[i] = rct::zero(); + sv[i].bytes[0] = v[i] & 255; + sv[i].bytes[1] = (v[i] >> 8) & 255; + sv[i].bytes[2] = (v[i] >> 16) & 255; + sv[i].bytes[3] = (v[i] >> 24) & 255; + sv[i].bytes[4] = (v[i] >> 32) & 255; + sv[i].bytes[5] = (v[i] >> 40) & 255; + sv[i].bytes[6] = (v[i] >> 48) & 255; + sv[i].bytes[7] = (v[i] >> 56) & 255; + } + PERF_TIMER_STOP(PROVE_v); + return bulletproof_PROVE(sv, gamma); +} + +/* Given a range proof, determine if it is valid */ +bool bulletproof_VERIFY(const std::vector<const Bulletproof*> &proofs) +{ + init_exponents(); + + PERF_TIMER_START_BP(VERIFY); + + // sanity and figure out which proof is longest + size_t max_length = 0; + for (const Bulletproof *p: proofs) + { + const Bulletproof &proof = *p; + + // check scalar range + CHECK_AND_ASSERT_MES(is_reduced(proof.taux), false, "Input scalar not in range"); + CHECK_AND_ASSERT_MES(is_reduced(proof.mu), false, "Input scalar not in range"); + CHECK_AND_ASSERT_MES(is_reduced(proof.a), false, "Input scalar not in range"); + CHECK_AND_ASSERT_MES(is_reduced(proof.b), false, "Input scalar not in range"); + CHECK_AND_ASSERT_MES(is_reduced(proof.t), false, "Input scalar not in range"); + + CHECK_AND_ASSERT_MES(proof.V.size() >= 1, false, "V does not have at least one element"); + CHECK_AND_ASSERT_MES(proof.L.size() == proof.R.size(), false, "Mismatched L and R sizes"); + CHECK_AND_ASSERT_MES(proof.L.size() > 0, false, "Empty proof"); - for (size_t j = rounds; j-- > 0; ) + max_length = std::max(max_length, proof.L.size()); + } + CHECK_AND_ASSERT_MES(max_length < 32, false, "At least one proof is too large"); + size_t maxMN = 1u << max_length; + + const size_t logN = 6; + const size_t N = 1 << logN; + rct::key tmp; + + // setup weighted aggregates + rct::key Z0 = rct::identity(); + rct::key z1 = rct::zero(); + rct::key Z2 = rct::identity(); + rct::key z3 = rct::zero(); + rct::keyV z4(maxMN, rct::zero()), z5(maxMN, rct::zero()); + rct::key Y2 = rct::identity(), Y3 = rct::identity(), Y4 = rct::identity(); + rct::key y0 = rct::zero(), y1 = rct::zero(); + for (const Bulletproof *p: proofs) + { + const Bulletproof &proof = *p; + + size_t M, logM; + for (logM = 0; (M = 1<<logM) <= maxM && M < proof.V.size(); ++logM); + CHECK_AND_ASSERT_MES(proof.L.size() == 6+logM, false, "Proof is not the expected size"); + const size_t MN = M*N; + rct::key weight = rct::skGen(); + + // Reconstruct the challenges + PERF_TIMER_START_BP(VERIFY_start); + rct::key hash_cache = rct::hash_to_scalar(proof.V); + rct::key y = hash_cache_mash(hash_cache, proof.A, proof.S); + CHECK_AND_ASSERT_MES(!(y == rct::zero()), false, "y == 0"); + rct::key z = hash_cache = rct::hash_to_scalar(y); + CHECK_AND_ASSERT_MES(!(z == rct::zero()), false, "z == 0"); + rct::key x = hash_cache_mash(hash_cache, z, proof.T1, proof.T2); + CHECK_AND_ASSERT_MES(!(x == rct::zero()), false, "x == 0"); + rct::key x_ip = hash_cache_mash(hash_cache, x, proof.taux, proof.mu, proof.t); + CHECK_AND_ASSERT_MES(!(x_ip == rct::zero()), false, "x_ip == 0"); + PERF_TIMER_STOP(VERIFY_start); + + PERF_TIMER_START_BP(VERIFY_line_61); + // PAPER LINE 61 + sc_muladd(y0.bytes, proof.taux.bytes, weight.bytes, y0.bytes); + + const rct::keyV zpow = vector_powers(z, M+3); + + rct::key k; + const rct::key ip1y = vector_power_sum(y, MN); + sc_mulsub(k.bytes, zpow[2].bytes, ip1y.bytes, rct::zero().bytes); + for (size_t j = 1; j <= M; ++j) + { + CHECK_AND_ASSERT_MES(j+2 < zpow.size(), false, "invalid zpow index"); + sc_mulsub(k.bytes, zpow[j+2].bytes, ip12.bytes, k.bytes); + } + PERF_TIMER_STOP(VERIFY_line_61); + + PERF_TIMER_START_BP(VERIFY_line_61rl_new); + sc_muladd(tmp.bytes, z.bytes, ip1y.bytes, k.bytes); + std::vector<MultiexpData> multiexp_data; + multiexp_data.reserve(proof.V.size()); + sc_sub(tmp.bytes, proof.t.bytes, tmp.bytes); + sc_muladd(y1.bytes, tmp.bytes, weight.bytes, y1.bytes); + for (size_t j = 0; j < proof.V.size(); j++) { - size_t J = w.size() - j - 1; + sc_mul(tmp.bytes, zpow[j+2].bytes, EIGHT.bytes); + multiexp_data.emplace_back(tmp, proof.V[j]); + } + rct::addKeys(Y2, Y2, rct::scalarmultKey(multiexp(multiexp_data, false), weight)); + rct::key weight8; + sc_mul(weight8.bytes, weight.bytes, EIGHT.bytes); + sc_mul(tmp.bytes, x.bytes, weight8.bytes); + rct::addKeys(Y3, Y3, rct::scalarmultKey(proof.T1, tmp)); + rct::key xsq; + sc_mul(xsq.bytes, x.bytes, x.bytes); + sc_mul(tmp.bytes, xsq.bytes, weight8.bytes); + rct::addKeys(Y4, Y4, rct::scalarmultKey(proof.T2, tmp)); + PERF_TIMER_STOP(VERIFY_line_61rl_new); + + PERF_TIMER_START_BP(VERIFY_line_62); + // PAPER LINE 62 + sc_mul(tmp.bytes, x.bytes, EIGHT.bytes); + rct::addKeys(Z0, Z0, rct::scalarmultKey(rct::addKeys(rct::scalarmult8(proof.A), rct::scalarmultKey(proof.S, tmp)), weight)); + PERF_TIMER_STOP(VERIFY_line_62); + + // Compute the number of rounds for the inner product + const size_t rounds = logM+logN; + CHECK_AND_ASSERT_MES(rounds > 0, false, "Zero rounds"); + + PERF_TIMER_START_BP(VERIFY_line_21_22); + // PAPER LINES 21-22 + // The inner product challenges are computed per round + rct::keyV w(rounds); + for (size_t i = 0; i < rounds; ++i) + { + w[i] = hash_cache_mash(hash_cache, proof.L[i], proof.R[i]); + CHECK_AND_ASSERT_MES(!(w[i] == rct::zero()), false, "w[i] == 0"); + } + PERF_TIMER_STOP(VERIFY_line_21_22); + + PERF_TIMER_START_BP(VERIFY_line_24_25); + // Basically PAPER LINES 24-25 + // Compute the curvepoints from G[i] and H[i] + rct::key yinvpow = rct::identity(); + rct::key ypow = rct::identity(); + + PERF_TIMER_START_BP(VERIFY_line_24_25_invert); + const rct::key yinv = invert(y); + rct::keyV winv(rounds); + for (size_t i = 0; i < rounds; ++i) + winv[i] = invert(w[i]); + PERF_TIMER_STOP(VERIFY_line_24_25_invert); + + for (size_t i = 0; i < MN; ++i) + { + // Convert the index to binary IN REVERSE and construct the scalar exponent + rct::key g_scalar = proof.a; + rct::key h_scalar; + sc_mul(h_scalar.bytes, proof.b.bytes, yinvpow.bytes); - if ((i & (((size_t)1)<<j)) == 0) + for (size_t j = rounds; j-- > 0; ) { - sc_mul(g_scalar.bytes, g_scalar.bytes, winv[J].bytes); - sc_mul(h_scalar.bytes, h_scalar.bytes, w[J].bytes); + size_t J = w.size() - j - 1; + + if ((i & (((size_t)1)<<j)) == 0) + { + sc_mul(g_scalar.bytes, g_scalar.bytes, winv[J].bytes); + sc_mul(h_scalar.bytes, h_scalar.bytes, w[J].bytes); + } + else + { + sc_mul(g_scalar.bytes, g_scalar.bytes, w[J].bytes); + sc_mul(h_scalar.bytes, h_scalar.bytes, winv[J].bytes); + } } - else + + // Adjust the scalars using the exponents from PAPER LINE 62 + sc_add(g_scalar.bytes, g_scalar.bytes, z.bytes); + CHECK_AND_ASSERT_MES(2+i/N < zpow.size(), false, "invalid zpow index"); + CHECK_AND_ASSERT_MES(i%N < twoN.size(), false, "invalid twoN index"); + sc_mul(tmp.bytes, zpow[2+i/N].bytes, twoN[i%N].bytes); + sc_muladd(tmp.bytes, z.bytes, ypow.bytes, tmp.bytes); + sc_mulsub(h_scalar.bytes, tmp.bytes, yinvpow.bytes, h_scalar.bytes); + + sc_muladd(z4[i].bytes, g_scalar.bytes, weight.bytes, z4[i].bytes); + sc_muladd(z5[i].bytes, h_scalar.bytes, weight.bytes, z5[i].bytes); + + if (i != MN-1) { - sc_mul(g_scalar.bytes, g_scalar.bytes, w[J].bytes); - sc_mul(h_scalar.bytes, h_scalar.bytes, winv[J].bytes); + sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes); + sc_mul(ypow.bytes, ypow.bytes, y.bytes); } } - // Adjust the scalars using the exponents from PAPER LINE 62 - sc_add(g_scalar.bytes, g_scalar.bytes, z.bytes); - sc_mul(tmp.bytes, zsq.bytes, twoN[i].bytes); - sc_muladd(tmp.bytes, z.bytes, ypow.bytes, tmp.bytes); - sc_mulsub(h_scalar.bytes, tmp.bytes, yinvpow.bytes, h_scalar.bytes); + PERF_TIMER_STOP(VERIFY_line_24_25); - // Now compute the basepoint's scalar multiplication - // Each of these could be written as a multiexp operation instead - rct::addKeys3(tmp, g_scalar, Gprecomp[i], h_scalar, Hprecomp[i]); - rct::addKeys(inner_prod, inner_prod, tmp); + // PAPER LINE 26 + PERF_TIMER_START_BP(VERIFY_line_26_new); + multiexp_data.clear(); + multiexp_data.reserve(2*rounds); - if (i != N-1) + sc_muladd(z1.bytes, proof.mu.bytes, weight.bytes, z1.bytes); + for (size_t i = 0; i < rounds; ++i) { - sc_mul(yinvpow.bytes, yinvpow.bytes, yinv.bytes); - sc_mul(ypow.bytes, ypow.bytes, y.bytes); + sc_mul(tmp.bytes, w[i].bytes, w[i].bytes); + sc_mul(tmp.bytes, tmp.bytes, EIGHT.bytes); + multiexp_data.emplace_back(tmp, proof.L[i]); + sc_mul(tmp.bytes, winv[i].bytes, winv[i].bytes); + sc_mul(tmp.bytes, tmp.bytes, EIGHT.bytes); + multiexp_data.emplace_back(tmp, proof.R[i]); } + rct::key acc = multiexp(multiexp_data, false); + rct::addKeys(Z2, Z2, rct::scalarmultKey(acc, weight)); + sc_mulsub(tmp.bytes, proof.a.bytes, proof.b.bytes, proof.t.bytes); + sc_mul(tmp.bytes, tmp.bytes, x_ip.bytes); + sc_muladd(z3.bytes, tmp.bytes, weight.bytes, z3.bytes); + PERF_TIMER_STOP(VERIFY_line_26_new); } - PERF_TIMER_STOP(VERIFY_line_24_25); - - PERF_TIMER_START_BP(VERIFY_line_26); - // PAPER LINE 26 - rct::key pprime; - sc_sub(tmp.bytes, rct::zero().bytes, proof.mu.bytes); - rct::addKeys(pprime, P, rct::scalarmultBase(tmp)); - - for (size_t i = 0; i < rounds; ++i) - { - sc_mul(tmp.bytes, w[i].bytes, w[i].bytes); - sc_mul(tmp2.bytes, winv[i].bytes, winv[i].bytes); -#if 1 - ge_dsmp cacheL, cacheR; - rct::precomp(cacheL, proof.L[i]); - rct::precomp(cacheR, proof.R[i]); - rct::addKeys3(tmp, tmp, cacheL, tmp2, cacheR); - rct::addKeys(pprime, pprime, tmp); -#else - rct::addKeys(pprime, pprime, rct::scalarmultKey(proof.L[i], tmp)); - rct::addKeys(pprime, pprime, rct::scalarmultKey(proof.R[i], tmp2)); -#endif - } - sc_mul(tmp.bytes, proof.t.bytes, x_ip.bytes); - rct::addKeys(pprime, pprime, rct::scalarmultKey(rct::H, tmp)); - PERF_TIMER_STOP(VERIFY_line_26); + // now check all proofs at once PERF_TIMER_START_BP(VERIFY_step2_check); - sc_mul(tmp.bytes, proof.a.bytes, proof.b.bytes); - sc_mul(tmp.bytes, tmp.bytes, x_ip.bytes); - tmp = rct::scalarmultKey(rct::H, tmp); - rct::addKeys(tmp, tmp, inner_prod); + ge_p3 check1; + ge_scalarmult_base(&check1, y0.bytes); + addKeys_acc_p3(&check1, y1, rct::H); + sub_acc_p3(&check1, Y2); + sub_acc_p3(&check1, Y3); + sub_acc_p3(&check1, Y4); + if (!ge_p3_is_point_at_infinity(&check1)) + { + MERROR("Verification failure at step 1"); + return false; + } + ge_p3 check2; + sc_sub(tmp.bytes, rct::zero().bytes, z1.bytes); + ge_double_scalarmult_base_vartime_p3(&check2, z3.bytes, &ge_p3_H, tmp.bytes); + add_acc_p3(&check2, Z0); + add_acc_p3(&check2, Z2); + + std::vector<MultiexpData> multiexp_data; + multiexp_data.reserve(2 * maxMN); + for (size_t i = 0; i < maxMN; ++i) + { + sc_sub(tmp.bytes, rct::zero().bytes, z4[i].bytes); + multiexp_data.emplace_back(tmp, Gi_p3[i]); + sc_sub(tmp.bytes, rct::zero().bytes, z5[i].bytes); + multiexp_data.emplace_back(tmp, Hi_p3[i]); + } + add_acc_p3(&check2, multiexp(multiexp_data, true)); PERF_TIMER_STOP(VERIFY_step2_check); - if (!(pprime == tmp)) + + if (!ge_p3_is_point_at_infinity(&check2)) { MERROR("Verification failure at step 2"); return false; @@ -749,4 +1247,19 @@ bool bulletproof_VERIFY(const Bulletproof &proof) return true; } +bool bulletproof_VERIFY(const std::vector<Bulletproof> &proofs) +{ + std::vector<const Bulletproof*> proof_pointers; + for (const Bulletproof &proof: proofs) + proof_pointers.push_back(&proof); + return bulletproof_VERIFY(proof_pointers); +} + +bool bulletproof_VERIFY(const Bulletproof &proof) +{ + std::vector<const Bulletproof*> proofs; + proofs.push_back(&proof); + return bulletproof_VERIFY(proofs); +} + } diff --git a/src/ringct/bulletproofs.h b/src/ringct/bulletproofs.h index 3061d272e..b86202ccc 100644 --- a/src/ringct/bulletproofs.h +++ b/src/ringct/bulletproofs.h @@ -40,7 +40,11 @@ namespace rct Bulletproof bulletproof_PROVE(const rct::key &v, const rct::key &gamma); Bulletproof bulletproof_PROVE(uint64_t v, const rct::key &gamma); +Bulletproof bulletproof_PROVE(const rct::keyV &v, const rct::keyV &gamma); +Bulletproof bulletproof_PROVE(const std::vector<uint64_t> &v, const rct::keyV &gamma); bool bulletproof_VERIFY(const Bulletproof &proof); +bool bulletproof_VERIFY(const std::vector<const Bulletproof*> &proofs); +bool bulletproof_VERIFY(const std::vector<Bulletproof> &proofs); } diff --git a/src/ringct/multiexp.cc b/src/ringct/multiexp.cc new file mode 100644 index 000000000..21957b94c --- /dev/null +++ b/src/ringct/multiexp.cc @@ -0,0 +1,665 @@ +// Copyright (c) 2017, The Monero Project +// +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without modification, are +// permitted provided that the following conditions are met: +// +// 1. Redistributions of source code must retain the above copyright notice, this list of +// conditions and the following disclaimer. +// +// 2. Redistributions in binary form must reproduce the above copyright notice, this list +// of conditions and the following disclaimer in the documentation and/or other +// materials provided with the distribution. +// +// 3. Neither the name of the copyright holder nor the names of its contributors may be +// used to endorse or promote products derived from this software without specific +// prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY +// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF +// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL +// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, +// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF +// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Adapted from Python code by Sarang Noether + +#include "misc_log_ex.h" +#include "common/perf_timer.h" +extern "C" +{ +#include "crypto/crypto-ops.h" +} +#include "common/aligned.h" +#include "rctOps.h" +#include "multiexp.h" + +#undef MONERO_DEFAULT_LOG_CATEGORY +#define MONERO_DEFAULT_LOG_CATEGORY "multiexp" + +//#define MULTIEXP_PERF(x) x +#define MULTIEXP_PERF(x) + +#define RAW_MEMORY_BLOCK +//#define ALTERNATE_LAYOUT +//#define TRACK_STRAUS_ZERO_IDENTITY + +// per points us for N/B points (B point bands) +// raw alt 128/192 4096/192 4096/4096 +// 0 0 52.6 71 71.2 +// 0 1 53.2 72.2 72.4 +// 1 0 52.7 67 67.1 +// 1 1 52.8 70.4 70.2 + +// Pippenger: +// 1 2 3 4 5 6 7 8 9 bestN +// 2 555 598 621 804 1038 1733 2486 5020 8304 1 +// 4 783 747 800 1006 1428 2132 3285 5185 9806 2 +// 8 1174 1071 1095 1286 1640 2398 3869 6378 12080 2 +// 16 2279 1874 1745 1739 2144 2831 4209 6964 12007 4 +// 32 3910 3706 2588 2477 2782 3467 4856 7489 12618 4 +// 64 7184 5429 4710 4368 4010 4672 6027 8559 13684 5 +// 128 14097 10574 8452 7297 6841 6718 8615 10580 15641 6 +// 256 27715 20800 16000 13550 11875 11400 11505 14090 18460 6 +// 512 55100 41250 31740 26570 22030 19830 20760 21380 25215 6 +// 1024 111520 79000 61080 49720 43080 38320 37600 35040 36750 8 +// 2048 219480 162680 122120 102080 83760 70360 66600 63920 66160 8 +// 4096 453320 323080 247240 210200 180040 150240 132440 114920 110560 9 + +// 2 4 8 16 32 64 128 256 512 1024 2048 4096 +// Bos Coster 858 994 1316 1949 3183 5512 9865 17830 33485 63160 124280 246320 +// Straus 226 341 548 980 1870 3538 7039 14490 29020 57200 118640 233640 +// Straus/cached 226 315 485 785 1514 2858 5753 11065 22970 45120 98880 194840 +// Pippenger 555 747 1071 1739 2477 4010 6718 11400 19830 35040 63920 110560 + +// Best/cached Straus Straus Straus Straus Straus Straus Straus Straus Pip Pip Pip Pip +// Best/uncached Straus Straus Straus Straus Straus Straus Pip Pip Pip Pip Pip Pip + +namespace rct +{ + +static inline bool operator<(const rct::key &k0, const rct::key&k1) +{ + for (int n = 31; n >= 0; --n) + { + if (k0.bytes[n] < k1.bytes[n]) + return true; + if (k0.bytes[n] > k1.bytes[n]) + return false; + } + return false; +} + +static inline rct::key div2(const rct::key &k) +{ + rct::key res; + int carry = 0; + for (int n = 31; n >= 0; --n) + { + int new_carry = (k.bytes[n] & 1) << 7; + res.bytes[n] = k.bytes[n] / 2 + carry; + carry = new_carry; + } + return res; +} + +static inline rct::key pow2(size_t n) +{ + CHECK_AND_ASSERT_THROW_MES(n < 256, "Invalid pow2 argument"); + rct::key res = rct::zero(); + res[n >> 3] |= 1<<(n&7); + return res; +} + +static inline int test(const rct::key &k, size_t n) +{ + if (n >= 256) return 0; + return k[n >> 3] & (1 << (n & 7)); +} + +static inline void add(ge_p3 &p3, const ge_cached &other) +{ + ge_p1p1 p1; + ge_add(&p1, &p3, &other); + ge_p1p1_to_p3(&p3, &p1); +} + +static inline void add(ge_p3 &p3, const ge_p3 &other) +{ + ge_cached cached; + ge_p3_to_cached(&cached, &other); + add(p3, cached); +} + +rct::key bos_coster_heap_conv(std::vector<MultiexpData> data) +{ + MULTIEXP_PERF(PERF_TIMER_START_UNIT(bos_coster, 1000000)); + MULTIEXP_PERF(PERF_TIMER_START_UNIT(setup, 1000000)); + size_t points = data.size(); + CHECK_AND_ASSERT_THROW_MES(points > 1, "Not enough points"); + std::vector<size_t> heap(points); + for (size_t n = 0; n < points; ++n) + heap[n] = n; + + auto Comp = [&](size_t e0, size_t e1) { return data[e0].scalar < data[e1].scalar; }; + std::make_heap(heap.begin(), heap.end(), Comp); + MULTIEXP_PERF(PERF_TIMER_STOP(setup)); + + MULTIEXP_PERF(PERF_TIMER_START_UNIT(loop, 1000000)); + MULTIEXP_PERF(PERF_TIMER_START_UNIT(pop, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(pop)); + MULTIEXP_PERF(PERF_TIMER_START_UNIT(add, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(add)); + MULTIEXP_PERF(PERF_TIMER_START_UNIT(sub, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(sub)); + MULTIEXP_PERF(PERF_TIMER_START_UNIT(push, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(push)); + while (heap.size() > 1) + { + MULTIEXP_PERF(PERF_TIMER_RESUME(pop)); + std::pop_heap(heap.begin(), heap.end(), Comp); + size_t index1 = heap.back(); + heap.pop_back(); + std::pop_heap(heap.begin(), heap.end(), Comp); + size_t index2 = heap.back(); + heap.pop_back(); + MULTIEXP_PERF(PERF_TIMER_PAUSE(pop)); + + MULTIEXP_PERF(PERF_TIMER_RESUME(add)); + ge_cached cached; + ge_p3_to_cached(&cached, &data[index1].point); + ge_p1p1 p1; + ge_add(&p1, &data[index2].point, &cached); + ge_p1p1_to_p3(&data[index2].point, &p1); + MULTIEXP_PERF(PERF_TIMER_PAUSE(add)); + + MULTIEXP_PERF(PERF_TIMER_RESUME(sub)); + sc_sub(data[index1].scalar.bytes, data[index1].scalar.bytes, data[index2].scalar.bytes); + MULTIEXP_PERF(PERF_TIMER_PAUSE(sub)); + + MULTIEXP_PERF(PERF_TIMER_RESUME(push)); + if (!(data[index1].scalar == rct::zero())) + { + heap.push_back(index1); + std::push_heap(heap.begin(), heap.end(), Comp); + } + + heap.push_back(index2); + std::push_heap(heap.begin(), heap.end(), Comp); + MULTIEXP_PERF(PERF_TIMER_PAUSE(push)); + } + MULTIEXP_PERF(PERF_TIMER_STOP(push)); + MULTIEXP_PERF(PERF_TIMER_STOP(sub)); + MULTIEXP_PERF(PERF_TIMER_STOP(add)); + MULTIEXP_PERF(PERF_TIMER_STOP(pop)); + MULTIEXP_PERF(PERF_TIMER_STOP(loop)); + + MULTIEXP_PERF(PERF_TIMER_START_UNIT(end, 1000000)); + //return rct::scalarmultKey(data[index1].point, data[index1].scalar); + std::pop_heap(heap.begin(), heap.end(), Comp); + size_t index1 = heap.back(); + heap.pop_back(); + ge_p2 p2; + ge_scalarmult(&p2, data[index1].scalar.bytes, &data[index1].point); + rct::key res; + ge_tobytes(res.bytes, &p2); + return res; +} + +rct::key bos_coster_heap_conv_robust(std::vector<MultiexpData> data) +{ + MULTIEXP_PERF(PERF_TIMER_START_UNIT(bos_coster, 1000000)); + MULTIEXP_PERF(PERF_TIMER_START_UNIT(setup, 1000000)); + size_t points = data.size(); + CHECK_AND_ASSERT_THROW_MES(points > 0, "Not enough points"); + std::vector<size_t> heap; + heap.reserve(points); + for (size_t n = 0; n < points; ++n) + { + if (!(data[n].scalar == rct::zero()) && !ge_p3_is_point_at_infinity(&data[n].point)) + heap.push_back(n); + } + points = heap.size(); + if (points == 0) + return rct::identity(); + + auto Comp = [&](size_t e0, size_t e1) { return data[e0].scalar < data[e1].scalar; }; + std::make_heap(heap.begin(), heap.end(), Comp); + + if (points < 2) + { + std::pop_heap(heap.begin(), heap.end(), Comp); + size_t index1 = heap.back(); + ge_p2 p2; + ge_scalarmult(&p2, data[index1].scalar.bytes, &data[index1].point); + rct::key res; + ge_tobytes(res.bytes, &p2); + return res; + } + + MULTIEXP_PERF(PERF_TIMER_STOP(setup)); + + MULTIEXP_PERF(PERF_TIMER_START_UNIT(loop, 1000000)); + MULTIEXP_PERF(PERF_TIMER_START_UNIT(pop, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(pop)); + MULTIEXP_PERF(PERF_TIMER_START_UNIT(div, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(div)); + MULTIEXP_PERF(PERF_TIMER_START_UNIT(add, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(add)); + MULTIEXP_PERF(PERF_TIMER_START_UNIT(sub, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(sub)); + MULTIEXP_PERF(PERF_TIMER_START_UNIT(push, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(push)); + while (heap.size() > 1) + { + MULTIEXP_PERF(PERF_TIMER_RESUME(pop)); + std::pop_heap(heap.begin(), heap.end(), Comp); + size_t index1 = heap.back(); + heap.pop_back(); + std::pop_heap(heap.begin(), heap.end(), Comp); + size_t index2 = heap.back(); + heap.pop_back(); + MULTIEXP_PERF(PERF_TIMER_PAUSE(pop)); + + ge_cached cached; + ge_p1p1 p1; + ge_p2 p2; + + MULTIEXP_PERF(PERF_TIMER_RESUME(div)); + while (1) + { + rct::key s1_2 = div2(data[index1].scalar); + if (!(data[index2].scalar < s1_2)) + break; + if (data[index1].scalar.bytes[0] & 1) + { + data.resize(data.size()+1); + data.back().scalar = rct::identity(); + data.back().point = data[index1].point; + heap.push_back(data.size() - 1); + std::push_heap(heap.begin(), heap.end(), Comp); + } + data[index1].scalar = div2(data[index1].scalar); + ge_p3_to_p2(&p2, &data[index1].point); + ge_p2_dbl(&p1, &p2); + ge_p1p1_to_p3(&data[index1].point, &p1); + } + MULTIEXP_PERF(PERF_TIMER_PAUSE(div)); + + MULTIEXP_PERF(PERF_TIMER_RESUME(add)); + ge_p3_to_cached(&cached, &data[index1].point); + ge_add(&p1, &data[index2].point, &cached); + ge_p1p1_to_p3(&data[index2].point, &p1); + MULTIEXP_PERF(PERF_TIMER_PAUSE(add)); + + MULTIEXP_PERF(PERF_TIMER_RESUME(sub)); + sc_sub(data[index1].scalar.bytes, data[index1].scalar.bytes, data[index2].scalar.bytes); + MULTIEXP_PERF(PERF_TIMER_PAUSE(sub)); + + MULTIEXP_PERF(PERF_TIMER_RESUME(push)); + if (!(data[index1].scalar == rct::zero())) + { + heap.push_back(index1); + std::push_heap(heap.begin(), heap.end(), Comp); + } + + heap.push_back(index2); + std::push_heap(heap.begin(), heap.end(), Comp); + MULTIEXP_PERF(PERF_TIMER_PAUSE(push)); + } + MULTIEXP_PERF(PERF_TIMER_STOP(push)); + MULTIEXP_PERF(PERF_TIMER_STOP(sub)); + MULTIEXP_PERF(PERF_TIMER_STOP(add)); + MULTIEXP_PERF(PERF_TIMER_STOP(pop)); + MULTIEXP_PERF(PERF_TIMER_STOP(loop)); + + MULTIEXP_PERF(PERF_TIMER_START_UNIT(end, 1000000)); + //return rct::scalarmultKey(data[index1].point, data[index1].scalar); + std::pop_heap(heap.begin(), heap.end(), Comp); + size_t index1 = heap.back(); + heap.pop_back(); + ge_p2 p2; + ge_scalarmult(&p2, data[index1].scalar.bytes, &data[index1].point); + rct::key res; + ge_tobytes(res.bytes, &p2); + return res; +} + +static constexpr unsigned int STRAUS_C = 4; + +struct straus_cached_data +{ +#ifdef RAW_MEMORY_BLOCK + size_t size; + ge_cached *multiples; + straus_cached_data(): size(0), multiples(NULL) {} + ~straus_cached_data() { aligned_free(multiples); } +#else + std::vector<std::vector<ge_cached>> multiples; +#endif +}; +#ifdef RAW_MEMORY_BLOCK +#ifdef ALTERNATE_LAYOUT +#define CACHE_OFFSET(cache,point,digit) cache->multiples[(point)*((1<<STRAUS_C)-1)+((digit)-1)] +#else +#define CACHE_OFFSET(cache,point,digit) cache->multiples[(point)+cache->size*((digit)-1)] +#endif +#else +#ifdef ALTERNATE_LAYOUT +#define CACHE_OFFSET(cache,point,digit) local_cache->multiples[j][digit-1] +#else +#define CACHE_OFFSET(cache,point,digit) local_cache->multiples[digit][j] +#endif +#endif + +std::shared_ptr<straus_cached_data> straus_init_cache(const std::vector<MultiexpData> &data, size_t N) +{ + MULTIEXP_PERF(PERF_TIMER_START_UNIT(multiples, 1000000)); + if (N == 0) + N = data.size(); + CHECK_AND_ASSERT_THROW_MES(N <= data.size(), "Bad cache base data"); + ge_cached cached; + ge_p1p1 p1; + ge_p3 p3; + std::shared_ptr<straus_cached_data> cache(new straus_cached_data()); + +#ifdef RAW_MEMORY_BLOCK + const size_t offset = cache->size; + cache->multiples = (ge_cached*)aligned_realloc(cache->multiples, sizeof(ge_cached) * ((1<<STRAUS_C)-1) * std::max(offset, N), 4096); + CHECK_AND_ASSERT_THROW_MES(cache->multiples, "Out of memory"); + cache->size = N; + for (size_t j=offset;j<N;++j) + { + ge_p3_to_cached(&CACHE_OFFSET(cache, j, 1), &data[j].point); + for (size_t i=2;i<1<<STRAUS_C;++i) + { + ge_add(&p1, &data[j].point, &CACHE_OFFSET(cache, j, i-1)); + ge_p1p1_to_p3(&p3, &p1); + ge_p3_to_cached(&CACHE_OFFSET(cache, j, i), &p3); + } + } +#else +#ifdef ALTERNATE_LAYOUT + const size_t offset = cache->multiples.size(); + cache->multiples.resize(std::max(offset, N)); + for (size_t i = offset; i < N; ++i) + { + cache->multiples[i].resize((1<<STRAUS_C)-1); + ge_p3_to_cached(&cache->multiples[i][0], &data[i].point); + for (size_t j=2;j<1<<STRAUS_C;++j) + { + ge_add(&p1, &data[i].point, &cache->multiples[i][j-2]); + ge_p1p1_to_p3(&p3, &p1); + ge_p3_to_cached(&cache->multiples[i][j-1], &p3); + } + } +#else + cache->multiples.resize(1<<STRAUS_C); + size_t offset = cache->multiples[1].size(); + cache->multiples[1].resize(std::max(offset, N)); + for (size_t i = offset; i < N; ++i) + ge_p3_to_cached(&cache->multiples[1][i], &data[i].point); + for (size_t i=2;i<1<<STRAUS_C;++i) + cache->multiples[i].resize(std::max(offset, N)); + for (size_t j=offset;j<N;++j) + { + for (size_t i=2;i<1<<STRAUS_C;++i) + { + ge_add(&p1, &data[j].point, &cache->multiples[i-1][j]); + ge_p1p1_to_p3(&p3, &p1); + ge_p3_to_cached(&cache->multiples[i][j], &p3); + } + } +#endif +#endif + MULTIEXP_PERF(PERF_TIMER_STOP(multiples)); + + return cache; +} + +size_t straus_get_cache_size(const std::shared_ptr<straus_cached_data> &cache) +{ + size_t sz = 0; +#ifdef RAW_MEMORY_BLOCK + sz += cache->size * sizeof(ge_cached) * ((1<<STRAUS_C)-1); +#else + for (const auto &e0: cache->multiples) + sz += e0.size() * sizeof(ge_cached); +#endif + return sz; +} + +rct::key straus(const std::vector<MultiexpData> &data, const std::shared_ptr<straus_cached_data> &cache, size_t STEP) +{ + CHECK_AND_ASSERT_THROW_MES(cache == NULL || cache->size >= data.size(), "Cache is too small"); + MULTIEXP_PERF(PERF_TIMER_UNIT(straus, 1000000)); + bool HiGi = cache != NULL; + STEP = STEP ? STEP : 192; + + MULTIEXP_PERF(PERF_TIMER_START_UNIT(setup, 1000000)); + static constexpr unsigned int mask = (1<<STRAUS_C)-1; + std::shared_ptr<straus_cached_data> local_cache = cache == NULL ? straus_init_cache(data) : cache; + ge_cached cached; + ge_p1p1 p1; + ge_p3 p3; + +#ifdef TRACK_STRAUS_ZERO_IDENTITY + MULTIEXP_PERF(PERF_TIMER_START_UNIT(skip, 1000000)); + std::vector<uint8_t> skip(data.size()); + for (size_t i = 0; i < data.size(); ++i) + skip[i] = data[i].scalar == rct::zero() || ge_p3_is_point_at_infinity(&data[i].point); + MULTIEXP_PERF(PERF_TIMER_STOP(skip)); +#endif + + MULTIEXP_PERF(PERF_TIMER_START_UNIT(digits, 1000000)); + std::unique_ptr<uint8_t[]> digits{new uint8_t[256 * data.size()]}; + for (size_t j = 0; j < data.size(); ++j) + { + unsigned char bytes33[33]; + memcpy(bytes33, data[j].scalar.bytes, 32); + bytes33[32] = 0; + const unsigned char *bytes = bytes33; +#if 1 + static_assert(STRAUS_C == 4, "optimized version needs STRAUS_C == 4"); + unsigned int i; + for (i = 0; i < 256; i += 8, bytes++) + { + digits[j*256+i] = bytes[0] & 0xf; + digits[j*256+i+1] = (bytes[0] >> 1) & 0xf; + digits[j*256+i+2] = (bytes[0] >> 2) & 0xf; + digits[j*256+i+3] = (bytes[0] >> 3) & 0xf; + digits[j*256+i+4] = ((bytes[0] >> 4) | (bytes[1]<<4)) & 0xf; + digits[j*256+i+5] = ((bytes[0] >> 5) | (bytes[1]<<3)) & 0xf; + digits[j*256+i+6] = ((bytes[0] >> 6) | (bytes[1]<<2)) & 0xf; + digits[j*256+i+7] = ((bytes[0] >> 7) | (bytes[1]<<1)) & 0xf; + } +#elif 1 + for (size_t i = 0; i < 256; ++i) + digits[j*256+i] = ((bytes[i>>3] | (bytes[(i>>3)+1]<<8)) >> (i&7)) & mask; +#else + rct::key shifted = data[j].scalar; + for (size_t i = 0; i < 256; ++i) + { + digits[j*256+i] = shifted.bytes[0] & 0xf; + shifted = div2(shifted, (256-i)>>3); + } +#endif + } + MULTIEXP_PERF(PERF_TIMER_STOP(digits)); + + rct::key maxscalar = rct::zero(); + for (size_t i = 0; i < data.size(); ++i) + if (maxscalar < data[i].scalar) + maxscalar = data[i].scalar; + size_t start_i = 0; + while (start_i < 256 && !(maxscalar < pow2(start_i))) + start_i += STRAUS_C; + MULTIEXP_PERF(PERF_TIMER_STOP(setup)); + + ge_p3 res_p3 = ge_p3_identity; + + for (size_t start_offset = 0; start_offset < data.size(); start_offset += STEP) + { + const size_t num_points = std::min(data.size() - start_offset, STEP); + + ge_p3 band_p3 = ge_p3_identity; + size_t i = start_i; + if (!(i < STRAUS_C)) + goto skipfirst; + while (!(i < STRAUS_C)) + { + ge_p2 p2; + ge_p3_to_p2(&p2, &band_p3); + for (size_t j = 0; j < STRAUS_C; ++j) + { + ge_p2_dbl(&p1, &p2); + if (j == STRAUS_C - 1) + ge_p1p1_to_p3(&band_p3, &p1); + else + ge_p1p1_to_p2(&p2, &p1); + } +skipfirst: + i -= STRAUS_C; + for (size_t j = start_offset; j < start_offset + num_points; ++j) + { +#ifdef TRACK_STRAUS_ZERO_IDENTITY + if (skip[j]) + continue; +#endif + const uint8_t digit = digits[j*256+i]; + if (digit) + { + ge_add(&p1, &band_p3, &CACHE_OFFSET(local_cache, j, digit)); + ge_p1p1_to_p3(&band_p3, &p1); + } + } + } + + ge_p3_to_cached(&cached, &band_p3); + ge_add(&p1, &res_p3, &cached); + ge_p1p1_to_p3(&res_p3, &p1); + } + + rct::key res; + ge_p3_tobytes(res.bytes, &res_p3); + return res; +} + +size_t get_pippenger_c(size_t N) +{ +// uncached: 2:1, 4:2, 8:2, 16:3, 32:4, 64:4, 128:5, 256:6, 512:7, 1024:7, 2048:8, 4096:9 +// cached: 2:1, 4:2, 8:2, 16:3, 32:4, 64:4, 128:5, 256:6, 512:7, 1024:7, 2048:8, 4096:9 + if (N <= 2) return 1; + if (N <= 8) return 2; + if (N <= 16) return 3; + if (N <= 64) return 4; + if (N <= 128) return 5; + if (N <= 256) return 6; + if (N <= 1024) return 7; + if (N <= 2048) return 8; + return 9; +} + +struct pippenger_cached_data +{ + size_t size; + ge_cached *cached; + pippenger_cached_data(): size(0), cached(NULL) {} + ~pippenger_cached_data() { aligned_free(cached); } +}; + +std::shared_ptr<pippenger_cached_data> pippenger_init_cache(const std::vector<MultiexpData> &data, size_t N) +{ + MULTIEXP_PERF(PERF_TIMER_START_UNIT(pippenger_init_cache, 1000000)); + if (N == 0) + N = data.size(); + CHECK_AND_ASSERT_THROW_MES(N <= data.size(), "Bad cache base data"); + ge_cached cached; + std::shared_ptr<pippenger_cached_data> cache(new pippenger_cached_data()); + + cache->size = N; + cache->cached = (ge_cached*)aligned_realloc(cache->cached, N * sizeof(ge_cached), 4096); + CHECK_AND_ASSERT_THROW_MES(cache->cached, "Out of memory"); + for (size_t i = 0; i < N; ++i) + ge_p3_to_cached(&cache->cached[i], &data[i].point); + + MULTIEXP_PERF(PERF_TIMER_STOP(pippenger_init_cache)); + return cache; +} + +size_t pippenger_get_cache_size(const std::shared_ptr<pippenger_cached_data> &cache) +{ + return cache->size * sizeof(*cache->cached); +} + +rct::key pippenger(const std::vector<MultiexpData> &data, const std::shared_ptr<pippenger_cached_data> &cache, size_t c) +{ + CHECK_AND_ASSERT_THROW_MES(cache == NULL || cache->size >= data.size(), "Cache is too small"); + if (c == 0) + c = get_pippenger_c(data.size()); + CHECK_AND_ASSERT_THROW_MES(c <= 9, "c is too large"); + + ge_p3 result = ge_p3_identity; + std::unique_ptr<ge_p3[]> buckets{new ge_p3[1<<c]}; + std::shared_ptr<pippenger_cached_data> local_cache = cache == NULL ? pippenger_init_cache(data) : cache; + + rct::key maxscalar = rct::zero(); + for (size_t i = 0; i < data.size(); ++i) + { + if (maxscalar < data[i].scalar) + maxscalar = data[i].scalar; + } + size_t groups = 0; + while (groups < 256 && !(maxscalar < pow2(groups))) + ++groups; + groups = (groups + c - 1) / c; + + for (size_t k = groups; k-- > 0; ) + { + if (!ge_p3_is_point_at_infinity(&result)) + { + ge_p2 p2; + ge_p3_to_p2(&p2, &result); + for (size_t i = 0; i < c; ++i) + { + ge_p1p1 p1; + ge_p2_dbl(&p1, &p2); + if (i == c - 1) + ge_p1p1_to_p3(&result, &p1); + else + ge_p1p1_to_p2(&p2, &p1); + } + } + for (size_t i = 0; i < (1u<<c); ++i) + buckets[i] = ge_p3_identity; + + // partition scalars into buckets + for (size_t i = 0; i < data.size(); ++i) + { + unsigned int bucket = 0; + for (size_t j = 0; j < c; ++j) + if (test(data[i].scalar, k*c+j)) + bucket |= 1<<j; + if (bucket == 0) + continue; + CHECK_AND_ASSERT_THROW_MES(bucket < (1u<<c), "bucket overflow"); + if (!ge_p3_is_point_at_infinity(&buckets[bucket])) + { + add(buckets[bucket], local_cache->cached[i]); + } + else + buckets[bucket] = data[i].point; + } + + // sum the buckets + ge_p3 pail = ge_p3_identity; + for (size_t i = (1<<c)-1; i > 0; --i) + { + if (!ge_p3_is_point_at_infinity(&buckets[i])) + add(pail, buckets[i]); + if (!ge_p3_is_point_at_infinity(&pail)) + add(result, pail); + } + } + + rct::key res; + ge_p3_tobytes(res.bytes, &result); + return res; +} + +} diff --git a/src/ringct/multiexp.h b/src/ringct/multiexp.h new file mode 100644 index 000000000..559ab664a --- /dev/null +++ b/src/ringct/multiexp.h @@ -0,0 +1,71 @@ +// Copyright (c) 2017, The Monero Project +// +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without modification, are +// permitted provided that the following conditions are met: +// +// 1. Redistributions of source code must retain the above copyright notice, this list of +// conditions and the following disclaimer. +// +// 2. Redistributions in binary form must reproduce the above copyright notice, this list +// of conditions and the following disclaimer in the documentation and/or other +// materials provided with the distribution. +// +// 3. Neither the name of the copyright holder nor the names of its contributors may be +// used to endorse or promote products derived from this software without specific +// prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY +// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF +// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL +// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, +// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF +// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Adapted from Python code by Sarang Noether + +#pragma once + +#ifndef MULTIEXP_H +#define MULTIEXP_H + +#include <vector> +#include "crypto/crypto.h" +#include "rctTypes.h" +#include "misc_log_ex.h" + +namespace rct +{ + +struct MultiexpData { + rct::key scalar; + ge_p3 point; + + MultiexpData() {} + MultiexpData(const rct::key &s, const ge_p3 &p): scalar(s), point(p) {} + MultiexpData(const rct::key &s, const rct::key &p): scalar(s) + { + CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&point, p.bytes) == 0, "ge_frombytes_vartime failed"); + } +}; + +struct straus_cached_data; +struct pippenger_cached_data; + +rct::key bos_coster_heap_conv(std::vector<MultiexpData> data); +rct::key bos_coster_heap_conv_robust(std::vector<MultiexpData> data); +std::shared_ptr<straus_cached_data> straus_init_cache(const std::vector<MultiexpData> &data, size_t N =0); +size_t straus_get_cache_size(const std::shared_ptr<straus_cached_data> &cache); +rct::key straus(const std::vector<MultiexpData> &data, const std::shared_ptr<straus_cached_data> &cache = NULL, size_t STEP = 0); +std::shared_ptr<pippenger_cached_data> pippenger_init_cache(const std::vector<MultiexpData> &data, size_t N =0); +size_t pippenger_get_cache_size(const std::shared_ptr<pippenger_cached_data> &cache); +size_t get_pippenger_c(size_t N); +rct::key pippenger(const std::vector<MultiexpData> &data, const std::shared_ptr<pippenger_cached_data> &cache = NULL, size_t c = 0); + +} + +#endif diff --git a/src/ringct/rctOps.cpp b/src/ringct/rctOps.cpp index 50693bad7..6c3c4500e 100644 --- a/src/ringct/rctOps.cpp +++ b/src/ringct/rctOps.cpp @@ -60,6 +60,17 @@ namespace rct { //Various key generation functions + bool toPointCheckOrder(ge_p3 *P, const unsigned char *data) + { + if (ge_frombytes_vartime(P, data)) + return false; + ge_p2 R; + ge_scalarmult(&R, curveOrder().bytes, P); + key tmp; + ge_tobytes(tmp.bytes, &R); + return tmp == identity(); + } + //generates a random scalar which can be used as a secret key or mask void skGen(key &sk) { random32_unbiased(sk.bytes); @@ -193,15 +204,33 @@ namespace rct { //Computes aH where H= toPoint(cn_fast_hash(G)), G the basepoint key scalarmultH(const key & a) { - ge_p3 A; ge_p2 R; - CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&A, H.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__)); - ge_scalarmult(&R, a.bytes, &A); + ge_scalarmult(&R, a.bytes, &ge_p3_H); key aP; ge_tobytes(aP.bytes, &R); return aP; } + //Computes 8P + key scalarmult8(const key & P) { + ge_p3 p3; + CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&p3, P.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__)); + ge_p2 p2; + ge_p3_to_p2(&p2, &p3); + ge_p1p1 p1; + ge_mul8(&p1, &p2); + ge_p1p1_to_p2(&p2, &p1); + rct::key res; + ge_tobytes(res.bytes, &p2); + return res; + } + + //Computes aL where L is the curve order + bool isInMainSubgroup(const key & a) { + ge_p3 p3; + return toPointCheckOrder(&p3, a.bytes); + } + //Curve addition / subtractions //for curve points: AB = A + B diff --git a/src/ringct/rctOps.h b/src/ringct/rctOps.h index f8889af5c..50645821c 100644 --- a/src/ringct/rctOps.h +++ b/src/ringct/rctOps.h @@ -63,6 +63,8 @@ namespace rct { static const key I = { {0x01, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } }; static const key L = { {0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10 } }; static const key G = { {0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66 } }; + static const key EIGHT = { {0x08, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } }; + static const key INV_EIGHT = { { 0x79, 0x2f, 0xdc, 0xe2, 0x29, 0xe5, 0x06, 0x61, 0xd0, 0xda, 0x1c, 0x7d, 0xb3, 0x9d, 0xd3, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06 } }; //Creates a zero scalar inline key zero() { return Z; } @@ -83,6 +85,7 @@ namespace rct { keyM keyMInit(size_t rows, size_t cols); //Various key generation functions + bool toPointCheckOrder(ge_p3 *P, const unsigned char *data); //generates a random scalar which can be used as a secret key or mask key skGen(); @@ -119,6 +122,10 @@ namespace rct { key scalarmultKey(const key &P, const key &a); //Computes aH where H= toPoint(cn_fast_hash(G)), G the basepoint key scalarmultH(const key & a); + // multiplies a point by 8 + key scalarmult8(const key & P); + // checks a is in the main subgroup (ie, not a small one) + bool isInMainSubgroup(const key & a); //Curve addition / subtractions diff --git a/src/ringct/rctSigs.cpp b/src/ringct/rctSigs.cpp index f74216ed4..fe0cd9c57 100644 --- a/src/ringct/rctSigs.cpp +++ b/src/ringct/rctSigs.cpp @@ -45,30 +45,6 @@ using namespace std; #define CHECK_AND_ASSERT_MES_L1(expr, ret, message) {if(!(expr)) {MCERROR("verify", message); return ret;}} namespace rct { - bool is_simple(int type) - { - switch (type) - { - case RCTTypeSimple: - case RCTTypeSimpleBulletproof: - return true; - default: - return false; - } - } - - bool is_bulletproof(int type) - { - switch (type) - { - case RCTTypeSimpleBulletproof: - case RCTTypeFullBulletproof: - return true; - default: - return false; - } - } - Bulletproof proveRangeBulletproof(key &C, key &mask, uint64_t amount) { mask = rct::skGen(); @@ -78,6 +54,15 @@ namespace rct { return proof; } + Bulletproof proveRangeBulletproof(keyV &C, keyV &masks, const std::vector<uint64_t> &amounts) + { + masks = rct::skvGen(amounts.size()); + Bulletproof proof = bulletproof_PROVE(amounts, masks); + CHECK_AND_ASSERT_THROW_MES(proof.V.size() == amounts.size(), "V does not have the expected size"); + C = proof.V; + return proof; + } + bool verBulletproof(const Bulletproof &proof) { try { return bulletproof_VERIFY(proof); } @@ -85,6 +70,13 @@ namespace rct { catch (...) { return false; } } + bool verBulletproof(const std::vector<const Bulletproof*> &proofs) + { + try { return bulletproof_VERIFY(proofs); } + // we can get deep throws from ge_frombytes_vartime if input isn't valid + catch (...) { return false; } + } + //Borromean (c.f. gmax/andytoshi's paper) boroSig genBorromean(const key64 x, const key64 P1, const key64 P2, const bits indices) { key64 L[2], alpha; @@ -285,6 +277,7 @@ namespace rct { for (j = 0; j < dsRows; j++) { addKeys2(L, rv.ss[i][j], c_old, pk[i][j]); hashToPoint(Hi, pk[i][j]); + CHECK_AND_ASSERT_MES(!(Hi == rct::identity()), false, "Data hashed to point at infinity"); addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j].k); toHash[3 * j + 1] = pk[i][j]; toHash[3 * j + 2] = L; @@ -389,7 +382,7 @@ namespace rct { std::stringstream ss; binary_archive<true> ba(ss); CHECK_AND_ASSERT_THROW_MES(!rv.mixRing.empty(), "Empty mixRing"); - const size_t inputs = is_simple(rv.type) ? rv.mixRing.size() : rv.mixRing[0].size(); + const size_t inputs = is_rct_simple(rv.type) ? rv.mixRing.size() : rv.mixRing[0].size(); const size_t outputs = rv.ecdhInfo.size(); key prehash; CHECK_AND_ASSERT_THROW_MES(const_cast<rctSig&>(rv).serialize_rctsig_base(ba, inputs, outputs), @@ -398,7 +391,7 @@ namespace rct { hashes.push_back(hash2rct(h)); keyV kv; - if (rv.type == RCTTypeSimpleBulletproof || rv.type == RCTTypeFullBulletproof) + if (rv.type == RCTTypeBulletproof) { kv.reserve((6*2+9) * rv.p.bulletproofs.size()); for (const auto &p: rv.p.bulletproofs) @@ -492,7 +485,9 @@ namespace rct { for (size_t j = 0; j < outPk.size(); j++) { sc_sub(sk[rows].bytes, sk[rows].bytes, outSk[j].mask.bytes); //subtract output masks in last row.. } - return MLSAG_Gen(message, M, sk, kLRki, mscout, index, rows, hwdev); + mgSig result = MLSAG_Gen(message, M, sk, kLRki, mscout, index, rows, hwdev); + memwipe(sk.data(), sk.size() * sizeof(key)); + return result; } @@ -521,7 +516,9 @@ namespace rct { M[i][0] = pubs[i].dest; subKeys(M[i][1], pubs[i].mask, Cout); } - return MLSAG_Gen(message, M, sk, kLRki, mscout, index, rows, hwdev); + mgSig result = MLSAG_Gen(message, M, sk, kLRki, mscout, index, rows, hwdev); + memwipe(&sk[0], sizeof(key)); + return result; } @@ -655,7 +652,7 @@ namespace rct { // must know the destination private key to find the correct amount, else will return a random number // Note: For txn fees, the last index in the amounts vector should contain that // Thus the amounts vector will be "one" longer than the destinations vectort - rctSig genRct(const key &message, const ctkeyV & inSk, const keyV & destinations, const vector<xmr_amount> & amounts, const ctkeyM &mixRing, const keyV &amount_keys, const multisig_kLRki *kLRki, multisig_out *msout, unsigned int index, ctkeyV &outSk, bool bulletproof, hw::device &hwdev) { + rctSig genRct(const key &message, const ctkeyV & inSk, const keyV & destinations, const vector<xmr_amount> & amounts, const ctkeyM &mixRing, const keyV &amount_keys, const multisig_kLRki *kLRki, multisig_out *msout, unsigned int index, ctkeyV &outSk, hw::device &hwdev) { CHECK_AND_ASSERT_THROW_MES(amounts.size() == destinations.size() || amounts.size() == destinations.size() + 1, "Different number of amounts/destinations"); CHECK_AND_ASSERT_THROW_MES(amount_keys.size() == destinations.size(), "Different number of amount_keys/destinations"); CHECK_AND_ASSERT_THROW_MES(index < mixRing.size(), "Bad index into mixRing"); @@ -665,13 +662,10 @@ namespace rct { CHECK_AND_ASSERT_THROW_MES((kLRki && msout) || (!kLRki && !msout), "Only one of kLRki/msout is present"); rctSig rv; - rv.type = bulletproof ? RCTTypeFullBulletproof : RCTTypeFull; + rv.type = RCTTypeFull; rv.message = message; rv.outPk.resize(destinations.size()); - if (bulletproof) - rv.p.bulletproofs.resize(destinations.size()); - else - rv.p.rangeSigs.resize(destinations.size()); + rv.p.rangeSigs.resize(destinations.size()); rv.ecdhInfo.resize(destinations.size()); size_t i = 0; @@ -681,17 +675,10 @@ namespace rct { //add destination to sig rv.outPk[i].dest = copy(destinations[i]); //compute range proof - if (bulletproof) - rv.p.bulletproofs[i] = proveRangeBulletproof(rv.outPk[i].mask, outSk[i].mask, amounts[i]); - else - rv.p.rangeSigs[i] = proveRange(rv.outPk[i].mask, outSk[i].mask, amounts[i]); + rv.p.rangeSigs[i] = proveRange(rv.outPk[i].mask, outSk[i].mask, amounts[i]); #ifdef DBG - if (bulletproof) - CHECK_AND_ASSERT_THROW_MES(verBulletproof(rv.p.bulletproofs[i]), "verBulletproof failed on newly created proof"); - else - CHECK_AND_ASSERT_THROW_MES(verRange(rv.outPk[i].mask, rv.p.rangeSigs[i]), "verRange failed on newly created proof"); + CHECK_AND_ASSERT_THROW_MES(verRange(rv.outPk[i].mask, rv.p.rangeSigs[i]), "verRange failed on newly created proof"); #endif - //mask amount and mask rv.ecdhInfo[i].mask = copy(outSk[i].mask); rv.ecdhInfo[i].amount = d2h(amounts[i]); @@ -721,12 +708,13 @@ namespace rct { ctkeyM mixRing; ctkeyV outSk; tie(mixRing, index) = populateFromBlockchain(inPk, mixin); - return genRct(message, inSk, destinations, amounts, mixRing, amount_keys, kLRki, msout, index, outSk, false, hwdev); + return genRct(message, inSk, destinations, amounts, mixRing, amount_keys, kLRki, msout, index, outSk, hwdev); } //RCT simple //for post-rct only - rctSig genRctSimple(const key &message, const ctkeyV & inSk, const keyV & destinations, const vector<xmr_amount> &inamounts, const vector<xmr_amount> &outamounts, xmr_amount txnFee, const ctkeyM & mixRing, const keyV &amount_keys, const std::vector<multisig_kLRki> *kLRki, multisig_out *msout, const std::vector<unsigned int> & index, ctkeyV &outSk, bool bulletproof, hw::device &hwdev) { + rctSig genRctSimple(const key &message, const ctkeyV & inSk, const keyV & destinations, const vector<xmr_amount> &inamounts, const vector<xmr_amount> &outamounts, xmr_amount txnFee, const ctkeyM & mixRing, const keyV &amount_keys, const std::vector<multisig_kLRki> *kLRki, multisig_out *msout, const std::vector<unsigned int> & index, ctkeyV &outSk, RangeProofType range_proof_type, hw::device &hwdev) { + const bool bulletproof = range_proof_type != RangeProofBorromean; CHECK_AND_ASSERT_THROW_MES(inamounts.size() > 0, "Empty inamounts"); CHECK_AND_ASSERT_THROW_MES(inamounts.size() == inSk.size(), "Different number of inamounts/inSk"); CHECK_AND_ASSERT_THROW_MES(outamounts.size() == destinations.size(), "Different number of amounts/destinations"); @@ -742,35 +730,74 @@ namespace rct { } rctSig rv; - rv.type = bulletproof ? RCTTypeSimpleBulletproof : RCTTypeSimple; + rv.type = bulletproof ? RCTTypeBulletproof : RCTTypeSimple; rv.message = message; rv.outPk.resize(destinations.size()); - if (bulletproof) - rv.p.bulletproofs.resize(destinations.size()); - else + if (!bulletproof) rv.p.rangeSigs.resize(destinations.size()); rv.ecdhInfo.resize(destinations.size()); size_t i; keyV masks(destinations.size()); //sk mask.. outSk.resize(destinations.size()); - key sumout = zero(); for (i = 0; i < destinations.size(); i++) { //add destination to sig rv.outPk[i].dest = copy(destinations[i]); //compute range proof - if (bulletproof) - rv.p.bulletproofs[i] = proveRangeBulletproof(rv.outPk[i].mask, outSk[i].mask, outamounts[i]); - else + if (!bulletproof) rv.p.rangeSigs[i] = proveRange(rv.outPk[i].mask, outSk[i].mask, outamounts[i]); #ifdef DBG - if (bulletproof) - CHECK_AND_ASSERT_THROW_MES(verBulletproof(rv.p.bulletproofs[i]), "verBulletproof failed on newly created proof"); - else + if (!bulletproof) CHECK_AND_ASSERT_THROW_MES(verRange(rv.outPk[i].mask, rv.p.rangeSigs[i]), "verRange failed on newly created proof"); #endif - + } + + rv.p.bulletproofs.clear(); + if (bulletproof) + { + std::vector<uint64_t> proof_amounts; + size_t n_amounts = outamounts.size(); + size_t amounts_proved = 0; + if (range_proof_type == RangeProofPaddedBulletproof) + { + rct::keyV C, masks; + rv.p.bulletproofs.push_back(proveRangeBulletproof(C, masks, outamounts)); + #ifdef DBG + CHECK_AND_ASSERT_THROW_MES(verBulletproof(rv.p.bulletproofs.back()), "verBulletproof failed on newly created proof"); + #endif + for (i = 0; i < outamounts.size(); ++i) + { + rv.outPk[i].mask = rct::scalarmult8(C[i]); + outSk[i].mask = masks[i]; + } + } + else while (amounts_proved < n_amounts) + { + size_t batch_size = 1; + if (range_proof_type == RangeProofMultiOutputBulletproof) + while (batch_size * 2 + amounts_proved <= n_amounts && batch_size * 2 <= BULLETPROOF_MAX_OUTPUTS) + batch_size *= 2; + rct::keyV C, masks; + std::vector<uint64_t> batch_amounts(batch_size); + for (i = 0; i < batch_size; ++i) + batch_amounts[i] = outamounts[i + amounts_proved]; + rv.p.bulletproofs.push_back(proveRangeBulletproof(C, masks, batch_amounts)); + #ifdef DBG + CHECK_AND_ASSERT_THROW_MES(verBulletproof(rv.p.bulletproofs.back()), "verBulletproof failed on newly created proof"); + #endif + for (i = 0; i < batch_size; ++i) + { + rv.outPk[i + amounts_proved].mask = rct::scalarmult8(C[i]); + outSk[i + amounts_proved].mask = masks[i]; + } + amounts_proved += batch_size; + } + } + + key sumout = zero(); + for (i = 0; i < outSk.size(); ++i) + { sc_add(sumout.bytes, outSk[i].mask.bytes, sumout.bytes); //mask amount and mask @@ -818,7 +845,7 @@ namespace rct { mixRing[i].resize(mixin+1); index[i] = populateFromBlockchainSimple(mixRing[i], inPk[i], mixin); } - return genRctSimple(message, inSk, destinations, inamounts, outamounts, txnFee, mixRing, amount_keys, kLRki, msout, index, outSk, false, hwdev); + return genRctSimple(message, inSk, destinations, inamounts, outamounts, txnFee, mixRing, amount_keys, kLRki, msout, index, outSk, RangeProofBorromean, hwdev); } //RingCT protocol @@ -833,13 +860,10 @@ namespace rct { // must know the destination private key to find the correct amount, else will return a random number bool verRct(const rctSig & rv, bool semantics) { PERF_TIMER(verRct); - CHECK_AND_ASSERT_MES(rv.type == RCTTypeFull || rv.type == RCTTypeFullBulletproof, false, "verRct called on non-full rctSig"); + CHECK_AND_ASSERT_MES(rv.type == RCTTypeFull, false, "verRct called on non-full rctSig"); if (semantics) { - if (rv.type == RCTTypeFullBulletproof) - CHECK_AND_ASSERT_MES(rv.outPk.size() == rv.p.bulletproofs.size(), false, "Mismatched sizes of outPk and rv.p.bulletproofs"); - else - CHECK_AND_ASSERT_MES(rv.outPk.size() == rv.p.rangeSigs.size(), false, "Mismatched sizes of outPk and rv.p.rangeSigs"); + CHECK_AND_ASSERT_MES(rv.outPk.size() == rv.p.rangeSigs.size(), false, "Mismatched sizes of outPk and rv.p.rangeSigs"); CHECK_AND_ASSERT_MES(rv.outPk.size() == rv.ecdhInfo.size(), false, "Mismatched sizes of outPk and rv.ecdhInfo"); CHECK_AND_ASSERT_MES(rv.p.MGs.size() == 1, false, "full rctSig has not one MG"); } @@ -856,19 +880,13 @@ namespace rct { tools::threadpool::waiter waiter; std::deque<bool> results(rv.outPk.size(), false); DP("range proofs verified?"); - for (size_t i = 0; i < rv.outPk.size(); i++) { - tpool.submit(&waiter, [&, i] { - if (rv.p.rangeSigs.empty()) - results[i] = verBulletproof(rv.p.bulletproofs[i]); - else - results[i] = verRange(rv.outPk[i].mask, rv.p.rangeSigs[i]); - }, true); - } + for (size_t i = 0; i < rv.outPk.size(); i++) + tpool.submit(&waiter, [&, i] { results[i] = verRange(rv.outPk[i].mask, rv.p.rangeSigs[i]); }); waiter.wait(&tpool); - for (size_t i = 0; i < rv.outPk.size(); ++i) { + for (size_t i = 0; i < results.size(); ++i) { if (!results[i]) { - LOG_PRINT_L1("Range proof verified failed for output " << i); + LOG_PRINT_L1("Range proof verified failed for proof " << i); return false; } } @@ -902,17 +920,26 @@ namespace rct { //ver RingCT simple //assumes only post-rct style inputs (at least for max anonymity) - bool verRctSimple(const rctSig & rv, bool semantics) { + bool verRctSemanticsSimple(const std::vector<const rctSig*> & rvv) { try { - PERF_TIMER(verRctSimple); + PERF_TIMER(verRctSemanticsSimple); - CHECK_AND_ASSERT_MES(rv.type == RCTTypeSimple || rv.type == RCTTypeSimpleBulletproof, false, "verRctSimple called on non simple rctSig"); - if (semantics) + tools::threadpool& tpool = tools::threadpool::getInstance(); + tools::threadpool::waiter waiter; + std::deque<bool> results; + std::vector<const Bulletproof*> proofs; + size_t max_non_bp_proofs = 0, offset = 0; + + for (const rctSig *rvp: rvv) { - if (rv.type == RCTTypeSimpleBulletproof) + CHECK_AND_ASSERT_MES(rvp, false, "rctSig pointer is NULL"); + const rctSig &rv = *rvp; + CHECK_AND_ASSERT_MES(rv.type == RCTTypeSimple || rv.type == RCTTypeBulletproof, false, "verRctSemanticsSimple called on non simple rctSig"); + const bool bulletproof = is_rct_bulletproof(rv.type); + if (bulletproof) { - CHECK_AND_ASSERT_MES(rv.outPk.size() == rv.p.bulletproofs.size(), false, "Mismatched sizes of outPk and rv.p.bulletproofs"); + CHECK_AND_ASSERT_MES(rv.outPk.size() == n_bulletproof_amounts(rv.p.bulletproofs), false, "Mismatched sizes of outPk and bulletproofs"); CHECK_AND_ASSERT_MES(rv.p.pseudoOuts.size() == rv.p.MGs.size(), false, "Mismatched sizes of rv.p.pseudoOuts and rv.p.MGs"); CHECK_AND_ASSERT_MES(rv.pseudoOuts.empty(), false, "rv.pseudoOuts is not empty"); } @@ -923,28 +950,22 @@ namespace rct { CHECK_AND_ASSERT_MES(rv.p.pseudoOuts.empty(), false, "rv.p.pseudoOuts is not empty"); } CHECK_AND_ASSERT_MES(rv.outPk.size() == rv.ecdhInfo.size(), false, "Mismatched sizes of outPk and rv.ecdhInfo"); - } - else - { - // semantics check is early, and mixRing/MGs aren't resolved yet - if (rv.type == RCTTypeSimpleBulletproof) - CHECK_AND_ASSERT_MES(rv.p.pseudoOuts.size() == rv.mixRing.size(), false, "Mismatched sizes of rv.p.pseudoOuts and mixRing"); - else - CHECK_AND_ASSERT_MES(rv.pseudoOuts.size() == rv.mixRing.size(), false, "Mismatched sizes of rv.pseudoOuts and mixRing"); - } - const size_t threads = std::max(rv.outPk.size(), rv.mixRing.size()); + if (!bulletproof) + max_non_bp_proofs += rv.p.rangeSigs.size(); + } - std::deque<bool> results(threads); - tools::threadpool& tpool = tools::threadpool::getInstance(); - tools::threadpool::waiter waiter; + results.resize(max_non_bp_proofs); + for (const rctSig *rvp: rvv) + { + const rctSig &rv = *rvp; - const keyV &pseudoOuts = is_bulletproof(rv.type) ? rv.p.pseudoOuts : rv.pseudoOuts; + const bool bulletproof = is_rct_bulletproof(rv.type); + const keyV &pseudoOuts = bulletproof ? rv.p.pseudoOuts : rv.pseudoOuts; - if (semantics) { key sumOutpks = identity(); for (size_t i = 0; i < rv.outPk.size(); i++) { - addKeys(sumOutpks, sumOutpks, rv.outPk[i].mask); + addKeys(sumOutpks, sumOutpks, rv.outPk[i].mask); } DP(sumOutpks); key txnFeeKey = scalarmultH(d2h(rv.txnFee)); @@ -952,52 +973,100 @@ namespace rct { key sumPseudoOuts = identity(); for (size_t i = 0 ; i < pseudoOuts.size() ; i++) { - addKeys(sumPseudoOuts, sumPseudoOuts, pseudoOuts[i]); + addKeys(sumPseudoOuts, sumPseudoOuts, pseudoOuts[i]); } DP(sumPseudoOuts); //check pseudoOuts vs Outs.. if (!equalKeys(sumPseudoOuts, sumOutpks)) { - LOG_PRINT_L1("Sum check failed"); - return false; + LOG_PRINT_L1("Sum check failed"); + return false; } - results.clear(); - results.resize(rv.outPk.size()); - for (size_t i = 0; i < rv.outPk.size(); i++) { - tpool.submit(&waiter, [&, i] { - if (rv.p.rangeSigs.empty()) - results[i] = verBulletproof(rv.p.bulletproofs[i]); - else - results[i] = verRange(rv.outPk[i].mask, rv.p.rangeSigs[i]); - }, true); + if (bulletproof) + { + for (size_t i = 0; i < rv.p.bulletproofs.size(); i++) + proofs.push_back(&rv.p.bulletproofs[i]); } - waiter.wait(&tpool); - - for (size_t i = 0; i < results.size(); ++i) { - if (!results[i]) { - LOG_PRINT_L1("Range proof verified failed for output " << i); - return false; - } + else + { + for (size_t i = 0; i < rv.p.rangeSigs.size(); i++) + tpool.submit(&waiter, [&, i, offset] { results[i+offset] = verRange(rv.outPk[i].mask, rv.p.rangeSigs[i]); }); + offset += rv.p.rangeSigs.size(); } } - else { - const key message = get_pre_mlsag_hash(rv, hw::get_device("default")); - - results.clear(); - results.resize(rv.mixRing.size()); - for (size_t i = 0 ; i < rv.mixRing.size() ; i++) { - tpool.submit(&waiter, [&, i] { - results[i] = verRctMGSimple(message, rv.p.MGs[i], rv.mixRing[i], pseudoOuts[i]); - }, true); + if (!proofs.empty() && !verBulletproof(proofs)) + { + LOG_PRINT_L1("Aggregate range proof verified failed"); + return false; + } + + waiter.wait(&tpool); + for (size_t i = 0; i < results.size(); ++i) { + if (!results[i]) { + LOG_PRINT_L1("Range proof verified failed for proof " << i); + return false; } - waiter.wait(&tpool); + } - for (size_t i = 0; i < results.size(); ++i) { - if (!results[i]) { - LOG_PRINT_L1("verRctMGSimple failed for input " << i); - return false; - } + return true; + } + // we can get deep throws from ge_frombytes_vartime if input isn't valid + catch (const std::exception &e) + { + LOG_PRINT_L1("Error in verRctSemanticsSimple: " << e.what()); + return false; + } + catch (...) + { + LOG_PRINT_L1("Error in verRctSemanticsSimple, but not an actual exception"); + return false; + } + } + + bool verRctSemanticsSimple(const rctSig & rv) + { + return verRctSemanticsSimple(std::vector<const rctSig*>(1, &rv)); + } + + //ver RingCT simple + //assumes only post-rct style inputs (at least for max anonymity) + bool verRctNonSemanticsSimple(const rctSig & rv) { + try + { + PERF_TIMER(verRctNonSemanticsSimple); + + CHECK_AND_ASSERT_MES(rv.type == RCTTypeSimple || rv.type == RCTTypeBulletproof, false, "verRctNonSemanticsSimple called on non simple rctSig"); + const bool bulletproof = is_rct_bulletproof(rv.type); + // semantics check is early, and mixRing/MGs aren't resolved yet + if (bulletproof) + CHECK_AND_ASSERT_MES(rv.p.pseudoOuts.size() == rv.mixRing.size(), false, "Mismatched sizes of rv.p.pseudoOuts and mixRing"); + else + CHECK_AND_ASSERT_MES(rv.pseudoOuts.size() == rv.mixRing.size(), false, "Mismatched sizes of rv.pseudoOuts and mixRing"); + + const size_t threads = std::max(rv.outPk.size(), rv.mixRing.size()); + + std::deque<bool> results(threads); + tools::threadpool& tpool = tools::threadpool::getInstance(); + tools::threadpool::waiter waiter; + + const keyV &pseudoOuts = bulletproof ? rv.p.pseudoOuts : rv.pseudoOuts; + + const key message = get_pre_mlsag_hash(rv, hw::get_device("default")); + + results.clear(); + results.resize(rv.mixRing.size()); + for (size_t i = 0 ; i < rv.mixRing.size() ; i++) { + tpool.submit(&waiter, [&, i] { + results[i] = verRctMGSimple(message, rv.p.MGs[i], rv.mixRing[i], pseudoOuts[i]); + }); + } + waiter.wait(&tpool); + + for (size_t i = 0; i < results.size(); ++i) { + if (!results[i]) { + LOG_PRINT_L1("verRctMGSimple failed for input " << i); + return false; } } @@ -1006,12 +1075,12 @@ namespace rct { // we can get deep throws from ge_frombytes_vartime if input isn't valid catch (const std::exception &e) { - LOG_PRINT_L1("Error in verRct: " << e.what()); + LOG_PRINT_L1("Error in verRctNonSemanticsSimple: " << e.what()); return false; } catch (...) { - LOG_PRINT_L1("Error in verRct, but not an actual exception"); + LOG_PRINT_L1("Error in verRctNonSemanticsSimple, but not an actual exception"); return false; } } @@ -1027,7 +1096,7 @@ namespace rct { // uses the attached ecdh info to find the amounts represented by each output commitment // must know the destination private key to find the correct amount, else will return a random number xmr_amount decodeRct(const rctSig & rv, const key & sk, unsigned int i, key & mask, hw::device &hwdev) { - CHECK_AND_ASSERT_MES(rv.type == RCTTypeFull || rv.type == RCTTypeFullBulletproof, false, "decodeRct called on non-full rctSig"); + CHECK_AND_ASSERT_MES(rv.type == RCTTypeFull, false, "decodeRct called on non-full rctSig"); CHECK_AND_ASSERT_THROW_MES(i < rv.ecdhInfo.size(), "Bad index"); CHECK_AND_ASSERT_THROW_MES(rv.outPk.size() == rv.ecdhInfo.size(), "Mismatched sizes of rv.outPk and rv.ecdhInfo"); @@ -1040,6 +1109,8 @@ namespace rct { DP("C"); DP(C); key Ctmp; + CHECK_AND_ASSERT_THROW_MES(sc_check(mask.bytes) == 0, "warning, bad ECDH mask"); + CHECK_AND_ASSERT_THROW_MES(sc_check(amount.bytes) == 0, "warning, bad ECDH amount"); addKeys2(Ctmp, mask, amount, H); DP("Ctmp"); DP(Ctmp); @@ -1055,7 +1126,7 @@ namespace rct { } xmr_amount decodeRctSimple(const rctSig & rv, const key & sk, unsigned int i, key &mask, hw::device &hwdev) { - CHECK_AND_ASSERT_MES(rv.type == RCTTypeSimple || rv.type == RCTTypeSimpleBulletproof, false, "decodeRct called on non simple rctSig"); + CHECK_AND_ASSERT_MES(rv.type == RCTTypeSimple || rv.type == RCTTypeBulletproof, false, "decodeRct called on non simple rctSig"); CHECK_AND_ASSERT_THROW_MES(i < rv.ecdhInfo.size(), "Bad index"); CHECK_AND_ASSERT_THROW_MES(rv.outPk.size() == rv.ecdhInfo.size(), "Mismatched sizes of rv.outPk and rv.ecdhInfo"); @@ -1068,6 +1139,8 @@ namespace rct { DP("C"); DP(C); key Ctmp; + CHECK_AND_ASSERT_THROW_MES(sc_check(mask.bytes) == 0, "warning, bad ECDH mask"); + CHECK_AND_ASSERT_THROW_MES(sc_check(amount.bytes) == 0, "warning, bad ECDH amount"); addKeys2(Ctmp, mask, amount, H); DP("Ctmp"); DP(Ctmp); @@ -1083,12 +1156,12 @@ namespace rct { } bool signMultisig(rctSig &rv, const std::vector<unsigned int> &indices, const keyV &k, const multisig_out &msout, const key &secret_key) { - CHECK_AND_ASSERT_MES(rv.type == RCTTypeFull || rv.type == RCTTypeSimple || rv.type == RCTTypeFullBulletproof || rv.type == RCTTypeSimpleBulletproof, + CHECK_AND_ASSERT_MES(rv.type == RCTTypeFull || rv.type == RCTTypeSimple || rv.type == RCTTypeBulletproof, false, "unsupported rct type"); CHECK_AND_ASSERT_MES(indices.size() == k.size(), false, "Mismatched k/indices sizes"); CHECK_AND_ASSERT_MES(k.size() == rv.p.MGs.size(), false, "Mismatched k/MGs size"); CHECK_AND_ASSERT_MES(k.size() == msout.c.size(), false, "Mismatched k/msout.c size"); - if (rv.type == RCTTypeFull || rv.type == RCTTypeFullBulletproof) + if (rv.type == RCTTypeFull) { CHECK_AND_ASSERT_MES(rv.p.MGs.size() == 1, false, "MGs not a single element"); } diff --git a/src/ringct/rctSigs.h b/src/ringct/rctSigs.h index 5a9b2dd44..ae8bb91d7 100644 --- a/src/ringct/rctSigs.h +++ b/src/ringct/rctSigs.h @@ -119,14 +119,16 @@ namespace rct { //decodeRct: (c.f. https://eprint.iacr.org/2015/1098 section 5.1.1) // uses the attached ecdh info to find the amounts represented by each output commitment // must know the destination private key to find the correct amount, else will return a random number - rctSig genRct(const key &message, const ctkeyV & inSk, const keyV & destinations, const std::vector<xmr_amount> & amounts, const ctkeyM &mixRing, const keyV &amount_keys, const multisig_kLRki *kLRki, multisig_out *msout, unsigned int index, ctkeyV &outSk, bool bulletproof, hw::device &hwdev); + rctSig genRct(const key &message, const ctkeyV & inSk, const keyV & destinations, const std::vector<xmr_amount> & amounts, const ctkeyM &mixRing, const keyV &amount_keys, const multisig_kLRki *kLRki, multisig_out *msout, unsigned int index, ctkeyV &outSk, hw::device &hwdev); rctSig genRct(const key &message, const ctkeyV & inSk, const ctkeyV & inPk, const keyV & destinations, const std::vector<xmr_amount> & amounts, const keyV &amount_keys, const multisig_kLRki *kLRki, multisig_out *msout, const int mixin, hw::device &hwdev); rctSig genRctSimple(const key & message, const ctkeyV & inSk, const ctkeyV & inPk, const keyV & destinations, const std::vector<xmr_amount> & inamounts, const std::vector<xmr_amount> & outamounts, const keyV &amount_keys, const std::vector<multisig_kLRki> *kLRki, multisig_out *msout, xmr_amount txnFee, unsigned int mixin, hw::device &hwdev); - rctSig genRctSimple(const key & message, const ctkeyV & inSk, const keyV & destinations, const std::vector<xmr_amount> & inamounts, const std::vector<xmr_amount> & outamounts, xmr_amount txnFee, const ctkeyM & mixRing, const keyV &amount_keys, const std::vector<multisig_kLRki> *kLRki, multisig_out *msout, const std::vector<unsigned int> & index, ctkeyV &outSk, bool bulletproof, hw::device &hwdev); + rctSig genRctSimple(const key & message, const ctkeyV & inSk, const keyV & destinations, const std::vector<xmr_amount> & inamounts, const std::vector<xmr_amount> & outamounts, xmr_amount txnFee, const ctkeyM & mixRing, const keyV &amount_keys, const std::vector<multisig_kLRki> *kLRki, multisig_out *msout, const std::vector<unsigned int> & index, ctkeyV &outSk, RangeProofType range_proof_type, hw::device &hwdev); bool verRct(const rctSig & rv, bool semantics); static inline bool verRct(const rctSig & rv) { return verRct(rv, true) && verRct(rv, false); } - bool verRctSimple(const rctSig & rv, bool semantics); - static inline bool verRctSimple(const rctSig & rv) { return verRctSimple(rv, true) && verRctSimple(rv, false); } + bool verRctSemanticsSimple(const rctSig & rv); + bool verRctSemanticsSimple(const std::vector<const rctSig*> & rv); + bool verRctNonSemanticsSimple(const rctSig & rv); + static inline bool verRctSimple(const rctSig & rv) { return verRctSemanticsSimple(rv) && verRctNonSemanticsSimple(rv); } xmr_amount decodeRct(const rctSig & rv, const key & sk, unsigned int i, key & mask, hw::device &hwdev); xmr_amount decodeRct(const rctSig & rv, const key & sk, unsigned int i, hw::device &hwdev); xmr_amount decodeRctSimple(const rctSig & rv, const key & sk, unsigned int i, key & mask, hw::device &hwdev); diff --git a/src/ringct/rctTypes.cpp b/src/ringct/rctTypes.cpp index 5650b3ba1..90ed65df0 100644 --- a/src/ringct/rctTypes.cpp +++ b/src/ringct/rctTypes.cpp @@ -28,6 +28,8 @@ // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +#include "misc_log_ex.h" +#include "cryptonote_config.h" #include "rctTypes.h" using namespace crypto; using namespace std; @@ -209,4 +211,90 @@ namespace rct { return vali; } + bool is_rct_simple(int type) + { + switch (type) + { + case RCTTypeSimple: + case RCTTypeBulletproof: + return true; + default: + return false; + } + } + + bool is_rct_bulletproof(int type) + { + switch (type) + { + case RCTTypeBulletproof: + return true; + default: + return false; + } + } + + bool is_rct_borromean(int type) + { + switch (type) + { + case RCTTypeSimple: + case RCTTypeFull: + return true; + default: + return false; + } + } + + size_t n_bulletproof_amounts(const Bulletproof &proof) + { + CHECK_AND_ASSERT_MES(proof.L.size() >= 6, 0, "Invalid bulletproof L size"); + CHECK_AND_ASSERT_MES(proof.L.size() == proof.R.size(), 0, "Mismatched bulletproof L/R size"); + static const size_t extra_bits = 4; + static_assert((1 << extra_bits) == BULLETPROOF_MAX_OUTPUTS, "log2(BULLETPROOF_MAX_OUTPUTS) is out of date"); + CHECK_AND_ASSERT_MES(proof.L.size() <= 6 + extra_bits, 0, "Invalid bulletproof L size"); + CHECK_AND_ASSERT_MES(proof.V.size() <= (1u<<(proof.L.size()-6)), 0, "Invalid bulletproof V/L"); + CHECK_AND_ASSERT_MES(proof.V.size() * 2 > (1u<<(proof.L.size()-6)), 0, "Invalid bulletproof V/L"); + CHECK_AND_ASSERT_MES(proof.V.size() > 0, 0, "Empty bulletproof"); + return proof.V.size(); + } + + size_t n_bulletproof_amounts(const std::vector<Bulletproof> &proofs) + { + size_t n = 0; + for (const Bulletproof &proof: proofs) + { + size_t n2 = n_bulletproof_amounts(proof); + CHECK_AND_ASSERT_MES(n2 < std::numeric_limits<uint32_t>::max() - n, 0, "Invalid number of bulletproofs"); + if (n2 == 0) + return 0; + n += n2; + } + return n; + } + + size_t n_bulletproof_max_amounts(const Bulletproof &proof) + { + CHECK_AND_ASSERT_MES(proof.L.size() >= 6, 0, "Invalid bulletproof L size"); + CHECK_AND_ASSERT_MES(proof.L.size() == proof.R.size(), 0, "Mismatched bulletproof L/R size"); + static const size_t extra_bits = 4; + static_assert((1 << extra_bits) == BULLETPROOF_MAX_OUTPUTS, "log2(BULLETPROOF_MAX_OUTPUTS) is out of date"); + CHECK_AND_ASSERT_MES(proof.L.size() <= 6 + extra_bits, 0, "Invalid bulletproof L size"); + return 1 << (proof.L.size() - 6); + } + + size_t n_bulletproof_max_amounts(const std::vector<Bulletproof> &proofs) + { + size_t n = 0; + for (const Bulletproof &proof: proofs) + { + size_t n2 = n_bulletproof_max_amounts(proof); + CHECK_AND_ASSERT_MES(n2 < std::numeric_limits<uint32_t>::max() - n, 0, "Invalid number of bulletproofs"); + if (n2 == 0) + return 0; + n += n2; + } + return n; + } + } diff --git a/src/ringct/rctTypes.h b/src/ringct/rctTypes.h index 452a68eb2..ffc4df3ed 100644 --- a/src/ringct/rctTypes.h +++ b/src/ringct/rctTypes.h @@ -190,6 +190,8 @@ namespace rct { Bulletproof() {} Bulletproof(const rct::key &V, const rct::key &A, const rct::key &S, const rct::key &T1, const rct::key &T2, const rct::key &taux, const rct::key &mu, const rct::keyV &L, const rct::keyV &R, const rct::key &a, const rct::key &b, const rct::key &t): V({V}), A(A), S(S), T1(T1), T2(T2), taux(taux), mu(mu), L(L), R(R), a(a), b(b), t(t) {} + Bulletproof(const rct::keyV &V, const rct::key &A, const rct::key &S, const rct::key &T1, const rct::key &T2, const rct::key &taux, const rct::key &mu, const rct::keyV &L, const rct::keyV &R, const rct::key &a, const rct::key &b, const rct::key &t): + V(V), A(A), S(S), T1(T1), T2(T2), taux(taux), mu(mu), L(L), R(R), a(a), b(b), t(t) {} BEGIN_SERIALIZE_OBJECT() // Commitments aren't saved, they're restored via outPk @@ -211,6 +213,11 @@ namespace rct { END_SERIALIZE() }; + size_t n_bulletproof_amounts(const Bulletproof &proof); + size_t n_bulletproof_max_amounts(const Bulletproof &proof); + size_t n_bulletproof_amounts(const std::vector<Bulletproof> &proofs); + size_t n_bulletproof_max_amounts(const std::vector<Bulletproof> &proofs); + //A container to hold all signatures necessary for RingCT // rangeSigs holds all the rangeproof data of a transaction // MG holds the MLSAG signature of a transaction @@ -222,9 +229,9 @@ namespace rct { RCTTypeNull = 0, RCTTypeFull = 1, RCTTypeSimple = 2, - RCTTypeFullBulletproof = 3, - RCTTypeSimpleBulletproof = 4, + RCTTypeBulletproof = 3, }; + enum RangeProofType { RangeProofBorromean, RangeProofBulletproof, RangeProofMultiOutputBulletproof, RangeProofPaddedBulletproof }; struct rctSigBase { uint8_t type; key message; @@ -241,7 +248,7 @@ namespace rct { FIELD(type) if (type == RCTTypeNull) return true; - if (type != RCTTypeFull && type != RCTTypeFullBulletproof && type != RCTTypeSimple && type != RCTTypeSimpleBulletproof) + if (type != RCTTypeFull && type != RCTTypeSimple && type != RCTTypeBulletproof) return false; VARINT_FIELD(txnFee) // inputs/outputs not saved, only here for serialization help @@ -302,21 +309,25 @@ namespace rct { { if (type == RCTTypeNull) return true; - if (type != RCTTypeFull && type != RCTTypeFullBulletproof && type != RCTTypeSimple && type != RCTTypeSimpleBulletproof) + if (type != RCTTypeFull && type != RCTTypeSimple && type != RCTTypeBulletproof) return false; - if (type == RCTTypeSimpleBulletproof || type == RCTTypeFullBulletproof) + if (type == RCTTypeBulletproof) { ar.tag("bp"); ar.begin_array(); - PREPARE_CUSTOM_VECTOR_SERIALIZATION(outputs, bulletproofs); - if (bulletproofs.size() != outputs) + uint32_t nbp = bulletproofs.size(); + FIELD(nbp) + if (nbp > outputs) return false; - for (size_t i = 0; i < outputs; ++i) + PREPARE_CUSTOM_VECTOR_SERIALIZATION(nbp, bulletproofs); + for (size_t i = 0; i < nbp; ++i) { FIELDS(bulletproofs[i]) - if (outputs - i > 1) + if (nbp - i > 1) ar.delimit_array(); } + if (n_bulletproof_max_amounts(bulletproofs) < outputs) + return false; ar.end_array(); } else @@ -339,7 +350,7 @@ namespace rct { ar.begin_array(); // we keep a byte for size of MGs, because we don't know whether this is // a simple or full rct signature, and it's starting to annoy the hell out of me - size_t mg_elements = (type == RCTTypeSimple || type == RCTTypeSimpleBulletproof) ? inputs : 1; + size_t mg_elements = (type == RCTTypeSimple || type == RCTTypeBulletproof) ? inputs : 1; PREPARE_CUSTOM_VECTOR_SERIALIZATION(mg_elements, MGs); if (MGs.size() != mg_elements) return false; @@ -357,7 +368,7 @@ namespace rct { for (size_t j = 0; j < mixin + 1; ++j) { ar.begin_array(); - size_t mg_ss2_elements = ((type == RCTTypeSimple || type == RCTTypeSimpleBulletproof) ? 1 : inputs) + 1; + size_t mg_ss2_elements = ((type == RCTTypeSimple || type == RCTTypeBulletproof) ? 1 : inputs) + 1; PREPARE_CUSTOM_VECTOR_SERIALIZATION(mg_ss2_elements, MGs[i].ss[j]); if (MGs[i].ss[j].size() != mg_ss2_elements) return false; @@ -383,7 +394,7 @@ namespace rct { ar.delimit_array(); } ar.end_array(); - if (type == RCTTypeSimpleBulletproof) + if (type == RCTTypeBulletproof) { ar.tag("pseudoOuts"); ar.begin_array(); @@ -407,12 +418,12 @@ namespace rct { keyV& get_pseudo_outs() { - return type == RCTTypeSimpleBulletproof ? p.pseudoOuts : pseudoOuts; + return type == RCTTypeBulletproof ? p.pseudoOuts : pseudoOuts; } keyV const& get_pseudo_outs() const { - return type == RCTTypeSimpleBulletproof ? p.pseudoOuts : pseudoOuts; + return type == RCTTypeBulletproof ? p.pseudoOuts : pseudoOuts; } }; @@ -517,14 +528,18 @@ namespace rct { //int[64] to uint long long xmr_amount b2d(bits amountb); - static inline const rct::key pk2rct(const crypto::public_key &pk) { return (const rct::key&)pk; } - static inline const rct::key sk2rct(const crypto::secret_key &sk) { return (const rct::key&)sk; } - static inline const rct::key ki2rct(const crypto::key_image &ki) { return (const rct::key&)ki; } - static inline const rct::key hash2rct(const crypto::hash &h) { return (const rct::key&)h; } - static inline const crypto::public_key rct2pk(const rct::key &k) { return (const crypto::public_key&)k; } - static inline const crypto::secret_key rct2sk(const rct::key &k) { return (const crypto::secret_key&)k; } - static inline const crypto::key_image rct2ki(const rct::key &k) { return (const crypto::key_image&)k; } - static inline const crypto::hash rct2hash(const rct::key &k) { return (const crypto::hash&)k; } + bool is_rct_simple(int type); + bool is_rct_bulletproof(int type); + bool is_rct_borromean(int type); + + static inline const rct::key &pk2rct(const crypto::public_key &pk) { return (const rct::key&)pk; } + static inline const rct::key &sk2rct(const crypto::secret_key &sk) { return (const rct::key&)sk; } + static inline const rct::key &ki2rct(const crypto::key_image &ki) { return (const rct::key&)ki; } + static inline const rct::key &hash2rct(const crypto::hash &h) { return (const rct::key&)h; } + static inline const crypto::public_key &rct2pk(const rct::key &k) { return (const crypto::public_key&)k; } + static inline const crypto::secret_key &rct2sk(const rct::key &k) { return (const crypto::secret_key&)k; } + static inline const crypto::key_image &rct2ki(const rct::key &k) { return (const crypto::key_image&)k; } + static inline const crypto::hash &rct2hash(const rct::key &k) { return (const crypto::hash&)k; } static inline bool operator==(const rct::key &k0, const crypto::public_key &k1) { return !crypto_verify_32(k0.bytes, (const unsigned char*)&k1); } static inline bool operator!=(const rct::key &k0, const crypto::public_key &k1) { return crypto_verify_32(k0.bytes, (const unsigned char*)&k1); } } |